Interleukin 10 suppresses experimental chronic, granulomatous inflammation induced by bacterial cell wall polymers

H H Herfarth, S P Mohany, H C Rath, S Tonkonogy, R B Sartor

Abstract

Background and Aims—Interleukin 10 (IL10) inhibits monocyte/macrophage and T lymphocyte effector functions. This study examined the effect of systemically administered IL10 on acute and chronic granulomatous enterocolitis, hepatitis, and arthritis in a rat model.

Methods—Lewis rats were injected intramuscularly with streptococcal peptidoglycan-polysaccharide (PG-APS) polymers. Beginning 12 hours before PG-APS injection, rats were treated daily with subcutaneous murine recombinant IL10 or vehicle for three or 17 days.

Results—IL10 attenuated acute enterocolitis in a dose dependent fashion (p<0.01). Protective effects were more profound in the chronic granulomatous phase with decreased enterocolitis and markedly inhibited leucocytosis, hepatic granulomas, and chronic erosive arthritis (p<0.001). IL10 downregulated tissue IL1, IL6, tumour necrosis factor α, and interferon γ gene expression, consistent with the in vitro effects of IL10 on PG-APS-stimulated splenocytes. Caelil IL1 protein concentrations and IL2 and interferon γ secretion by in vitro stimulated mesenteric lymph nodes were downregulated in IL10 treated animals.

Conclusions—These results indicate that exogenous IL10 can inhibit experimental granulomatous inflammatory responses and suggest that IL10 treatment could be an effective new therapeutic approach in human disorders such as Crohn’s disease, rheumatoid arthritis, and sarcoidosis.

(Gut 1996; 39: 836–845)

Keywords: Interleukin 10, granuloma, inflammation, inflammatory bowel disease.

Inflammatory processes play a central part in mediating immune host defences to infectious pathogens and in wound healing, but an unrestrained, overly aggressive inflammatory response can induce inappropriate tissue destruction. Recent observations in animal models show that the chronicity of inflammation is determined by a dysregulated balance of pro and anti-inflammatory cytokines.1-3 Chronic immune mediated disorders like inflammatory bowel diseases (IBD), rheumatoid arthritis, and type I diabetes mellitus seem to arise from a genetically determined dysregulated immune response to ubiquitous antigens.4-6 Therefore immunomodulatory interventions that utilise endogenous immunosuppressive molecules provide an attractive, relatively non-toxic approach to treating these chronic, idiopathic disorders.

Interleukin 10 (IL10), originally named cytokine synthesis inhibitor factor, is a cytokine that inhibits many immune effector functions. IL10 is produced by a variety of cells including T lymphocytes, B cells, and macrophages and suppresses the in vitro production of interferon (IFN) γ and IL2 by Th1 lymphocytes and IL1, IL6, IL8, tumour necrosis factor (TNF) α, granulocyte-macrophage colony stimulating factor, and granulocyte colony stimulating factor by monocytes/macrophages.7 8

Several in vivo findings in experimental animal models suggest that IL10 is an important anti-inflammatory agent. Increased IL10 gene expression correlates with recovery in experimental autoimmune encephalomyelitis9 and recombinant IL10 treatment attenuates the clinical course of this disease.10 Spontaneous intestinal inflammation occurs in IL10 deficient (knockout) mice11 and continuous administration of IL10 attenuates experimental colitis in a lymphocyte transfer model.12 Furthermore, IL10 therapy prevents early death and pancreatic necrosis in models of experimental endotoxaemia13 and acute pancreatitis14 respectively, probably by down regulating TNFα. Finally, blockade of endogenous IL10 increases the severity of experimental arthritis in mice.15 Peptidoglycan-polysaccharide (PG-PS) polymers, the basic structural component of the cell walls of Gram positive and Gram negative bacteria, induce acute inflammation, which in the susceptible host proceeds into a relapsing, granulomatous inflammatory reaction in several organs.16-19 The granulomatous enterocolitis model in susceptible Lewis rats is characterised by chronic, transmural, spontaneously relapsing intestinal inflammation, accompanied by hepatic granulomas, erosive arthritis, chronic anaemia, and leucocytosis.17 Inflammation is induced by subserosal (intramural) injection of PG-PS from group A Streptococcus pyogenes (PG-APS) into the terminal ileum and caecum. Inflammation in this model follows a biphasic course. The acute phase of focal intestinal inflammation peaks one to three days after PG-APS injection, then gradually resolves, but is followed after 10–14 days by a spontaneous
Interleukin suppresses experimental chronic, granulomatous inflammation induced by bacterial cell wall polymers

