Induction of NGAL synthesis in epithelial cells of human colorectal neoplasia and inflammatory bowel diseases

B S Nielsen, N Borregaard, J R Bundgaard, S Timshel, M Sehested, L Kjeldsen

Abstract
In inflammatory and neoplastic disorders of the colon a defect barrier function of the mucosa may result in absorption of bacterial products from the intestinal lumen. These products may further recruit inflammatory cells and thus augment the inflammatory response. A novel lipocalin in neutrophils, neutrophil gelatinase associated lipocalin (NGAL), with the ability to bind bacterial formyl-peptides, has been described and therefore it is of interest to investigate the expression of this protein in diseases of the colon. Expression of NGAL was investigated by immunohistochemistry and by mRNA in situ hybridisation in normal colon and in neoplastic and inflammatory colorectal diseases. A very high expression of NGAL was seen in colonic epithelium in areas of inflammation, both in non-malignant epithelium (diverticulitis, inflammatory bowel disease, and appendicitis) as well as in pre-malignant and malignant neoplastic lesions of the colon. In adenocarcinoma, the NGAL expression was especially abundant in the transmucosal and in the superficial ulcerated area. On the other hand, no NGAL expression could be detected in lymph node metastases from these adenocarcinomas. A weak expression of NGAL in some epithelial cells was only occasionally seen in normal colon. In conclusion, NGAL synthesis is induced in epithelial cells in inflammatory and neoplastic, colorectal diseases. NGAL may serve as an important anti-inflammatory function as a scavenger of bacterial products.

(Gut 1996; 38: 414–420)

Keywords: in situ hybridisation, immunohistochemistry, neutrophils, lipocalin, inflammation.

Inflammatory bowel diseases are characterised by a prominent infiltration of the mucosa by inflammatory cells including macrophages, lymphocytes, plasma cells, and neutrophils. The cellular infiltration is especially abundant around ulcerations or fissures of the bowel wall. Ulceration is also a characteristic feature of adenocarcinoma of the colon, in which acute inflammation with infiltration of macrophages and neutrophils is seen. The role of cytokines in inflammatory bowel disease has been the subject of intense investigation over recent years. In inflammatory bowel disease, synthesis of interleukin 1 (IL1), tumour necrosis factor α (TNFα), and IL2 in macrophages and lymphocytes may be induced as a result of passage through the colonic mucosa of bacterial products, including lipopolysaccharide.1–6 These cytokines may in turn induce synthesis of a variety of other inflammatory mediators including prostaglandins, platelet activating factor, leukotrienes, IL5, granulocyte colony stimulating factor (G-CSF),7–11 most of which are chemotactic for neutrophils, which are then recruited to and activated in the inflammatory focus. This may induce tissue destruction and ulceration, and further impair the barrier function of the mucosa.12 The role of the mucosa itself in the inflammatory reaction of inflammatory bowel disease and colon cancer has become increasingly evident.13 In response to local inflammation/inflammatory mediators, colonic epithelial cells (including cancer cell lines) are induced to express immunologically active molecules like MHC class II,14–16 the adhesion protein intercellular adhesion molecule-1,14–17 the cytokines IL8, GM-CSF, MCP-1, and TNFα,18–19 prostaglandins,7–20 and 12-lipoxygenase, which participates in the formation of leukotrienes from arachidonic acid.21 We have described the isolation and characterisation of a novel protein in human neutrophils, neutrophil gelatinase associated lipocalin (NGAL).22 By northern blotting of a variety of tissues including brain, lung, heart, kidney, liver, blood, and bone marrow cells, we only found mRNA expression in neutrophil precursors in the bone marrow.23 Furthermore, NGAL was shown to exist both as a 25 kDa monomer, as a 46 kDa homodimer, and in a covalent complex with neutrophil gelatinase.22,24 As the name implies, NGAL is a member of the lipocalin family. These glycoproteins all have a protein backbone of 18 to 20 kDa.25 Despite a low degree of overall amino acid identity, the lipocalins share certain conserved motifs, which are responsible for their common tertiary structure consisting of one α helix and an eight stranded β barrel surrounding a hydrophobic core.26–28 The hydrophobic core has been described as a pocket that enables the lipocalins to bind small lipophilic substances. Rather than being specific for one ligand, it has been postulated that many lipocalins might bind several different lipophilic substances.25 We have shown that NGAL can bind a radioiodinated derivative of the bacterial chemotactic formyl-peptide FMLP,26 and it is possible that
NGAL also binds other lipophilic inflammatory mediators like platelet activating factor, leukotriene B4, and lipopolysaccharide. NGAL therefore may possess important immunomodulatory actions.

