Role of interleukin 8 on leucocyte-endothelial cell adhesion in intestinal inflammation

H Arndt, M A Bolanowski, D N Granger

Abstract

Background—An important action of interleukin 8 (IL8) is stimulation of granulocytes. The object of this study was to assess the contribution of IL8 to the leucocyte-endothelial cell interactions associated with intestinal inflammation in the rat.

Methods—Two indomethacin injections (48 and 24 hours prior to the experiments) induced a longlasting ileitis in rats. The number of adherent and emigrated leucocytes, leucocyte rolling velocity, and shear rate were monitored in normal and inflamed mesenteric postcapillary venules. Some animals received a monoclonal antibody (MAb) against IL8 or CD11b/CD18 at 24 and 12 hours prior to the experiment.

Results—Indomethacin elicited a sevenfold increase in leucocyte adherence and a 5-14-fold increase in leucocyte emigration, while leucocyte rolling velocity was reduced by nearly 80%. The indomethacin induced increases in leucocyte adherence and emigration were significantly reduced (by 57% and 67%, respectively) while leucocyte rolling velocity was increased (to 63% of control) by the IL8-specific MAb. The level of inhibition seen with the IL8 MAb was similar to that associated with administration of a MAb directed against the leucocyte adhesion molecule CD11b/CD18.

Conclusions—IL8 contributes to the leucocyte-endothelial cell interactions elicited in mesenteric venules by indomethacin.

Keywords: indomethacin, microcirculation, inflammatory bowel disease.

Cytokines have been invoked as modulators of immunological and inflammatory reactions associated with inflammatory bowel disease (IBD). The tissue concentrations of several cytokines are increased in IBD. An increased synthesis of interleukin 1 (IL1), IL2 receptor, and IL6 has been shown in the inflamed intestinal mucosa of patients with Crohn’s disease and ulcerative colitis. IL2 and interferon values are increased in mucosal biopsy specimens from patients with Crohn’s disease but not in those with ulcerative colitis, whereas IL10 mRNA is increased in ulcerative colitis but not in Crohn’s disease.

Interleukin 8 (IL8) is another cytokine that accumulates in inflamed lesions of patients with activated ulcerative colitis. Recent findings show that IL8 tissue values and the expression of IL8 gene in biopsy samples from patients with IBD is related to the macroscopic and histological grade of active inflammation.

After appropriate stimulation, IL8 is synthesized mainly by mononuclear phagocytes, however, fibroblasts, epithelial cells, and endothelial cells are all known to produce this powerful cytokine.

In intestinal epithelial cell lines, IL8 synthesis can be stimulated by the inflammatory cytokines IL1 and tumour necrosis factor (TNF).

The biological activity of IL8 is very similar to chemotactic peptides like C5a and f-Met-Leu-Phe. Consequently, a major action of IL8 is activation of neutrophils, inducing directional migration, increasing the production of reactive oxygen metabolites, and increasing the expression and level of activation of adhesion molecules.

There are also reports that suggest that the IL8 secreted by activated endothelial cells inhibits the adhesion of neutrophils to activated endothelial monolayers.

Although the published in vitro data suggest that IL8 may exert both pro-inflammatory and anti-inflammatory effects, the limited number of studies that consider IL8 function in vivo suggest that its pro-inflammatory actions dominate. In a rabbit model of lung reperfusion injury a monoclonal antibody against IL8 prevented neutrophil infiltration and tissue injury. Mulligan and coworkers have recently shown that a murine monoclonal antibody (DM/C7) to human IL8 largely abolishes the inflammatory cell infiltrate and vascular dysfunction observed in a rat model of IgG immune complex induced lung injury. It was assumed (but not determined) that the IL8 MAb exerted its beneficial effects by limiting the recruitment of adherent and emigrated neutrophils in the pulmonary microvasculature.

With the same monoclonal antibody neutrophil influx in a dermal immune complex induced inflammation in mice could be abolished.

The objects of this study were to determine: (a) whether IL8 contributes to the inflammatory cell infiltrate and mucosal lesion formation observed in a rat model of intestinal inflammation, and (b) whether IL8 mediates the leucocyte-endothelial cell adhesive interactions in postcapillary venules that occurs in the same experimental model.

