Positive somatostatin receptor scintigraphy correlates with the presence of somatostatin receptor subtype 2

Abstract

Somatostatin receptor scintigraphy (SRS) is positive in approximately 75% of all patients with neuroendocrine gastroenteropancreatic tumours. This study aimed to identify specific somatostatin receptor (sstr) subtypes, which are responsible for the in vivo binding of the widely used somatostatin analogue, octreotide, in human neuroendocrine gastroenteropancreatic tumours. Twelve patients underwent SRS with radio-labelled octreotide. After surgical resection, tumour tissues were analysed in vitro for somatostatin and octreotide binding sites by autoradiography. In addition, for the first time, sstr subtype mRNA expression was examined by semiquantitative reverse transcription polymerase chain reaction (RT-PCR). Tumour tissues from all SRS positive patients were positive by autoradiography. Semiquantitative RT-PCR revealed most prominently sstr2 expression in semiquantitatively positive tumours. Two SRS negative tumours contained in vitro octreotide binding sites as well as high levels of sstr1 and sstr2 mRNAs. Positive SRS is mainly due to sstr2. sstr1, 3, 4, and probably 5 are less important for in vivo octreotide binding. False negative scintigraphic results seem to be influenced by factors independent of the expression of specific sstr.

Keywords: somatostatin receptor scintigraphy, somatostatin receptor subtype 2, octreotide, neuroendocrine tumour, gastroenteropancreatic system, RT-PCR

Neuroendocrine tumour cells of the gastroenteropancreatic system contain high affinity binding sites for somatostatin (SST) and its analogues (1-3, for review see 4). In 1989, Krenning et al5,6 applied radiolabelled octreotide intravenously to patients with these tumours and showed that they could be localised by somatostatin receptor scintigraphy (SRS). Although most of these tumours were positive by SRS, approximately 25% were not detected by this technique using octreotide as ligand (7,8, for review see 9). Interestingly, some of the scintigraphically negative tumours exhibited binding sites for SST but not for octreotide in vitro.10-11 Additional findings, based on autoradiographic and biochemical binding studies using SST-14, SST-28, and octreotide as ligands, suggested that different somatostatin receptor (sstr) subtypes exist in neuroendocrine tumour cells (for review see 1). Five distinct human sstr subtypes have recently been identified and characterised by molecular cloning and functional expression studies.12-20 For sstr subtype 2, splice variants sstr2A and sstr2B have been identified.14 Thus six sstr subtypes exist up to now. All have been shown to be coupled to G-protein and to possess seven putative membrane spanning domains.21,22 sstr subtypes differ in their affinities for specific ligands such as SST-14, SST-28, and the stable somatostatin analogues octreotide and lanreotide (23, for review see 24). Expression studies of single sstr subtypes in non-neuroendocrine cells found that octreotide bound with high affinity to sstr subtypes 2 and with lower affinity to 3 and 5,17,24 Thus, expression of selected sstr subtypes in different tumour types may account for the positive or negative results obtained by SRS.

Recently, Kubota et al25 studied seven neuroendocrine gastroenteropancreatic tumours (pancreas, n=6; intestine, n=1) using the reverse transcription polymerase chain reaction (RT-PCR) and suggested that only sstr2 was functionally relevant. Interestingly, no expression of sstr5 was observed in the tumour tissues studied. Furthermore, no quantitation of sstr mRNAs was done and nor was the expression of sstrs studied at the protein level. In addition, the data obtained were not correlated to in vivo binding conditions - that is, SRS.

We have studied a group of patients with neuroendocrine gastroenteropancreatic tumours, who were all subjected to SRS. To evaluate the number of false positive and false negative results obtained using SRS, tumour specimens obtained by surgery from all patients were analysed by means of SST-28 and octreotide autoradiography. In addition, and for the first time, we used a quantitative RT-PCR method to evaluate the expression levels of sstr mRNAs in neuroendocrine tumour tissues.