One way of obtaining knowledge about the function of a protein is to study its localisation in various organs and diseases. A number of proinflammatory mediators are induced in inflammatory bowel diseases and presumably also in adenocarcinoma of the colon. Furthermore, a defect barrier function of the mucosa in these disorders potentially leads to the transepithelial passage of lipopolysaccharide and bacterial formyl-peptides. As NGAL may have the ability to bind these substances, we found it of interest to investigate the expression of NGAL in inflammatory bowel disease and neoplastic lesions of the colon. This was done by immunohistochemistry and mRNA in situ hybridisation.

Methods

Tissues

Specimens from 14 colorectal adenocarcinomas containing both malignant and normal epithelium were used for immunohistochemistry and 11 of these also for in situ hybridisation. The Table lists the additional specimens of different inflammatory bowel diseases used for in situ hybridisation. All specimens were obtained at surgery.

For optimal fixation of tissue for immunohistochemistry, specimens were fixed for only one hour in 4% phosphate buffered formalin followed by ethanol dehydration/fixation and paraffin wax embedding. Prolonged fixation of specimens caused loss of NGAL immunoreactivity. These short-term fixed specimens completely lacked detectable mRNA, however, as determined by in situ hybridisation with a 28mer thymidine probe for the poly-A tail of mRNAs (see later). On the other hand, there was a strong mRNA signal in 24 hour formalin fixed specimens using the poly-T probe. Similar findings with absence of in situ hybridisation signal in ethanol fixed specimens but increased mRNA signal and reduced immunoreactivity after prolonged formalin fixation have been described by Ureli-Shoval et al.29 For optimal fixation of tissues for in situ hybridisation specimens were therefore fixed for 24 hours in 4% phosphate buffered formalin and subsequently embedded in paraffin wax.

In situ hybridisation

NGAL cDNA was subcloned in pBluescript (Stratagene) and sequenced as described.23 Antisense and sense 35S labelled RNA probes were obtained by in vitro transcription and subsequently used for in situ hybridisation using the method described by Pyke et al.31 Briefly, 35S UTP labelled antisense and sense riboprobes were diluted to a final activity of 10^6 cpm/μl. Four μl were used for hybridisation for each section. Hybridisation was performed overnight at 50°C. Sections were subsequently exposed on an autoradiographic emulsion for 10–14 days before development. For staining of total mRNA pretreatment of tissue sections was performed as above. The 92-3T-Dig Poly-T probe was applied (5 ng/ml) in 50% formamid, 12.5% dextran sulphate, 1 mg/ml tRNA, Ficoll 400 (0-02% (w/vol)), polyvinylpyrrolidone (0-02% (w/v)), TRIS-HCl (10 mM, pH 6-8), and EDTA (0.5 mM). Sections were incubated for one hour followed by washes with SSC-buffers as follows: 2XSSC (0-3 M sodium chloride, 0-03 M sodium citrate, pH 7-0), 1XSSC, and 0.5XSSC each for 30 minutes. All steps were performed at room temperature. After washing in TBS-Triton, sections were blocked for unspecific binding with 0.25% normal rabbit serum for 10 minutes. Sections were then incubated with alkaline phosphatase conjugated mouse anti-digoxigenin