Reactivation with extensive granulomatous intestinal and systemic inflammation. IL1 is involved in the pathogenesis of acute and chronic phases of this model because caecal IL1 concentrations are increased and IL1 receptor antagonist (IL1 RA) treatment attenuates inflammation.\(^{17}\) T lymphocytes are necessary for the chronic granulomatous phase of PG-APS induced inflammation, as cyclosporin A completely prevents chronic inflammation and granuloma formation in the gut, liver, and joints, and athymic animals fail to develop chronic inflammation after PG-APS injection.\(^{20-22}\)

Because T lymphocytes and pro-inflammatory cytokines such as IL1 are involved in the pathogenesis of intestinal, liver, and joint inflammation in the PG-APS model, we postulated that IL10 therapy should exert a protective effect. In this study we examined the ability of recombinant murine IL10 to prevent intestinal and systemic inflammation in the PG-APS enterocolitis model and investigated the in vivo and in vitro effects of IL10 on the regulation of key pro-inflammatory cytokines.

Methods

Animals and reagents

Female, inbred specific pathogen free Lewis rats (145–155 g) were obtained from Charles River Laboratories (Raleigh, NC). Rats were fed Agway Prolab rat chow (Agway, Syracuse, NY) ad libitum and were weighed daily. All rat experiments were conducted in accord with the highest standards of humane animal care as outlined in the National Institutes of Health’s Guide for the Care and Use of Laboratory Animals and approved by the University of North Carolina Institutional Animal Care and Use Committee.

Recombinant murine IL10 (Batch 3-mlL 10-3 specific activity 65 × 10^6 U/mg; Batch 3-mlL 10-5 specific activity 45 × 10^6 U/mg) was obtained from Schering-Plough Research Institute (Kenilworth, NJ).

Preparation of PG-APS

Purified, sterile PG-APS fragments from the cell walls of group A, type 3, strain D98 streptococci (Streptococcus pyogenes) were prepared as described previously\(^{23}\) and provided by Roger Brown and Dr John Schwab (Department of Immunology and Microbiology, University of North Carolina, Chapel Hill). Sonicated cell wall fragments by this method have molecular weights ranging from 5 x 10^4 to 5 x 10^8.\(^{23}\) The final PG-APS concentration was calculated based on rhamnose content.\(^{23}\)

Cytokine expression in vitro by splenocytes from Lewis rats

Splenocytes (5 x 10^6 cells/ml) were cultured for six hours in the presence of PG-APS (50 μg/ml) and IL10 (0, 1, 5, 50 or 250 ng/ml). The culture medium was RPMI 1640 supplemented with 5% heat inactivated fetal calf serum, 2 mM glutamine, 5 x 10^{-6} M 2-mercaptoethanol, 100 units/ml penicillin G, 1000 μg/ml streptomycin sulphate, and 0-25 μg/ml amphotericin B. Total RNA was isolated using Trizol (Gibco, Grand Island, NY) and stored at –80°C until further processing.

