Helicobacter pylori may induce bile reflux: link between H pylori and bile induced injury to gastric epithelium

S D Ladas, J Katsogridakis, H Malamou, H Giannopoulou, M Kesse-Elias, S A Raptis

Abstract

Helicobacter pylori and duodenogastric reflux are both recognised as playing aetiological roles in chronic gastritis. This study investigated whether H pylori colonisation of the antral mucosa and duodenogastric reflux are independent phenomena or have a causal relationship. Thirty eight patients (15 men, 23 women) aged (mean (SD)) 48 (17) years participated. Each patient underwent gastroscopy. Antral biopsy specimens were taken to investigate H pylori colonisation. In addition BrID-

99mTc111In-DTPA scintigraphy was used to quantify duodenogastric reflux. H pylori positive patients who were found to have duodenogastric reflux were treated with amoxycillin (1 g/d) and metronidazole (1.5 g/d) for seven days and four tablets of bismuth subcitrate daily for four weeks. Follow up antral biopsies and scintigraphy were repeated at six months. Duodenogastric reflux could not be found in 18 patients, including eight (44%) who were H pylori positive. Ten of the 11 patients who had duodenogastric reflux (reflux percentage 11.6 (9.2)), however, were H pylori positive (χ²=6.26, p=0.01). These 10 patients were given eradication treatment. At six months, in six patients who became H pylori negative, duodenogastric reflux was significantly reduced from a pretreatment value of 14.3% to 3.3% (two tail, paired t=2.57, p=0.016). These data suggest that H pylori may induce duodenogastric reflux which may be important in the pathogenesis of H pylori gastritis or carcinogenesis, or both.

Methods

Study design

On admission to the study each patient underwent upper gastrointestinal endoscopy and three antral mucosal biopsy specimens were taken from the lesser curve for a rapid urease test (CLO-test, Delta West, Bentley, Western Australia) and Gram stain biopsy smears. Patients in whom the results of the CLO-test and Gram staining were in agreement had 99mTc-Indium-diethylene triamine pentaacetate (BrIDA-

99mTc111In-DTPA) scintigraphy to quantify DGR. Those patients with both DGR and H pylori colonisation of the antral mucosa were treated with triple H pylori eradication therapy including 1 g amoxycillin and 1.5 g metronidazole daily for seven days and four tablets of colloidal bismuth subcitrate (De-Nol) daily, for four weeks. Similar triple therapy regimens are reported to have a H pylori eradication efficacy of between 72 and 90%.16 17 At six months, all treated patients had follow up

Keywords: Helicobacter pylori, bile reflux, duodenogastric reflux, H pylori gastritis, gastric carcinogenesis.
Figure 1: Of the 38 patients admitted to the study, nine were excluded because a reliable estimation of duodeno-gastric reflux (DGR) was not possible in two and in seven the CLO-test and Gram staining results did not agree. The 29 remaining patients had BrIDA99mTc111In-DTPA scan to quantify DGR. Significantly more patients with DGR (DGR+ve) were H pylori positive compared with patients without DGR ($\chi^2=6.26$, df=1, $p=0.012$).

Detection of H pylori

Both a rapid urease test and Gram staining were used to identify H pylori colonisation of the antral mucosa. One antral biopsy specimen was immersed in the yellow gel of the rapid urease test and gel colour change to pink (positive test) was checked for every 15 minutes over a two hour period. The CLO-test has a specificity of 97%, a sensitivity of about 95%, and gives a positive result at two hours in more than 80% of H pylori colonised patients.\(^{18}\)

Each of the remaining biopsy specimens (n=2) was crushed between two microscope slides, thereby producing four biopsy smears. All five smears were Gram stained and evaluated by an experienced bacteriologist (HM) for the presence and colonisation density of spiral bacteria, which appeared as red curved bacilli on Gram stain. The bacteriologist was ‘blind’ to the results of the CLO test. Colonisation density was scored from one (<10) to four (>50 bacteria in at least one power field). H pylori positive patients were defined as those positive for both tests. Where the results of the tests did not agree, the patient was withdrawn from the study.

BrIDA99mTc111In-DTPA scintigraphy

DGR was assessed by two senior staff (HG and MK-E) of the Nuclear Medicine Department, who were ‘blind’ to the H pylori colonisation status of each patient.

After an overnight fast the patient received intravenously 2 mCi of BrIDA99mTc, which is cleared selectively by the hepatocyte via the same pathway as bilirubin. Thirty minutes later, the patient was placed semirecumbent under a large field of view gammacamera (with a medium energy collimator) to obtain a baseline image. He then received a semi-liquid meal, consisting of two egg yolks beaten with 20 g of sugar, and drank 200 ml of water labelled with 100 μCi of 111In-DTPA to delineate the gastric area of interest. Images of the abdomen were then acquired simultaneously in two windows 99mTc and 111In every five minutes for the next hour. The DGR index was calculated according to the formula DGR=(S$_0$−S$_n$)/(H$_1$−H$_0$): 100, where S$_0$ and S$_n$ are 99mTc-BrIDA activities over the stomach region at times t (max gastric activity) and zero (baseline image) respectively, whereas H$_0$ and H$_1$ are 99mTc-BrIDA activities over the hepatobiliary region at times t and zero respectively. The results were corrected for radioactive decay and blood background. BrIDA99mTc111In-DTPA scintigraphy is the only non-invasive method available to quantitate DGR. The results of this method correlate highly with the actual concentration of bile acids recovered from the stomach.\(^{20}\)

Statistical analysis

All data are presented as mean (SD). The statistical significance of the results was assessed by the χ^2 test with continuity correction factor or paired two tailed t test and regression analysis as appropriate.\(^{21}\) A p value of less than 0.05 was regarded significant.