Methods

Animal preparation
Male Sprague-Dawley rats (160–240 g) anaesthetised with 110 mg/kg Inactin (Na-5-ethyl-1’-methyl-propyl) 2-thio-barbiturate, Byk Gulden, Konstanz, Germany) were
catheterised (carotid artery) for continuous measurement and recording of systemic blood pressure and heart rate (Statham P23A Transducer, Oxnard, CA; Grass Recorder, Grass Instruments, Quincy, MA), tracheotomised for facilitating breathing during the experiment, and surgically prepared for microscopic observation of mesenteric venules.

Intravital microscopy

Animals were placed in a supine position on an adjustable Plexiglas microscope stage and the exteriorised segment of the mid-ileum was draped over an optically clear viewing pedestal permitting transillumination of a 2 cm² section, as described previously. The exposed bowel wall was draped with saline soaked gauze, the mesentery was covered with Saran wrap (Dow Chemicals, Indiana) to minimise condensation on the objective lens, and continuously superfused with warm bicarbonate buffered salt solution (BBS, pH 7.4) bubbled with 5% CO₂ – 95% N₂. Animal core temperature was thermostated to 37°C.

Single unbranched mesenteric venules of 25–35 μm diameter and roughly 150 μm in length were transilluminated with a 12V–100W light source and observed through an intravital video microscope (Leitz Ortholux II, Germany) with a ×40 objective lens (Zeiss UD 40/0-65, Germany) and a ×10 eyepiece. A video camera (Hitachi WK-C150, Japan) mounted on the microscope projected the image onto a colour monitor (Sony PVM-2030, Japan). The images were recorded using a video cassette recorder (Panasonic NV8950, Japan) for playback analysis. Venular diameter (Dᵥ) was measured on or off line using a video image shearing monitor (IPM, LaMesa, CA). Red blood cell centreline velocity (Vrbc) was measured on line with an optical Doppler velocimeter (Microcirculation Research Institute, Texas A and M University). Mean red blood cell velocity was calculated assuming \[V_{\text{mean}} = \text{centreline velocity}/1.6 \]

Venular shear rate (s) was calculated based on the Newtonian definition: \[t = 8(V_{\text{mean}}/Dᵥ) \]

The number of adherent and emigrated leucocytes were determined during playback of videotaped images. A leucocyte was defined as adherent to venular endothelium if it was stationary for at least 30 seconds. Leucocyte adherence was expressed as the number per 100 μm length of the venule. Leucocyte emigration was expressed as the number of white blood cells per microscopic field (1.7×10⁻² mm²). Rolling leucocytes were defined as white blood cells moving at a slower velocity than erythrocytes in the same vessel. The leucocyte rolling velocity (Vₚₑᶜᵉ) was determined from the time a leucocyte required to move along 100 μm of the microvessel. A mean of 10 estimates of transit time was used to calculate \[V_{\text{wbce}}^{23} \]

Experimental protocol

Twenty two rats were divided into four groups. Three groups received two subcutaneous injections of indomethacin 48 and 24 hours before the experiment (10 mg/ml 5% NaHCO₃, 7-5 mg/kg each). One group was treated additionally with a MAb against IL8 (DM/C7, 3 mg/kg intravenously) while another group received a MAb against the leucocyte adhesion glycoprotein CD11b/CD18 (MAb 17, 1-5 mg/kg intravenously) under ether anaesthesia at 24 hours and 12 hours prior to the experiment. DM/C7 was provided by The Monsanto Company (St Louis, Missouri), MAb 17 by Repligen Corporation (Cambridge, Massachusetts). The indomethacin induced changes were not affected by isotype matched non-binding control antibodies (IgG₁₅ for IL8, IgG₂ for CD11b/CD18, PharMingen, San Diego) and none of the antibodies or its solvent (saline) had an intrinsic effect on the microcirculatory parameters in animals not treated with indomethacin (data not shown). The control group received two subcutaneous injections of the indomethacin vehicle, 5% NaHCO₃.

After all parameters measured on line (arterial pressure, Vrbc, Dᵥ) were in a steady state, images from the mesenteric preparations – approximately 10 venules per animal – were videotaped for five minutes.