<table>
<thead>
<tr>
<th>Colorectal lesion</th>
<th>Total examined</th>
<th>Positive</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal epithelium*</td>
<td>13</td>
<td>45</td>
</tr>
<tr>
<td>Appendix (normal)</td>
<td>9</td>
<td>48</td>
</tr>
<tr>
<td>Appendix (inflamed)</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>Diverticulitis</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>Ulcerative colitis</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Crohn’s disease</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Adenoma</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Adenocarcinoma</td>
<td>11</td>
<td>10</td>
</tr>
<tr>
<td>Lymph node metastasis‡</td>
<td>3</td>
<td>0</td>
</tr>
</tbody>
</table>

*Obtained from patients with adenocarcinoma (seven specimens) and from patients suffering from ulcerative colitis and Crohn’s disease (six specimens), ‡obtained at hysterectomy, from primary colon cancers that expressed NGAL. §Only weak staining was seen.

Immunohistochemistry

Five μm sections were cut and air dried overnight. Paraffin wax was dissolved in 60°C cocoa oil for 20 minutes and sections were then hydrated through decreasing concentrations of ethanol. Sections were trypsinised (0-05% trypsin (Merck, Darmstadt, Germany)) in 50 mM TRIS, 0-1% CaCl2 (w/v), pH 7-4, followed by blocking using 10% normal swine serum (X-901, Dako, Glostrup, Denmark). Incubation of affinity purified polyclonal rabbit anti-NGAL antibodies (0-5 mg/ml) was performed at 500 to 2000-fold dilution in TRIS buffered saline (TBS), pH 7-6, containing 0.25% bovine serum albumin (BSA). Sections were incubated at 4°C overnight followed by incubation at room temperature for an additional 30 to 60 minutes. Primary antibodies were detected by biotinylated swine antirabbit immunoglobulin antibodies followed by incubation with the ABCComplex/HRP (according to instructions given in the ABC kit from Dako). All steps were followed by three washes in TBS. Sections were developed with 3-amino-9-ethylcarbazol (Sigma Chemical, St Louis, MO) for 10 minutes and counterstained with haematoxylin. Pre-immune rabbit IgG (Dako, X-903) was used as a negative control. In addition, absorbed anti-NGAL (adding 10-fold molar excess of purified NGAL to the anti-NGAL antibodies) was used as a control of the specificity of the reaction.
Expression of NGAL mRNA in normal colon and appendix

NGAL mRNA was detected at a low level in crypts of four of 14 cases of histologically normal colonic epithelium from patients with inflammatory bowel disease or colorectal cancer, and in four of nine cases of normal appendix (Table). No differences regarding cellular infiltration were seen in the positive specimens compared with the negative ones. Scattered neutrophils present in normal colon were strongly positive by immunohistochemistry, but negative by in situ hybridisation. In addition, mast cells were positive by immunohistochemistry, but stained much weaker than neutrophils.

Control experiments

As negative controls in immunohistochemistry we used pre-immune rabbit IgG or absorbed antibodies (see Methods). No signal was seen showing that no unspecific binding of primary antibodies occurred and that endogenous peroxidase activity was blocked (Fig 1c). As a negative control for the in situ hybridisation, we applied the antisense and the sense probe on adjacent sections. The sense probe was always negative (Fig 1d).

Discussion

Induction of NGAL synthesis is a striking and consistent finding in epithelial cells in neoplastic and inflammatory disorders of colon and appendix, as shown by a very strong signal for NGAL by in situ hybridisation in most specimens of affected tissue (32 of 34 specimens), and furthermore by immunohistochemical staining of epithelial cells of colorectal cancers (all 14 cases investigated). The combined use of in situ hybridisation and immunohistochemistry and the identical staining pattern seen in epithelial cells provide evidence that the increased mRNA expression of NGAL in epithelial cells is actually accompanied by production of mature protein.

Although we found an expression of mRNA for NGAL in epithelial cells in four of nine specimens of normal appendixes and in four of 13 sections of normal colon by in situ hybridisation, this expression was weak and mature protein could not be detected by immunohistochemistry.