Results

Nine of the 38 patients admitted to the study (Fig 1) were excluded. In two of these patients superimposed jejunal loops on the gastric antrum did not allow a reliable estimate of DGR. In seven patients there was no agreement between the results of the CLO-test and Gram staining. Six of them had a positive CLO-test, but the Gram stain was negative. One additional patient had a negative CLO-test but the Gram stain was positive for H pylori-like bacteria. In the remaining 29 patients (Table), both the CLO-test and Gram stain were negative in 11 and positive in 18. Eleven patients were therefore defined as H pylori negative and 18 as H pylori positive.

In 18 of the 29 patients no DGR could be shown, but the remaining 11 patients had a mean (SD) DGR score of 11·6 (9·2%). When combining the results of H pylori colonisation with those of DGR, 10 (91%) of the 11 patients who had DGR were found to be colonised by H pylori, but only 8 (44%) of those did not have DGR (n=18) were H pylori positive ($\chi^2=6.26$, df=1, $p=0.012$). There was no correlation between the DGR score and the density of H pylori colonisation (r=0·02, p=0·7), nor was the density of colonisation different in patients with (n=10) and without reflux (n=9) ($\chi^2=0.3$, df=2, $p=0.9$).

All 10 H pylori positive patients who had DGR underwent treatment to eradicate H pylori. One was lost to follow up at six months. Follow up endoscopy with biopsies showed that three of the nine patients were still colonised by H pylori, but six patients became H pylori negative (Table). After successful H pylori eradication treatment in the six patients, the DGR score was significantly reduced (Fig 2) from a pretreatment mean
value of 14.3 (10.9) to 3.3 (3.8)% (two tailed pair t test =2.57, p=0.016).

Discussion

It has long been accepted that the gastric mucosal barrier can be damaged by factors such as ingestion of aspirin and non-steroidal anti-inflammatory drugs, and by bile reflux. Bile acids and lysolceithin, were regarded as important factors in the pathogenesis of chronic gastritis and peptic ulcer. During the past 10 years, however, these theories have been superseded by evidence indicating that chronic H pylori infection of the gastric mucosa is related to chronic gastritis and duodenal ulcer and is a risk factor for gastric carcinogenesis. Though H pylori and bile reflux gastritis are regarded as distinct histopathological entities, a number of studies have attempted to explain a possible relationship between H pylori gastritis and DGR of bile. Thus, it has been shown that bile is hostile to H pylori colonisation in vitro and in patients. The effect of bile reflux on H pylori colonisation of the gastric mucosa has also been investigated in patients who have undergone gastric surgery. In one of these studies no significant difference could be shown in the quantity of bile reflux between H pylori positive and negative patients, but two other studies came to the conclusion that postoperative bile reflux may play a role in the eradication of H pylori. Furthermore, it has been shown that H pylori recolonises the mucosa of the gastric remnant after bile diversion (Roux-en-Y anastomosis). Despite these observations, it seems that in the intact stomach bile reflux and H pylori often coexist and both may therefore be involved in the pathogenesis of gastritis. This is because the bile acid concentrations of gastric aspirates sampled from patients who have not undergone surgery are usually much lower than those used in the in vitro studies and those measured in postoperative stomachs. The results of our study not only confirm that H pylori may survive the noxious effect of bile reflux in the intact stomach, but also that significantly more H pylori positive patients than H pylori negative patients may have DGR. We could not, however, show any significant correlation between the DGR score and the density of H pylori colonisation of the gastric mucosa, probably because of the patchy distribution of H pylori colonisation, which may result in tissue sampling error.

The association between H pylori colonisation of the gastric mucosa and DGR was further investigated by comparing DGR before and six months after successful H pylori eradication. A long post treatment period was thought to be necessary for restoration of the gastric physiology after successful H pylori eradication. Though many investigators suggest that successful H pylori eradication is evident if H pylori can no longer be detected four weeks after the end of antimicrobial therapy, this length of time has been selected arbitrarily and most recurrences occur within six months, indicating that they may not be true recurrences but actually the result of incomplete H pylori eradication. Our observation that DGR is consistently reduced after successful H pylori eradication, implies that H pylori may actually be involved in the pathogenesis of DGR. This may be explained when considering that H pylori gastritis may alter gastric physiology by reducing the number of somatostatin producing cells of the gastric mucosa, and by increasing both basal and meal stimulated gastrin release. The increase of serum gastrin may affect antroduodenal motility and may be implicated in the pathophysiology of DGR.

One limitation of this study is that we have investigated only postprandial DGR over a short period, while it is not known whether fasting or postprandial DGR is the more important and whether they coexist in the same patient. Certainly, a comparison of 24 hour DGR recording in H pylori positive and negative patients may provide us with more relevant information.

The importance of DGR as a cause of bile reflux induced gastritis and even of gastric...
cancer is well recognised. Our data suggest that *H. pylori* may induce DGR and therefore both may act synergistically on the gastric mucosa inducing chronic gastritis, which may lead to the carcinoma sequence. Indeed, it has recently been shown that the prevalence of intestinal metaplasia is greatest in those patients who have both *H. pylori* associated gastritis and high intragastric bile acid concentration.\(^4\)

Helicobacter pylori may induce bile reflux: link between H pylori and bile induced injury to gastric epithelium.

S D Ladas, J Katsogridakis, H Malamou, H Giannopoulou, M Kesse-Elia and S A Raptis

Gut 1996 38: 15-18
doi: 10.1136/gut.38.1.15

Updated information and services can be found at:
http://gut.bmj.com/content/38/1/15

These include:

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Topic Collections
Articles on similar topics can be found in the following collections

Stomach and duodenum (1689)
Endoscopy (1003)
Pancreas and biliary tract (1949)

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/