Patients and methods

TUMOUR TISSUES

Tumour tissue was obtained from 12 patients with neuroendocrine gastroenteropancreatic tumours by surgery at the Universitätssklinikum Benjamin Franklin (UKBF) and Rudolf Virchow (UKRV), Berlin, Germany. Informed consent was obtained from all patients and the
study was performed in accordance with the standards set by the ethical committee of the UKBF. Tissue samples were quick frozen in liquid nitrogen and stored at −80°C. Tumour histology was verified by both conventional and immunohistochemical methods before either RNA preparation or SST receptor autoradiography. One atypical carcinoid was studied and showed a positive immunostaining for neuron specific enolase, synaptophysin, but not for chromogranin A, calcitonin, carinoembryonic antigen (CEA), or serotonin. Focal positive immunoreactivity was also obtained for cytokeratin and vimentin. Ki 67 expression varied from 3−4% of all tumour cells. By conventional histology, tumour cells were polygonally arranged. By electron microscopy, numerous organelles as well as a few neuroendocrine granules (20 nm in diameter) were found.

PATIENTS

Patient characteristics and SRS results are summarised in the Table. SRS was performed as previously described.7,26 To avoid jeopardy to patients with carcinoid syndrome, SST treatment was continued during SRS or surgery, or both.27

RNA PREPARATION

Total RNA from tumour tissue samples was purified using a modified protocol based on the method of Chomczynski and Sacchi.28 Briefly, approximately 10 to 20 mg of tumour tissue were homogenised by sonication in guanidine thiocyanate buffer. The solution was acidified with sodium acetate and extracted once with phenol/chloroform/isoamyl alcohol, followed by two extractions with chloroform. An equal volume of isopropanol was added to the aqueous phase and the sample was incubated overnight at −20°C. Pelleted RNA was washed twice with 75% ethanol, stored in 75% ethanol at −80°C, and redissolved in RNase-free water before use in reverse transcription.

SEMIQUANTITATIVE PCR

Estimates of the relative levels of mRNAs that encode human sstr subtypes 1−5 has been achieved by PCR amplification of their corresponding cDNAs, using β-actin mRNA as a control as recently described.29 Briefly, 1μg of total cellular RNA that had been prepared from the different tumour tissues and exhaustively digested with DNase I was used for oligo(dT)-primed reverse transcription. cDNAs were amplified with 2.5 U Taq DNA polymerase (Promega, Madison, USA) in 100 μl reaction assays using the following oligonucleotide primers:

- sstr1 – GCTGAGCAGGAGGCCACCG and CAACCTGAGACCTGGATCC, corresponding to nucleotide positions 903−923 and 1119−1140 of the published cDNA sequence12;
- sstr2 – CCCCCAGGCTTTAGGCA-TGT and GAGCCCTCCTCAATGGAG-CC, 874−895 and 1087−110712;
- sstr3 – GTCAACGTTGTTGCCCAC-TG and GGGCCCCGAGAAGTGG-AG, 932−952 and 1124−114413;
- sstr4 – GCCCTGATGGCAAGTTCAA-CC and GGTGATGTGCCCCACTTAA, 956−976 and 1169−118919;
- sstr5 – ATCTGCTCAACCTGGCGT17- and CGTCCAGAGGATCCGGC-AG, 855−875 and 1056−107617;
- β-actin – GGGCATGGTGCAGGAGG- TT and ATGAGGTGATCGACTGTC, 173−192 and 591−610.30

All reaction mixtures were amplified by 40 cycles at 94°C for two minutes, at 63°C (sstr1 and 4), at 61°C (sstr2 and 3), at 65°C (sstr5), or at 60°C (β-actin) for 80 seconds and at 72°C for two minutes. Aliquots (15 μl) of each amplification reaction were removed after 15, 20, 25, 30, 35, and 40 cycles, and run on 1.5% agarose gels. The sizes of the cDNA fragments were found to be 230 bp (sstr1, 2, 4, 210 bp (sstr3), and 220 bp (sstr5) and corresponded to the predicted fragment lengths of 237, 233, 212, 233, 221 nucleotides for sstr1−5, respectively. After blotting on Hybond N membranes (Amersham, Braunschweig, Germany), filters were hybridised in 5×SSC, 10×Denhardt’s solution, 1 mM EDTA, 100 mg/ml herring sperm DNA, 0.5% (w/v) sodium dodecyl sulphate at 50°C with the appropriate 32P-labelled sstr or β-actin probe:

- sstr1 – GCTGGATGACAAACGCCGC- GG, 1036−105612;
- sstr2 – GGGCAAGATGATGGGAGGAG- GG, 1014−103412;
- sstr3 – TCCCCGGCTTGGCGAGCCAG- AG, 1091−111113;
- sstr4 – CCTGCGGTGCTGCGCTCTGG- GA, 1077−109719;
- sstr5 – CCAGAAGGCTCTTGTGCAAG- AG, 1014−103419;
- β-actin – CCACACCTTTCAATAGA-GC, 302−32130.

1 pmol/ml with specific activities between 5×10^5 and 3×10^6 cpm/pmole. Filters were finally washed in 6×SSC at either 65°C (sstr1, 2, 4, and 5), 69°C (sstr3), or 55°C (β-actin).

Quantification of the hybridisation signals were carried out using a Bio-Imaging-Analyzer (Fujix BAS 2000, Fuji Photo Film Co, Japan). A

<table>
<thead>
<tr>
<th>Characteristics of patients with gastroenteropancreatic neuroendocrine tumours</th>
<th>Patient</th>
<th>Age (y)</th>
<th>Sex</th>
<th>Primary tumour/affected tissue</th>
<th>SRS</th>
<th>Treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atypical carcinoid*</td>
<td>53</td>
<td>F</td>
<td>Unknown/liver</td>
<td>Mt</td>
<td>−ve</td>
<td>$</td>
</tr>
<tr>
<td>NE ileal tumour 1</td>
<td>50</td>
<td>F</td>
<td>Small intestine/ovary</td>
<td>−ve</td>
<td>$</td>
<td>SM, IFN</td>
</tr>
<tr>
<td>NE ileal tumour 2 a</td>
<td>53</td>
<td>F</td>
<td>Small intestine/ovary</td>
<td>−ve</td>
<td>$</td>
<td>SM</td>
</tr>
<tr>
<td>NE ileal tumour 2 b</td>
<td>56</td>
<td>F</td>
<td>Small intestine/liver</td>
<td>+ve</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Insulinnoma 1</td>
<td>66</td>
<td>F</td>
<td>Pancreas/p</td>
<td>−ve</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gastrinoma 1</td>
<td>39</td>
<td>M</td>
<td>Pancreas/p</td>
<td>+ve</td>
<td>$</td>
<td>OMP</td>
</tr>
<tr>
<td>Gastrinoma 2</td>
<td>42</td>
<td>F</td>
<td>Liver/p</td>
<td>+ve</td>
<td>$</td>
<td>OMP</td>
</tr>
<tr>
<td>Gastrinoma 3</td>
<td>53</td>
<td>M</td>
<td>Duodenum/liver</td>
<td>+ve</td>
<td>$</td>
<td>SM, OMP, IFN</td>
</tr>
<tr>
<td>NE ileal tumour 4</td>
<td>73</td>
<td>M</td>
<td>Small intestine/p</td>
<td>−ve</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NE ileal tumour 5</td>
<td>59</td>
<td>M</td>
<td>Small intestine/p</td>
<td>−ve</td>
<td></td>
<td>SM</td>
</tr>
<tr>
<td>PNET 1*</td>
<td>45</td>
<td>M</td>
<td>Pancreas/p</td>
<td>+ve</td>
<td>$</td>
<td>SM, IFN, ch</td>
</tr>
<tr>
<td>PNET 2**</td>
<td>54</td>
<td>M</td>
<td>Pancreas/liver</td>
<td>+ve</td>
<td>$</td>
<td>SM</td>
</tr>
</tbody>
</table>

All patients were subjected to somatostatin receptor scintigraphy (SRS).