Tissue analysis

After intravital microscopy the animals were killed with an overdose of pentobarbital and the intestines were excised and opened longitudinally. Findings were ranked using the following criteria: 0 – no change in serosa or mucosa, 1 – hyperaemic lesions or petechial bleeding, or both, 2 – single mucosal erosion or ulceration, 3 – multiple erosions or ulcerations without any lesions in the serosa and mesentery, or single mucosal erosion or ulcer with hyperemic, adhesive or haemorrhagic lesions in the serosa, 4 – multiple erosions or ulcerations (less than 10 cm of total length of the intestine involved) with hyperaemic, adhesive or haemorrhagic lesions in the serosa, or mucosa.

Myeloperoxidase activity

Intestinal tissue samples were rapidly excised, rinsed with ice cold saline, blotted dry, and frozen at −70°C until thawing for determination of myeloperoxidase activity using methods previously described.

Statistics

All data were analysed using standard statistical analysis – that is, analysis of variance with the Scheffe’s multiple comparison test. All values are expressed as means (SEM), statistical significance was set at p<0.05.

Results

Figure 1 illustrates the effects of the MAbs against IL8 and CD11b/CD18 on the indomethacin induced increase in leucocyte adherence in rat mesenteric venules compared.
with untreated rats. Two subcutaneous injections of indomethacin elicited a nearly sevenfold increase in adherence (24.0 (1.6) vs 3.6 (0.5) leucocytes per 100 μm venule in control), which was reduced by 57% by the anti-IL8 MAb (10.3 (0.7) and by 60% by the anti-CD11b MAb (9.6 (1.0). The 5.4-fold increase in leucocyte emigration (Fig 2) caused by indomethacin injections (14.5 (1.0) vs 2.7 (0.6) leucocytes per field in control) was significantly blunted by both monoclonal antibodies (anti-IL8 4.8 (0.5), anti-CD11b 5.9 (0.7)).

The Table presents the data for leucocyte rolling velocity, venular wall shear rate, macroscopic mucosal ulcerations, and myeloperoxidase activity (MPO) as a parameter of granulocyte tissue infiltration.

<table>
<thead>
<tr>
<th>Vbrc (mm/s)</th>
<th>SR (s⁻¹)</th>
<th>Mucosal ulceration</th>
<th>MPO (U/g wet weight)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control (n=6)</td>
<td>73.2 (6.4)</td>
<td>432 (28)</td>
<td>0</td>
</tr>
<tr>
<td>INDO (n=5)</td>
<td>17.0 (1.3)</td>
<td>420 (38)</td>
<td>4.0 (0.5)*</td>
</tr>
<tr>
<td>INDO + anti-IL8 MAb (n=6)</td>
<td>27.2 (4.5)*</td>
<td>441 (35)</td>
<td>3.6 (0.6)*</td>
</tr>
<tr>
<td>INDO + anti-CD11b MAb (n=5)</td>
<td>24.8 (2.1)*</td>
<td>443 (29)</td>
<td>3.4 (0.5)*</td>
</tr>
</tbody>
</table>

Shown are mean (SEM) values. *Denotes p<0.05 relative to control, †shows p<0.05 relative to INDO (n=number of animals per group).

The indomethacin induced increase of leucocyte adhesion in mesenteric venules was accompanied by macroscopic mucosal ulcerations of the small bowel (ulcer index 4.0 (0.5) vs 0 in control) and an increase of myeloperoxidase (89.1 (13.0) U/g wet weight vs 46.0 (14.0) in control), an index of granulocyte infiltration into the inflamed tissue. While the macroscopic extent of ulceration was not significantly reduced by treatment with either MAb, both the IL8 and CD11b MABs did blunt the indomethacin induced in Myeloperoxidase activity (Table).

Discussion

The accumulation of leucocytes in inflamed tissue is preceded by leucocyte adhesion to vascular endothelium. This rate limiting step in the inflammatory response is modulated by a variety of adhesion glycoproteins expressed on the surface of leucocytes and endothelial cells. Several cytokines affect the expression or state of activation of these cell adhesion molecules. For granulocyte-endothelial cell interactions, the synthesis of E- and P-selectin has been shown to be inducible by IL1 and TNF. Granulocyte-macrophage colony stimulating factor and TNFα induce neutrophils and monocytes to shed L-selectin and simultaneously mobilise intracellular pools of the CD11b/CD18 to the leucocyte surface, thereby promoting attachment of neutrophils to endothelium.