As expected, neutrophils present in both normal and inflamed colon contain NGAL as shown by a strong immunohistochemical staining of these cells. No mRNA for NGAL was present in neutrophils, showing that mature neutrophils in the colonic mucosa do not actively synthesise NGAL despite the potential presence of inflammatory mediators like interferon γ and TNFα, which have been shown to induce the synthesis of a variety of proteins in mature neutrophils.32-34 This implies that NGAL, present in neutrophils in colonic mucosa, is synthesised in immature neutrophil precursors in the bone marrow,23 where NGAL is packed in specific granules.35 It is clear that the induction of NGAL synthesis in colon...
Expression of NGAL in colorectal diseases

Figure 1: NGAL protein and mRNA detected by immunohistochemistry and in situ hybridisation in neoplastic colorectal lesions. Immunohistochemical staining of an adenocarcinoma (a) shows NGAL expression in superficial cancer cells below the ulcer (large arrows in (a), ulcer marked by (u)). In addition, neutrophils present in the ulcer and in the stroma (small arrows) are strongly stained. The reactivity of the staining is specific as shown in (c), which shows lack of staining, when pre-immune rabbit antibodies were applied in an adjacent section to (a). Cancer cells below the ulcer were also strongly stained by mRNA in situ hybridisation (arrows in (b)). In addition, cancer cells in the transitional mucosa were positive (arrow in (e)). No in situ hybridisation signal is seen in adjacent normal (n) appearing epithelium in (e) and (f). Likewise, neutrophils present in the ulcer and in the stroma were negative. Appropriate controls for in situ hybridisation were negative as shown in (d), which shows lack of hybridisation with the sense probe in a section adjacent to (b). In adenoma (f), NGAL mRNA expression was only seen in epithelial cells on the luminal surface of the lesion (arrows). Magnifications: (a)–(d): ×40, (e): ×10, and (f): ×4.
Figure 2: In situ hybridisation for NGAL mRNA in various inflammatory diseases of colon and appendix.

Photomicrographs show diverticulitis ((a): bright field and (b): dark field), ulcerative colitis ((c): bright field and (d): dark field), Crohn's disease ((e): bright field and (f): dark field), magnification of lower left corner of (e), and appendicitis (g). A strong signal for NGAL mRNA is seen in the epithelium of affected tissue. Note the characteristic crypt abscesses in the centre of the photomicrographs (c) and (d). Magnification: (a)–(d) and (f) × 200, (e) and (g) × 40.

The importance of the inflammatory response for induction of NGAL synthesis is underscored by the fact, that no NGAL synthesis could be detected in lymph-node metastases from NGAL expressing primary tumours. This shows that the ability to synthesise NGAL is not part of the neoplastic process, but is induced as a result of the presence of inflammatory mediators liberated from the epithelium is local, as it is seen in the affected tissue only. Furthermore, the induction is not specific for any particular colorectal disease but seems to be a response to inflammation in general, as inflammation is a common feature of inflammatory bowel disease, diverticulitis, appendicitis, and adenocarcinoma of the colon.
Expression of NGAL in colorectal diseases

Figure 3: Schematic presentation of the putative function of NGAL expressed in epithelial cells during inflammation. To the left is shown two epithelial cells, where a defect barrier function permits the transepithelial passage of lipopolysaccharide and formyl-peptides from the lumen to the lamina propria. Lipopolysaccharide induces the synthesis in macrophages of TNFα and IL1, which in turn may lead to production of mediators like G-CSF, LTβ4, PAF, and IL 8.15-17. These mediators, in concert with formyl-peptides, attract and activate neutrophils, which may result in augmented tissue damage. To the right are two epithelial cells that synthesize NGAL. NGAL is presumably liberated to the intestinal lumen where it binds lipopolysaccharide and formyl-peptides, thus preventing these substances from recruiting and activating macrophages and neutrophils. The NGAL production in epithelial cells may therefore downregulate the inflammatory response. Other cells participating in the inflammatory reaction are omitted for reasons of simplicity. Likewise, no neutrophils are shown on the luminal face of the epithelium, although NGAL liberated from these may act in conjunction with NGAL from epithelial cells in the binding of bacterial products.

local environment. The mechanisms underlying induction of NGAL synthesis are unknown, but the presence of NGAL in only the most superficial parts of adenomas and adenocarcinomas suggests that the initiating agents originate in the intestinal lumen. One candidate is lipopolysaccharide, which has been shown to induce the synthesis of the NGAL analogue 24p3 in cultured murine macrophages.36