*Non-functional; +serotonin producing.
NE=neuroendocrine; PNET=pancreatic neuroendocrine tumour; F=female; M=male; pt=primary tumour; mt=metastasis; s=surgery; SM=somatostatin; IFN=interferon; OMP=omeproprazole; ch=chemoembolization.
Scintigraphy and somatostatin receptor subtypes

SST AUTORADIOGRAPHY

Cryostat tissue sections (20 μm) were processed for SST receptor autoradiography as previously described in detail.1–3 The radioligands used were the SST analogue 125I-[Tyr2]-octreotide and 125I-[Leu8, D-Trp22, Tyr25]-SST-28. Both ligands were iodinated, purified by high pressure liquid chromatography column and characterised in standard binding assays as described previously.1,3 For autoradiography, tissue sections were mounted on precleaned microscope slides and stored at -20°C for at least three days to improve adhesion of tissue to the slide. Sections were then incubated for two hours at ambient temperature in the presence of the iodinated ligand (0-15–0-30×106 dpm/ml, approximately 80–160 pM). The incubation solution was 170 mM Tris-HCl buffer (pH 7.4) containing 1% bovine serum albumin (BSA), bac-

iracin (40 μg/ml), and MgCl2 (5 mM) to inhibit endogenous proteases. Non-specific binding was determined by adding 1 μM solution of unlabelled [Tyr3]-octreotide or SST-28. Incubated sections were washed twice for five minutes in cold incubation buffer containing 0.25% BSA, then in buffer alone, and dried quickly. Finally, the sections were exposed to 3H-Hyperfilms (Amersham, UK) and exposed for one week in x ray cassettes.

Results

CLINICAL COURSE AND REDUCTION OF SECRETION IN PATIENTS TREATED WITH SST ANALOGUES

Eight of 12 patients with neuroendocrine tumours had been treated with octreotide (3×100–500 μg/d subcutaneously, n=7) or lanreotide (30 mg intramuscularly every 14 days, n=4 or 3×5 mg/d, n=3). Two of the eight patients had been treated with a combination of octreotide (3×250 μg/d) subcutaneously and interferon-alpha (3×5 mio. IU/wk). All gastrinomas were taking omeprazole (20–40 mg/d). Treatment with SST analogues led to a reduction in flushing and diarrhoea as well as in serum chromogranin A concentrations in all patients with carcinoid syndrome (n=6). Abnormal serum concentrations of serotonin (six of six) or gastrin (one; two not tested) were reduced after SST treatment. No correlation between SRS positivity and the control of tumour growth was observed.

SRS

SRS showed neuroendocrine tumour lesions in eight of 12 patients (Table). The tumours in these eight patients consisted of gastrinomas (n=3), neuroendocrine tumours of the small intestine (n=3), and neuroendocrine pancreatic tumours (n=2). In four of 12 patients negative SRS results were obtained (Table). These four patients suffered from insulinoma (n=1), atypical carcinoid (liver metastasis and unknown primary tumour, n=1), and functional neuroendocrine ileal tumours (n=2), one with metastases of the liver and ovary and one with only an ovarian metastasis. Although the liver metastasis was positive by SRS, the metastases to the ovaries, which were 3 or 4 cm in diameter, were negative in the latter two patients. Tumour tissues obtained from all these patients during surgery were studied for the expression of the various sstr subtypes by SST autoradiography and semi-quantitative RT-PCR. Since the diagnostic reliability of SRS is not compromised by continuous treatment with somatostatin analogues,27 somatostatin treatment was not stopped before SRS.

AUTORADIOGRAPHY WITH SST-28 AND OCTREOTIDE AS SST RECEPTOR LIGANDS

Biochemical studies of single sstr subtypes transfected and expressed in non-neuroendocrine cells have shown that octreotide binds

![Figure 1: Detection of specific somatostatin receptor (sstr) subtype mRNAs in somatostatin receptor scintigraphy (SRS) negative neuroendocrine gastrointestinal and pancreatic tumour tissues. sstr, relative amounts of somatostatin receptor subtype 1 to 6 mRNA. sstr subtype mRNAs were analysed by RT-PCR using subtype specific primer pairs, in (A) quantification was performed in relation to β-actin mRNA determined as internal control. In panel (B), β-actin cDNA fragments could not be amplified due to low expression of receptor. Autoradiography on cryostat sections of tumour tissue samples using SST-28 or octreotide as ligands; somatostatin receptors: -, absence of receptors; +, low to moderate density; ++, high density; nt, not tested. AU, arbitrary units.]

http://gut.bmj.com/ on April 5, 2017 - Published by group.bmj.com
Figure 3: Detection of specific somatostatin receptor (sstr) subtype mRNAs in somatostatin receptor scintigraphy (SRS) positive gastrinoma tissue samples. sstr subtype mRNAs were analysed as described in the legend to Figure 1. For abbreviations see Figure 1.