The role of IL8 in modulating leucocyte-endothelial interactions is presently controversial. The IL8 produced by cytokine activated endothelial cells and by neutrophils in itself has been shown to stimulate the binding activity of CD11b/CD18 on the surface of neutrophils. Smith and coworkers have also shown that there is an IL8 dependent mechanism of neutrophil transmigration through cytokine activated endothelium, which is CD11b/CD18 dependent. This pro-inflammatory action of IL8 was recently shown in a rat model of IgG immune complex induced lung inflammation and vascular injury. Mulligan and coworkers showed a considerable reduction in the tissue influx of neutrophils and the vascular injury induced by IgG immune complexes in rats receiving the anti-human IL8 MAb DM/CT. On the other hand, there are reports that invoke an anti-inflammatory role of IL8. It has been shown that IL8 inhibits the adhesion of neutrophils to activated endothelial cells in vitro and reduces neutrophil accumulation in acutely inflamed tissues.

Although IL8 has been implicated in the pathobiology of intestinal inflammation, no attempts have been made to directly assess the role of this cytokine in an experimental model of gut inflammation. We have previously shown that the indomethacin model of intestinal inflammation in the rat developed by Yamada and coworkers is characterised by an intense recruitment of adherent and emigrated leucocytes in mesenteric venules, granulocyte accumulation in mucosal tissue,
and the development of mucosal ulcers. The results of this study clearly suggest a role for IL8 in the recruitment of leukocytes elicited by indomethacin. The anti-human IL8 MAb DM/C7 profoundly attenuated the accumulation of adherent and emigrated leukocytes in postcapillary venous venules and the increased mucosal myeloperoxidase activity normally seen after indomethacin treatment. These findings are consistent with the beneficial effects of the same IL8 MAb (DM/C7) in a rat model of IgG immune complex induced lung inflammation and in a dromedary immune complex induced inflammation in mice. Inasmuch as the anti-IL8 MAb was as effective as a MAb against CD11b/CD18 in reducing the recruitment of adherent and emigrated leukocytes in the same model of chronic intestinal inflammation, it seems likely that IL8 promotes the leukocyte-endothelial cell interactions by either increasing the surface expression or activation of CD11b/CD18 on leukocytes. This β2-integrin is the main ligand for high affinity binding of leukocytes to and transendothelial migration through vascular endothelium. However, we cannot exclude the possibility that IL8 may promote leukocyte-endothelial cell adhesion, at least partly by increasing the surface expression of endothelial cell adhesion molecules. There is evidence that IL8 can bind to the surface of endothelial cells, where it can act as an activator and chemoattractant of neutrophils.

In IgG immune complex induced lung inflammation in rats, IL8 MAb treatment effectively attenuated both the recruitment of inflammatory cells and the increased microvascular permeability to albumin. However, in this study we observed that while the IL8 MAb reduced the accumulation of granulocytes normally observed in indomethacin induced intestinal inflammation, it did not blunt the accompanying mucosal ulceration response. The finding that the reduced mucosal accumulation of granulocytes was not accompanied by protection against indomethacin induced mucosal ulcerations is consistent with the results of Yamada et al., indicating that in this model of inflammation granulocyte infiltration into the mucosa is a consequence rather than a cause of the intestinal lesions. In this regard, it should be noted that treatment with DM/C7 offers no protection in a neutrophil independent model of IgA immune complex induced model of lung vascular injury. Another explanation for the ineffectiveness of the anti-IL8 MAb could be the involvement of macrophages at the examined stage (50–54 hours after the first indomethacin administration) of the cascade of intestinal inflammation. While the IL8 MAb did not prevent or reduce indomethacin induced mucosal ulceration, it may have afforded some protection against the microvascular injury that is likely to accompany the ulceration response.

Role of interleukin 8 on leucocyte-endothelial cell adhesion in intestinal inflammation.

H Arndt, M A Bolanowski and D N Granger

Gut 1996 38: 911-915
doi: 10.1136/gut.38.6.911

Updated information and services can be found at:
http://gut.bmj.com/content/38/6/911

Email alerting service

These include:

Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/