Induction of enterocolitis by PG-APS

Lewis rats, randomised into treatment groups, were anaesthetised (20 μl/100 g by intramuscular injection Innovar-Vet; Pitman Moore, Washington Crossing, NJ), and intestines were exposed by laparotomy using aseptic technique. Rats were injected suberosally with PG-APS using a total dose of 12.5 μg/g body weight rhamnose (equivalent to 37.5 μg dry wt PG-APS/g body weight) distributed among seven injection sites in the ileal Peyer’s patches, terminal ileum, and caecum as previously described.\(^{24}\) Control rats received identical injections of 37.5 μg/g body weight human serum albumin (HSA) (Baxter Health Care Corp, Glendale, CA).

IL10 treatment and experimental design

Recombinant murine IL10 was administered by subcutaneous injection in different concentrations (100 μg or 250 μg/kg/24 h in the acute phase experiment or 125 μg/kg/12 h in the chronic phase experiment) in 0.3 ml sterile NaCl. Control PG-APS and HSA injected animals received rat serum albumin (RSA) (Sigma, St Louis, MO) subcutaneously in different concentrations (250 μg/kg/24 h in the acute phase experiment or 125 μg/kg/12 h in the chronic phase experiment) dissolved in 0.3 ml sterile NaCl. In both studies treatment was started 12 hours before PG-APS or HSA intramuscular injection and given for the next three or 17 days respectively, in the above described scheme.

Clinical assessment of inflammation and harvesting of tissues

After three (acute phase) or 17 (chronic phase) days all rats were killed by inhalation of 100% CO₂. Cardiac blood was obtained for cell counts, which were processed using an automated cell counter. Liver and spleen weights were recorded and normalised for the individual rat body weight. Gross intestinal inflammation was scored by a single blinded observer using a previously validated method.\(^{17}\) Values of 0–4 (4 being the most severe) were assigned to the (a) presence of caecal serosal nodules, (b) severity of contracted mesentery, (c) severity of adhesions, and (d) extent of caecal bowel wall thickening. The resulting 'gross gut score' is the sum of these values, the maximum possible being 16. Additionally the macroscopically visible number of liver granulomas was assessed by assigning a value from 0–4. Caecal, mesenteric lymph node and liver tissues were snap frozen in isopentane and kept at –80°C for later mRNA and protein analysis. Samples of the liver, terminal ileum, caecum,
and joints from each animal were fixed in formalin, embedded in paraffin wax, and sectioned for histochemical staining (haematoxylin and eosin).

Monitoring of arthritis

Arthritis was monitored clinically (erythema, swelling) and by measuring the diameters of both rear ankle joints with a Fowler Ultra-Cal. II caliper (Lux Scientific Instrument Corp, New York, NY) as described previously.\(^{23, 25}\) Joints were measured before PG-APS injection and serially thereafter. To reduce bias, all groups were coded, and the rats were selected randomly from the cages, so that no identification was visible to the person making the measurements. Data were expressed as the increase of joint diameter in mm compared with the baseline measurement before PG-APS or HSA injection.

Histological and biochemical evaluation of inflammation

A histological inflammatory score was evaluated for each animal by a blinded observer as described previously.\(^{17}\) Briefly, values from 0–4 (4 being the most severe) were assigned for both acute and chronic inflammation in the different layers of the intestine in coded cross sections of the terminal ileum, mid caecum, and caecal tip. The acute and chronic scores of each animal were totalled, a score of 24 representing the maximum possible histological inflammatory score.

Measurement of myeloperoxidase activity

Cecal myeloperoxidase (MPO) activity was determined using a modified standard method.\(^{26}\) Briefly, cecal tissue was homogenised in 4 ml 20 mmol/l phosphate buffer (pH 7.4) and centrifuged at 4000 rpm at 4°C for 20 minutes. The pellet was homogenised and sonicated with 2 ml 50 mmol/l acetic acid (pH 6) containing 0.5% (wt/vol) hexadecyltrimethylammonium hydroxide. MPO activity of the supernatant was determined by measuring the H₂O₂ dependent oxidation of 3,3’,5,5’-tetramethylbenzidine and expressed as units per gram of tissue.