Somatostatin receptors: ++, high density; ++++, very high density.

SSTR SUBTYPE mRNA

The abundance of sstr subtype mRNAs was quantified in relation to \(\beta \)-actin mRNA expression. In three tissue samples, determination of \(\beta \)-actin mRNA was not possible. In these experiments the \(\beta \)-actin mRNA levels were apparently too low to be detected after 40 cycles of amplification. However, sstr-mRNA species have been amplified (insulinoma, n = 1; neuroendocrine ileal tumour n = 12, liver metastasis, n = 1; serotonin producing pancreatic tumour, PNET 2, n = 1; Figs 1 and 3). Figure 1 shows the RT-PCR data obtained from tumour tissue samples of all patients negative by SRS. Two patients were negative both by SRS and octreotide autoradiography. In one of these patients (atypical carcinoid), the mRNA levels for sstrs were comparably low in comparison to SRS positive tumour tissues such as gastrinomas (see below). In the other patient (insulinoma 1), moderate amounts of sstr1 and sstr2 mRNAs but high levels of sstr4 mRNA were detected at a qualitative level (see above). This suggests that SRS negative tumours do not synthesise sufficient receptor protein for adequate visualisation. Only sstr subtype 1 and 2 mRNAs were consistently detected at high levels in all SRS negative cases that showed positive octreotide autoradiography. Interestingly, in one patient with a neuroendocrine ileal tumour metastatic to the liver and the ovary, the sstr1 and 2 transcripts were observed in both metastases (Fig 1). As already pointed out, SRS was only positive in the liver in this patient. The positive autoradiography with octreotide in both metastases (liver and ovary) probably accounts for the sstr2 subtype.

In vivo binding of octreotide to sstr subtype 2 is especially supported by one patient with an serotonin producing pancreatic tumour (PNET 2), in whom octreotide autoradiography was positive and only sstr subtype 2 mRNA was found by RT-PCR (Fig 2).

Gastrinomas, known to be almost always positive by in vitro autoradiography and by SRS, showed consistently high expression of sstr subtypes 2 and 5 mRNAs (Fig 2). This observation, taken together with binding studies of octreotide on cultured cells transfected with various sstr subtypes, suggests that sstr subtypes 2 and perhaps 5 were responsible for positive signals in both autoradiography and SRS.

In summary, analysis of the expression of the mRNAs of all sstr subtypes in tumour tissues (n = 13) from all patients (n = 12) investigated showed a heterogeneous pattern. sstr2 was most frequently found (13 of 13), followed by sstr1...
Scintigraphy and somatostatin receptor subtypes

(11 of 13), sstr5 (seven of 13), and sstr4 (seven of 13). sstr subtype 3 transcripts were detected only at low levels or not at all throughout all tissue samples studied (six of 13) (Figs 1–3).