Many cytokines and inflammatory mediators that are induced in various inflammatory states of the colon (including IL1, TNFα, IL2, platelet activating factor, and G-CSF1-6 8) are produced by 'traditional' inflammatory cells like lymphocytes, macrophages, and neutrophils, but several reports have shown that the epithelial cells also take part in the inflammatory reaction.13 19 An array of substances like MHC class II,14-16 ICAM-1,14,15 various proinflammatory cytokines,10 18 19 prostanoids,20 and 12-lipoxygenase21 are induced in colonic epithelial cells in response to inflammatory mediators like interferon γ, IL1, and TNFα. The induction of NGAL synthesis is the first description of induction of a lipocalin in colonic epithelial cells. This may represent a novel mechanism by which epithelial cells participate in the regulation of inflammatory processes as part of the mucosal defence. The functional significance of the observed 'neo-expression' of NGAL in inflamed colorectal epithelium is very intriguing. It has been shown that the transmigration of neutrophils across intestinal epithelial monolayers results in a reduction in the barrier function of the epithelium, permitting the transepithelial passage of a variety of tracers.12 As mentioned, NGAL binds a derivative of the bacterial chemotactic formyl-peptide FMLP,26 and could therefore serve a function in the colonic epithelium as a scavenger of bacterial products that would otherwise traverse the epithelium and further recruit both macrophages and neutrophils (Fig 3). In this context it is interesting to note that CALLA (common acute lymphoblastic leukaemia antigen), a neutral endopeptidase, has also been shown to be induced in epithelial cells as a result of inflammation.37 Neutral endopeptidase is known to hydrolyse a variety of physiologically active peptides including FMLP.38 This shows that NGAL and neutral endopeptidase might act in concert to inactivate bacterial formyl-peptides. The passage of lipopolysaccharide over the epithelial lining is a well known stimulus for macrophages to produce IL11,16 and TNFα,4 which are central mediators in the inflammatory reaction. The binding by NGAL of lipopolysaccharide would therefore be an effective means of downregulating the inflammatory reaction (Fig 3).

We conclude that induction of NGAL synthesis is an important cellular response to inflammation in colon epithelium. The faecal content of NGAL may therefore prove to be a useful marker for disease activity in inflammatory bowel disease. The structure of NGAL together with its presence in a broad variety of large bowel diseases strongly supports its role as a modulator of the inflammatory response.
The expert technical assistance of Charlotte Horn, Pia L. Olsen, Dorthe Holm, and Karen Jensen is greatly appreciated. Dr Esther Hage, Department of Pathology, University Hospital, Copenhagen, Denmark is gratefully acknowledged for supplying part of the archival material.

This work was supported by grants from The Danish Cancer Society, The Danish Arthritis Association, The Danish Medical Research Council, The Lundbeck Fund, Emil C. Hertz's Fund, The Novo Fund, Amalie Jørgensen's Fund, Brechner-Mortensen's Fund, Anders Hesselbach's Fund, Ane Kathrine Flehners Fund. NB is the recipient of a Neye-Research Professorship.

Part of this work has been published in abstract form (Eur J Clin Invest 1995; 25 (suppl 2): A33).

33 Faix S, Pallone F. Ability of human colonic epithelium to express the β4 integrin, the common acute lymphoblastic leukemia antigen, and the transferrin receptor. Studies in inflammatory bowel disease and after in vitro exposure to different stimuli. Gastroenterology 1989; 97: 1435-41.
Induction of NGAL synthesis in epithelial cells of human colorectal neoplasia and inflammatory bowel diseases.

B S Nielsen, N Borregaard, J R Bundgaard, S Timshel, M Sehested and L Kjeldsen

Gut 1996 38: 414-420
doi: 10.1136/gut.38.3.414

Updated information and services can be found at:
http://gut.bmj.com/content/38/3/414

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Topic Collections
Articles on similar topics can be found in the following collections
Colon cancer (1547)

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/