RNA preparation

Total tissue RNA was prepared using a standard method with guanidine thiocyanate/cesium chloride as previously described.\(^{17}\) Total RNA was quantified by ultraviolet spectrophotometry (A260/A280). The integrity and quality of each RNA sample was checked by electrophoresis on a 1% agarose gel containing ethidium bromide.

Polymerase chain reaction (PCR)

For each sample 1 μg of total RNA was reverse transcribed in a total volume of 25 μl containing 1X first strand buffer (Gibco, Grand Island, NY) 125 U of Moloney murine leukaemia virus RT (Gibco, Grand Island, NY), 15 U RNAse inhibitor (Promega, Madison, WI), 0.5 mM each of four dNTPs (Pharmacia, Piscataway, NJ), and 5 pmol of random Hexamers (Pharmacia, Piscatway, NJ). The reaction was carried out at 39°C for one hour, followed by 93°C for seven minutes, 24°C for one minute, and finally cooled down to 4°C for 30 minutes. The reaction mixture was stored at −20°C until further use.

The amplification was carried out in a 9600 Perkin-Elmer cycler (Applied Biosystem, Foster City, CA). One to 2 μl of cDNA sample was amplified in 50 μl of a reaction mixture containing 1×Taq buffer II (Perkin Elmer, Norwalk, Co), 1.5 mM MgCl₂, 2 μM each of 5’ and 3’ primers and 1 U of Taq polymerase (Perkin Elmer, Norwalk, CO). Samples were heated for four minutes at 94°C and the following cycles were conducted at 94°C for 45 seconds, 60°C for 45 seconds, 72°C for 1 minute. The reaction mix was held at 72°C for five minutes. Negative controls without cDNA were amplified with each PCR and we were confirmed that equal amounts of RNA were added in each PCR within an experiment and to verify a uniform amplification process β-actin mRNA was reverse transcribed and amplified in each assay. Aliquots of the samples were analysed by electrophoresis on a 2% agarose gel containing ethidium bromide. The DNA products were visualised by ultraviolet fluorescence and photographs of the gels were taken with a negative film (Polaroid 665, Polaroid Corp, Cambridge, MA). The negative was scanned with a Silver-scanner II PS v2.1a using Adobe Photoshop 2.5.1 software.

Primers specific for rat cytokines were constructed according to published sequences\(^{27–33}\) and are listed in Table I. The authenticity of the PCR product was confirmed by comparing actual and predicted size using a 100 bp DNA ladder (Gibco) and by observation of fragments of predicted sizes after digestion with the listed restriction enzymes: EcoRI (IFNy), TAO1 (TNFα, IL1 RA), Bgl II (IL6), Acc I (IL1α), BamH I (ILβ).

Table I Oligonucleotide primers used for amplification of different cytokines by RT-PCR