Discussion

Binding sites for SST-14, SST-28, and the clinically relevant SST analogue octreotide have been found in a large number of neuroendocrine tumours by in vitro radioligand and autoradiographic techniques.\(^1\)\(^-\)\(^4\) Using SRS, in vivo binding of octreotide to neuroendocrine tumours was initially observed by Krenning et al.\(^5\)\(^-\)\(^6\) and was later confirmed by others.\(^7\)\(^-\)\(^8\)\(^26\)\(^33\) To date, the expression of the known five main sstr subtypes (for nomenclature see \(^24\)) has been examined only in a small number of patients with neuroendocrine tumours of the pancreas and intestine by a non-quantitative RT-PCR approach.\(^25\) In this study, we have assessed the composition of sstr subtypes in human neuroendocrine tumour tissue by semiquantitative RT-PCR, by autoradiography using SST-28 and octreotide as SST receptor ligands, and in vivo using SRS. This allows us to draw conclusions about false positive and false negative findings obtained by SRS as well as about the sstr subtypes involved in octreotide binding in vivo. SRS was performed in all 12 patients and failed to detect tumour lesions in four patients (Table, Fig 1). Interestingly liver metastases were positive by SRS whereas an ovarian metastasis was negative in the same patient (Table, Fig 1). It is noteworthy that eight out of 12 patients, and particularly all three patients with gastrinomas, were positive by SRS (Table, Figs 2 and 3). To determine whether the intravenously applied, radiolabelled SST analogue octreotide bound to specific receptors in vivo, an in vitro analysis of SST binding sites and sstr subtypes present in the respective tumour tissues was performed. As demonstrated by in vitro autoradiography, two of the four patients who were diagnosed to be negative by SRS were true negative for octreotide binding (Fig 1). However, in two other patients ovarian metastases that had been missed by SRS despite their

Figure 4: In vitro detection of somatostatin receptors by autoradiography. Left panels – neuroendocrine (NE) ileal tumour 4. (A) Autoradiogram showing total binding of \(^{125}\)I-[Tyr\(^3\)]-octreotide. (B) Autoradiogram showing non-specific binding. Bar=1 mm. Right panels – Insulinoma 1. (C) Autoradiogram showing total binding of \(^{125}\)I-[Tyr\(^3\)]-octreotide. (D) Autoradiogram showing non-specific binding. (E) Autoradiogram showing total binding of \(^{125}\)I-[Leu\(^6\), D-Trp\(^2\), Tyr\(^3\)]-SST-28. (F) Autoradiogram showing non-specific binding. Bar=1 mm. High density of SST receptors with a high affinity for octreotide was detected in the neuroendocrine (NE) ileal tumour 4. In the insulinoma, however, a high density of SST receptors with a high affinity for SST-28 but not for octreotide was identified.
sizes of 3 or 4 cm were positive for octreotide and SST binding by in vitro autoradiography (Fig 1). This indicates that at least some neuroendocrine tumour lesions are false negative by SRS. Since one of the two patients with SRS negative ovarian metastases had liver metastases that were positive by SRS, we suggest that SRS positivity may depend not only on the expression pattern and expression levels of various sstr subtypes (see below) but also on the blood supply, locally high concentrations of endogenous SST, as well as down regulation of SST binding sites by various factors (for example, corticosteroids).

Based on our autoradiographic and SRS findings, we expected to find at least one of the five subtypes in 10 out of 12 patients studied by RT-PCR. Semiquantitative RT-PCR analysis of sstr expression in the various neuroendocrine tumour tissues showed that all contained high levels of sstr2 mRNA, except the two tissues mentioned above that were true negative by SRS and autoradiography (Figs 1–3). To date, it is not known which sstr subtype(s) binds octreotide in vivo. Transfection studies in cultured non-neuroendocrine cells expressing an individual sstr subtype suggest that human sstr2 may fulfil this role. Moreover, in vitro binding of labelled octreotide to human neuroendocrine tumours correlated with the presence of sstr2 subtype mRNA. Since only sstr2 mRNA was detected in tumour tissue of one of our patients (Fig 3) and since the tumour had been positive by SRS and autoradiography, we consider this the first direct evidence for high affinity binding sites of octreotide to sstr2 in vivo.

Gastrinomas generally exhibit high uptake of radiolabelled octreotide in vivo and show high incidence of sstr by autoradiography. All of our gastrinoma patients were strongly positive by SRS, and tumour tissues of these patients contained both sstr2 and sstr5 transcripts (Fig 2). It is noteworthy that only sstr2 and sstr5 mRNAs were detected in tumour tissue of one of the three gastrinoma patients (Fig 2). Since the intensity of receptor scintigram in this patient was similar to that of the two other gastrinoma patients expressing additional sstr subtype mRNAs, we suggest that in addition to sstr2 sstr5 may also bind octreotide in vivo, since both subtypes possess reported high affinity binding sites for octreotide at least in vitro. Other sstr subtypes seem to be less important for the positivity of SRS.

