Lymphocytic gastritis and coeliac disease

EDITOR.—We would like to comment on the paper by Miettinen et al on lymphocytic gastritis in patients with gastric lymphoma (Gut 1995; 37: 471–6). They found lymphocytic gastritis in about a third of patients with gastric lymphoma, and they looked for the relation between lymphocytic gastritis and Helicobacter pylori infection. They were surprised to find that lymphocytic gastritis occurred more frequently in patients without H pylori infection, and they did not discuss this possibility for their patients. We are convinced that coeliac disease may indeed explain the occurrence of lymphocytic gastritis in those patients with gastric lymphoma and without H pylori infection. In fact, as previously reported,1 we have found the presence of lymphocytic gastritis in nine of 25 children with coeliac disease and in none of 36 children with H pylori infection. These nine children represent all the cases of lymphocytic gastritis we found in 245 consecutive children who had upper gastrointestinal endoscopy. This strongly suggests that this peculiar form of chronic gastritis is, in children, almost exclusively related to gluten intolerance.

Taking into account that gastrointestinal lymphomata may be related to untreated coeliac disease,2 there is one further reason to think that the patients reported by Miettinen et al with gastric lymphoma and without H pylori infection, could be affected by silent coeliac disease and could benefit from a gluten free diet.

G MAGGIORE
A VENTURA
Istituto di Clinica Pediatrica,
Università di Pavia, Policlinico S Chiara,
Via Roma 67, 56100 Pisa, Italy

C DE GIACOMO
Clinica Pediatrica,
IRCCS Policlinico S Matteo,
27100 Pavia, Italy


Concentrations of epidermal growth factor in human saliva and gastric juice

EDITOR.—We read with interest the article by Tunio and Hobsey (Gut 1995; 37: 335–9) containing the concentrations of EGF in gastric juice and saliva. We are somewhat surprised by their findings that the concentration of EGF in basal gastric juice exceeds that found in saliva. On the basis of these findings, they go on to conclude that much of the EGF in gastric juice is probably secreted by the stomach. Many groups have measured EGF concentrations in saliva and gastric juice using radioimmunoassay and agree with the conclusion that EGF concentrations quoted in Tunio’s and Hobsey’s paper (about 3 ng/ml).3 However, the concentrations of EGF found in gastric juice in this paper (about 4 ng/ml) are about 10 times higher than quoted by other groups,1,4 including the paper by Konturek quoted by the authors themselves.5 The major concern over the validity of this work is therefore not related to the salivary sample collection, which is discussed in the paper, but over the concentration of EGF in basal gastric juice. Some explanation for this order of magnitude discrepancy between their results and other groups’ findings needs to be given. This paper will act as a beacon to highlight the dangers of accepting ‘established facts’ such as the statement that ‘it is well established that gastric juice EGF is mainly of salivary origin’,6 which has been quoted in studies extolling the importance of EGF; alternatively, it will crash on the rocks of methodological inaccuracy.

R PLAYFORD
Royal Postgraduate Medical School,
Hammersmith Hospital,
DuCane Road, London W12 0NN

N W WILKIN
R GOODLAD
Department of Histopathology,
Imperial Cancer Research (UK) Fund,
London


Reply

EDITOR.—We thank Dr Playford, Professor Wright, and Dr Goodlad for their comments. The first of these is that they are surprised that the concentration of EGF in basal gastric juice in our study exceeded that in contemporaneous saliva. However, we did not report that fact. Reference to our summary shows that ‘There was no difference between basal salivary and gastric EGF concentrations (p>0.05).’ We certainly therefore suggest that, to quote their letter, ‘On the basis of these findings, they go on to conclude that much of the EGF in gastric juice is probably secreted by the stomach.’ What we did conclude was that, after stimulation with histamine, the output of EGF was so greatly increased (compared with any changes in the saliva) that in those circumstances much of the EGF in the gastric juice was probably secreted by the stomach. A point that is relevant is that, while our results for EGF concentration in resting saliva agree with those of other workers, our concentrations in the gastric juice were much larger than those workers (including themselves) have found. They conclude that our methods of measurement must have been in error, but fail to explain how the methodological rocks on which they believe our research vessel will founder were only present in the gastric and not the saliva samples.

There are considerable differences between the way we collected and stored the gastric juice samples and the way other workers. The articles need to be read in detail to determine all of these, but we mention the...
Lymphocytic gastritis and coeliac disease.

G Maggiore, A Ventura and C De Giacomo

Gut 1996 38: 629
doi: 10.1136/gut.38.4.629

Updated information and services can be found at:
http://gut.bmj.com/content/38/4/629.1.citation

These include:

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/