<table>
<thead>
<tr>
<th>mRNA</th>
<th>Sense Primer</th>
<th>Antisense Primer</th>
<th>Sample cDNA</th>
<th>Annealing temperature</th>
</tr>
</thead>
<tbody>
<tr>
<td>IFNγ</td>
<td>5'-AAG ACA ACC AGG CCA TCA GCA G-3'</td>
<td>5'-AGC CAC AGT GTG AGT TCA GTC-3'</td>
<td>547 bp</td>
<td>60°C</td>
</tr>
<tr>
<td></td>
<td>5'-ATG GAA GGA AAG AGG CTC CTC-3'</td>
<td>5'-CTT GGG GAT GCT CAT GAA TGC-3'</td>
<td>225 bp</td>
<td>60°C</td>
</tr>
<tr>
<td>TNFα</td>
<td>5'-CAC CAT GAG CAC GGA AAG CA-3'</td>
<td>5'-GCA ATG ACT CCA AAG TAG ACC-3'</td>
<td>692 bp</td>
<td>60°C</td>
</tr>
<tr>
<td></td>
<td>5'-CTT CCA GCC AGT TGC CTT CTG-3'</td>
<td>5'-GAG AGC ATT GGA AGT TGG CGG-3'</td>
<td>504 bp</td>
<td>60°C</td>
</tr>
<tr>
<td>IL6</td>
<td>5'-TCC TGG GAC TCT TCT CAA GAT CTC-3'</td>
<td>5'-ATG CGA GTG ACT TAG GAC G-3'</td>
<td>362 bp</td>
<td>58°C</td>
</tr>
<tr>
<td></td>
<td>5'-TCC TGG GAC TCT TCT CAA GAT CTC-3'</td>
<td>5'-ATG CGA GTG ACT TAG GAC GA-3'</td>
<td>504 bp</td>
<td>60°C</td>
</tr>
<tr>
<td>IL1α</td>
<td>5'-GCT ACC TAT GTC TCC CCC GT-3'</td>
<td>5'-GAG CAT TCC TGG TGT GGA G-3'</td>
<td>543 bp</td>
<td>58°C</td>
</tr>
<tr>
<td></td>
<td>5'-GCT ACC TAT GTC TCC CCC GT-3'</td>
<td>5'-GAG CAT TCC TGG TGT GGA G-3'</td>
<td>536 bp</td>
<td>58°C</td>
</tr>
<tr>
<td>IL1β</td>
<td>5'-ACC AGA CCT GAG AGG GAA ACG G-3'</td>
<td>5'-GAG CCT TAC TAA CCA GAA GAC C-3'</td>
<td>281 bp</td>
<td>60°C</td>
</tr>
</tbody>
</table>

Cell cultures of mesenteric lymph nodes (MLN)

Mesenteric lymph nodes from rats treated with IL10 or the vehicle were removed, gently minced, and filtered through a fine mesh.
The cells were washed and resuspended (5×10⁴ in 1 ml) in RPMI and additives as described above. The cells were cultured at 37°C in 5% CO₂ and 95% O₂ in a 24 well tissue culture plate for 10 or 36 hours in the presence or absence of concanavalin A (1 µg/ml), after which the supernatants were collected for the assays. Experiments were performed with cells from at least three individual animals.

Cytokine assays

IL1α: Caecal tissues were homogenised in ice cold 20 mmol/l phosphate buffer (pH 7.4) and the supernatant kept at −80°C until assay. The homogenates were measured in 1:1 dilutions using a radioimmunoassay kit for rat IL1α (Cytokine Science, Boston, MA).

IFNγ activity was measured by a rat IFNγ ELISA (Biosource Int; Camarillo, CA).

IL-2 was measured in a bioassay using the murine cell line designated NK. Briefly, titrated amounts of culture supernatants were added to NK cells (5×10⁶ cells/well in 100 µl culture volume) and incubated for 48 hours. The cultures were pulsed with ³H-thymidine for the last four hours. Cells were harvested and incorporation of ³H-thymidine was determined by scintillation counting. Units per ml of IL-2 are defined as the reciprocal of the dilution of supernatant that stimulates 50% of the maximal counts per minute of ³H-thymidine incorporation, multiplied by 10 as the bioassay volume is 0.1 ml.

Results

In vitro inhibition of cytokines by IL10

To demonstrate the potential anti-inflammatory role of recombinant murine IL10 on rat cells stimulated with PG-APS, we isolated splenocytes from Lewis rats and added 50 µg/ml PG-APS and different concentrations of IL10 for six hours. PG-APS markedly upregulated IFNy, IL1α, and TNFa gene expression in splenocytes in vitro (Fig 1). Fifty and 250 ng/ml recombinant murine IL10 inhibited gene expression of IFNy, IL1α, and TNFa in a dose dependent fashion (Fig 1), whereas lower doses (1 or 5 ng/ml) were ineffective (results not shown).