Interestingly, in one patient with a primary, ileal neuroendocrine tumour metastatic to the liver and ovary, only sstr1 and 2 were found in all tissues studied (Fig 1), which supports the suggestion that the expression patterns of sstr subtypes may be conserved during the metastatic process in a tumour specific fashion. Analysis of the expression of the mRNAs of all sstr subtypes in tumour tissues (n = 13) from all patients (n = 12) investigated showed a heterogeneous pattern, sstr2 was most frequently found (11 of 13), followed by sstr1 (11 of 13), sstr5 (seven of 13) and sstr4 (seven of 13). Expression of sstr3 transcripts was the least frequently detected (six of 13) and expression levels were comparably low.

Analysis of tumour tissues homogenates by RT-PCR also included non-tumour cells such as those derived from connective tissue and blood vessels. Thus, we cannot exclude that normal tissue and cells contributed to the positive signals obtained by RT-PCR. In vitro autoradiography, however, detected only binding sites on tumour cells, suggesting that non-tumour cells express SST protein at low levels only. Thus, despite the extremely high sensitivity of RT-PCR, the detected sstr mRNAs may derive mainly from tumour cells and not from others.

In summary, our data suggest that specific binding of radiolabelled octreotide as detected by in vivo SRS correlates mainly with binding to sstr2, since the corresponding transcript can be detected at relatively high levels in neuroendocrine gastroenteropancreatic tumours. Future studies, using subtype specific ligands, may help to determine whether sstr1, 3, 4 are also relevant in the diagnosis of neuroendocrine tumours, and may lead to improved symptomatic and antiproliferative SST treatment of this disease.

The authors thank I Eichhorn (Berlin) and H H Höök (Hamburg) for expert technical assistance. This work was supported in part by grants from the Deutsche Krebshilfe/Dr M Scheel-Stiftung (W3/91/111), Verum-Stiftung, and the Deutsche Forschungsgemeinschaft (SFB 366/A5) to BW, Deutsche Forschungsgemeinschaft (SFB 322/204) to HS and WM and DR.

12 Kvisl LK, Brown ML, O'Connor MK, Hung JC, Hayoscek RJ, Reubi JC, Lamberts SWJ. Evaluation of a radiolabelled somatostatin analog (1123 octreotide) in the detection
Scintigraphy and somatostatin receptor subtypes

Positive somatostatin receptor scintigraphy correlates with the presence of somatostatin receptor subtype 2.

Gut 1996 38: 33-39
doi: 10.1136/gut.38.1.33

These include:
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

An erratum has been published regarding this article. Please see next page or:
/content/38/2/302.5.full.pdf

Articles on similar topics can be found in the following collections
Gastrointestinal hormones (848)

Notes
LETTERS TO
THE EDITOR

Drug induced pancreatitis

EDITOR,—I have read with interest the article on drug induced pancreatitis by Lankisch et al (Gut 1995; 37: 565–7). It is unclear to me how the opinion that in 1–4% of patients disease was drug induced could have been substantiated.

It is difficult to believe that only 22 of 1613 patients were exposed to drugs. What about drugs taken by the remaining 1591; is opinion enough to exclude possible causation, plainly not.

To estimate the true impact of drug induced disease the authors would have had to conduct a controlled study. Nevertheless, the authors have concluded that drug induced acute pancreatitis occurs rarely in clinical practice. That opinion has not been substantiated by this study.

M J S LANGMAN
Department of Medicine, Queen Elizabeth Medical Centre, Queen Elizabeth Hospital, Edgbaston, Birmingham B12 2TH

Reply

EDITOR,—We are grateful for the interest Professor M J S Langman took in our paper and regret that it has obviously given rise to some misunderstanding.

The preselection of patients diagnosed for drug induced acute pancreatitis was made by the centres where they had been treated. All charts of patients considered to fall into this group were reviewed by us. We looked only for drugs, however, currently held responsible for inducing acute pancreatitis. It is possible that in the 135 patients with acute pancreatitis of unknown aetiology drugs had been given still unknown to induce acute pancreatitis and thus the incidence of this aetiology might be somewhat higher.

Prospective studies help to answer open questions but logistic realities pose problems. The two questions at issue are: how frequently does the application of a certain drug lead to acute pancreatitis and, how frequent is drug induced acute pancreatitis among all patients with acute pancreatitis?

The first question is impossible to answer. In view of the great number of patients receiving drugs such as frusenime and oestrogen, it would be impossible to follow up all of them for signs and symptoms of acute pancreatitis.

Even the second question is difficult to answer. To make quite sure that the suspected drug has really induced the disease, a re-exposure to the drug in question is necessary, something ethically difficult to justify.

The message of our paper was simply that drug induced acute pancreatitis is probably rare and that the disease usually takes a benign course. Such a retrospective evaluation in a substantial number of patients has not been done before.

P G LANKISCH
Department of Internal Medicine, University Hospital of Lüneburg, D-21339 Lüneburg, Germany

Biliary stenting in the management of bile duct stones

EDITOR,—We read with interest the leading article by Dalton and Chapman (Gut 1995; 36: 485–7). Their suggestion that a sphincterotomy may not always be necessary in these patients is absolutely valid. We would go a step further in stating that in such patients, if the size of the stone is > 15–20 mm at ultrasound, sphincteroplasty or ERCP, then stenting should be performed with a 7 French stent without sphincterotomy. This will prevent the complications associated with endoscopic sphincterotomy, which occur in 8–10% of patients undergoing the procedure.1 Furthermore, this would prevent migration of stents. As already mentioned in the leading article, there is no evidence to show so far, that 10 French stents are superior to stents of smaller diameter. Although 7 French stents tend to clog earlier than the 10 French ones,2 they may easily be exchanged when blockage occurs. Endoscopic sphincterotomy may however be required if multiple stents need to be placed.

Apart from maintaining the flow of bile and preventing stone impaction and cholangitis, stenting has other benefits too. Placement of biliary endoprosthesis has been shown to decrease the size of the stones on follow up.3 4 Moreover, in patients with stricture of the common bile duct, where lithotripsy may be difficult or impossible, biliary endoprostheses may resolve such strictures5 in addition to decreasing the size of the stone.

S P MISRA
M DWIVEDI
Department of Gastroenterology, MLN Medical College, Allahabad—211 001, India

LETTERS TO
THE EDITOR

LETTERS TO
THE EDITOR

BOOK REVIEW

The fourth edition of 'Kirsner and Shorter' appears exactly 20 years after the first edition and is a tribute to the extraordinary energy of its editors. Compared with the third edition published in 1985, the current volume has expanded by over 200 pages and many new authors have been introduced. It remains an all American book but its perspective of the literature is global and generally well balanced. Inevitably in a book of 41 chapters devoted to two diseases, there is some repetition but this is no bad thing if the volume is used for reference or for browsing. The largest expansion compared with previous editions concerns pathogenesis - 11 chapters compared with six in the third edition. This rightly reflects the remarkable explosion of interest in the immunological and inflammatory mechanisms that have occurred during the past 10–15 years.

This volume provides us with the most comprehensive account of ulcerative colitis and Crohn's disease currently available. It is obsessively referenced and therefore provides an excellent entry into the original literature. It provides elegant accounts of the experimental, immunological, and pathophysiological mechanisms that may be involved in pathogenesis but also provides detailed accounts of medical and surgical treatment.

The psychosocial problems of the diseases are amplified by a final chapter written from the perspective of an affected subject and a multiply affected family.

Clinical gastroenterologists will find this book invaluable, those in training will find a mine of information, and for the IBF specialist it will continue to be a much used book of reference. It well lives up to its aims as described in the Preface although I am not as sanguine as the editors that the aetiology of either disease will be understood within the next five years.

D P JEWELL

CORRECTION

An error occurred in the paper by Dr John and others (Gut 1996; 38: 33–39). The title of the paper should read "Positive somatostatin receptor scintigraphy correlates with the presence of somatostatin receptor subtype 2 and 5".