Effects of IL10 treatment on the acute inflammatory phase

Two different doses of recombinant murine IL10, 100 or 250 µg/kg, were administered daily by subcutaneous injection, starting 12 hours before surgery. Three days after surgery, the rats were killed and the inflammatory changes of the intestine were scored in a blinded fashion. An amelioration of the gross gut score (GGS) with a significant benefit by the higher IL10 dose (250 µg/kg) was observed (Fig 2A). In the analysis of the different components of the GGS, the most significant improvement was in decreased caecal thickening (mean (SEM)) (1.9 (0.1) PG-APS/IL10 250 µg/kg versus 2.3 (0.1) PG-APS/RSA; p<0.001). Adhesions and mesenteric contractions improved with IL10 treatment, but were not significantly better than control values. Surprisingly, caecal MPO values were significantly increased with the higher IL10 dose compared with the control group (p=0.05) (PG-APS/ASA: 4.5 (0.4) units/g; PG-APS/IL10 100 µg/kg: 5.7 (0.6) units/g; PGPS/IL10 250 µg/kg: 6.0 (0.4) units/g; HGAS/ASA: 3.1 (0.5) units/g) and histological examination of selected animals showed no difference between the IL10 treated and untreated PG-APS injected groups (results not shown). IL10 treatment ameliorated the acute arthritis, but the differences between the groups were not significant due to the low incidence of acute arthritis after intestinal intramural PG-APS injection.17 Furthermore, there were no differences in body weight, liver weight, packed cell volume or white blood cell count between the groups.

Effects of IL10 on the chronic inflammatory phase

Using the higher IL10 dose (250 µg/kg/24 h), which exhibited greater protective effects on gross intestinal inflammation in the acute phase, we investigated whether continuous IL10 administration for 17 days had a protective effect in the T lymphocyte dependent, chronic phase of this model. Because a recently published study showed better effects of IL10 treatment when given at shorter time intervals,14 we administered divided doses of IL10 (125 µg/kg/12 h).

Figure 1: Semiquantitative RT-PCR analysis of the regulation of cytokine gene expression in isolated splenocytes by IL10. Splenocytes were isolated from Lewis rats and stimulated with 50 µg/ml PG-APS with or without different concentrations of IL10 (50 or 250 ng/ml). Total RNA was isolated after six hours, reverse transcribed, and the cDNA was diluted in 10-fold steps (1:1, 1:10, 1:100 for IL1α, IFNγ, TNFa or 1:10, 1:100, 1:1000 for Actin). Using specific oligonucleotide primers, amplification was performed for 35 (Actin, IL1α) or 40 cycles (IFNγ, TNFa) and aliquots of the products were visualized on a 2% agarose gel with ethidium bromide. (BPL=100 base pair DNA ladder). Representative gels of three independent experiments are shown.
The small suppression of neutrophil infiltration in the caecum by IL10 was also reflected by caecal MPO values, which showed only a slight, non-significant improvement in the treatment group (PG-APS/RSA: 12·1 (1·0) units/g; PG-APS/IL10 250 μg/kg: 11·8 (1·7) units/g; HSA/RSA: 2·7 (0·5 units/g).

Chronic extraintestinal inflammation

Extraintestinal inflammation was inhibited by IL10 to a greater extent than enterocolitis. Eighty per cent of the PG-APS/RSA group had macroscopically visible liver granulomas, compared with only two of 10 animals in the PG-APS/IL10 group (p<0·001). Histological analysis showed that one additional IL10 treated rat had scattered hepatic granulomas, which were not visible by macroscopic evaluation (Table III). However, these three IL10 treated animals showed considerably less hepatic inflammation than the PG-APS/RSA animals in regard to histological distribution and destruction of liver parenchyma. Although parenchymal granulomas were only rarely seen in the liver of IL10 treated rats, a mononuclear cell infiltrate was observed around bile ducts (Fig 3). The increase in liver weight of PG-APS injected/IL10 treated rats compared with non-PG-APS injected controls was decreased by 45% (p<0·03) (Table III), confirming a beneficial effect of IL10 on hepatic inflammation. Similar beneficial effects of IL10 treatment were seen on haematological parameters, which are reliable indices of intestinal and systemic inflammation in this model. 17 Peripheral leucocytosis and anaemia were significantly attenuated by IL10 administration (p<0·004) (Table III). No effect was noted on body weights, which were not different between PG-APS and HSA injected groups.

TABLE III. IL10 treatment suppressed inflammation in the gut 17 days after PG-APS injection as assessed by histological inflammatory scores of the intestine

<table>
<thead>
<tr>
<th>Groups</th>
<th>Gut injection/treatment</th>
<th>Terminal ileum</th>
<th>Caecum</th>
<th>Histological inflammatory score</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>acute</td>
<td>chronic*</td>
<td>acute</td>
<td>chronic</td>
</tr>
<tr>
<td>PG-APS/RSA (n=10)</td>
<td>3·8 (0·1)</td>
<td>3·7 (0·8)</td>
<td>7·0 (0·2)</td>
<td>7·4 (0·2)</td>
</tr>
<tr>
<td>PG-APS/IL10 (n=10)</td>
<td>2·4 (0·6)</td>
<td>2·6 (0·4)</td>
<td>5·1 (1·1)</td>
<td>5·2 (0·9)</td>
</tr>
<tr>
<td>HSA/RSA (n=5)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>p Value§</td>
<td><0·03</td>
<td><0·02</td>
<td><0·04</td>
<td><0·05</td>
</tr>
</tbody>
</table>

*Mean (SEM). ‡Summation of distal ileal and caecal blinded histological scores (0–4), as described in the methods section. §Summation of acute and chronic score. §p Values: PG-APS/IL10 v PG-APS/RSA group.

Figure 2: (A) In vivo administration of IL10 (100 μg/kg or 250 μg/kg every 24 hours subcutaneously) shows a dose dependent effect on acute intestinal inflammation in the PG-APS model. IL10 or RSA treatment was started 12 hours before subcaval PG-APS or HSA injection and then was continued for three days. The gross gut score was made by a single blinded observer at necropsy on day 3. HSA=human serum albumin; RSA=rat serum albumin; PG-APS=peptideglycan-polysaccharide polymers isolated from group A Streptococcus pyogenes. *p<0·01 PG-APS/IL10 v PG-APS/RSA. (B) In vivo subcutaneous administration of IL10 (125 μg/kg every 12 hours) significantly reduced chronic macroscopic gut inflammation 17 days after PG-APS or RSA injection. *p<0·003 PG-APS/IL10 v PG-APS/RSA.
Table III: IL10 treatment suppresses extraintestinal inflammation and anaemia in the chronic phase (day 17) of the PG-APS model

<table>
<thead>
<tr>
<th>Groups</th>
<th>Gut injection/treatment</th>
<th>WBC $\times 10^9$ SI units/l</th>
<th>PCV</th>
<th>Liver weight mg/g body weight</th>
<th>Hepatic granulomas</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>macroscopic</td>
</tr>
<tr>
<td>PG-APS/RSA (n=10)</td>
<td>29.7 (2.0)*</td>
<td>37.8 (1.0)</td>
<td>70.5 (4.6)</td>
<td>80%</td>
<td>80%</td>
</tr>
<tr>
<td>PG-APS/IL10 (n=10)</td>
<td>17.3 (1.7)</td>
<td>42.7 (1.1)</td>
<td>56.5 (3.6)</td>
<td>30%</td>
<td>30%</td>
</tr>
<tr>
<td>HSA/RSA (n=5)</td>
<td>7.7 (0.4)</td>
<td>48.4 (0.7)</td>
<td>39.7 (1.2)</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>p Value\dagger</td>
<td><0.001</td>
<td><0.004</td>
<td><0.003</td>
<td><0.02\dagger</td>
<td><0.05\dagger</td>
</tr>
</tbody>
</table>

*Mean (SEM); \daggerIncidence of hepatic granulomas; \ddaggerp values PG-APS/IL10 vs PG-APS/RSA; \S p values PG-APS/RSA calculated by χ^2 test.

Murine recombinant IL10 treatment suppressed the development of chronic arthritis in a highly significant fashion (Fig 4). On day 17 after PG-APS injection joints of IL10 treated rats were not significantly increased over HSA/RSA negative controls; the increase in the mean (SEM) joint diameter from preinjection values seen in the PG-APS/RSA group was reduced by nearly 80% (1.85 (0.37) mm in the PG-APS/RSA versus 0.38 (0.19) mm in the PG-APS/IL10 treatment group, p<0.001) (Fig 4). Only two of 10 animals showed clinical signs of arthritis after IL10 treatment with very attenuated arthritis in one of the two rats, whereas eight of 10 animals in the PG-APS/RSA group clinically showed profound arthritis with marked swelling and erythema. The histopathology of the joints confirmed the clinical pattern. Figure 5 shows that infiltration of PMNs and mononuclear cells, pannus formation, cartilage erosion, bone degradation as well as exudation of cells into the joint space were clearly inhibited by IL10 treatment.

Figure 3: Histological demonstration of the liver architecture 17 days after subserosal PG-APS injection and RSA treatment (A) or continuous murine recombinant IL10 treatment (B). Only infiltration of mononuclear cells in the area of the portal tract are visible in liver sections of PG-APS/IL10 treated rats, whereas the livers of PG-APS/RSA treated rats show destruction of the architecture with granulomas (haematoxylin and eosin stain, original magnification \times20).

Figure 4: Effect of murine recombinant IL10 treatment on PG-APS induced arthritis. IL10 (125 μg/kg every 12 hours) was given subcutaneously starting 12 hours before PG-APS injection (12.5 μg/kg subserosally in the intestine) and continuing throughout the duration of the experiment (n=10). Controls included rats injected intramuscularly with PG-APS (n=10) or HSA (n=5) and treated with RSA (125 μg/kg every 12 hours subcutaneously). Joint measurements were carried out at indicated days after PG-APS injection. Joint diameter changes in PG-APS/RSA treated rats were significantly greater (*p<0.01) than PG-APS/IL10 treated rats at each interval after day 10.

Figure 5: Representative joint tissues from rats treated with RSA (A) or recombinant murine IL10 (B) for 17 days after intestinal subserosal PG-APS injection. IL10 treatment prevented clinical and histological (B) onset of arthritis, whereas the histological section of only RSA treated rats show pannus formation with infiltration of neutrophils, and mononuclear cells, as well as cartilage destruction and bone erosion (A) (haematoxylin and eosin stain, original magnification \times20).
Effects of IL10 treatment on cytokine regulation

IL10 reduced or inhibited the expression of IL1α and β, TNFα, IL6, and IFNγ genes in the liver, mesenteric lymph nodes, and caecal tissues as measured by RT-PCR. The most pronounced effects were seen in the liver consistent with the marked differences in hepatic granuloma formation (Fig 6). Expression of IL1 RA and IL10 mRNA (results not shown) did not differ between the IL10 treated and not treated groups; these cytokines were also constitutively expressed in non-inflamed HSA/RSA controls.

Earlier studies showed significantly increased IL1α protein concentrations in caecal tissues in the chronic phase after PG-APS subserosal injection. IL10 treatment decreased IL1α protein levels by 40% (Fig 7). Furthermore, we assessed the production of IFNγ and IL2 by concanavalin A stimulated MLN cells, isolated 17 days after PG-APS injection. Whereas MLN cells showed no measurable spontaneous production of IFNγ or IL2, concanavalin A stimulation upregulated the production of IFNγ twofold and IL2 2.5-fold in PG-APS/RSA treated rats compared with HSA/RSA controls. However, concanavalin A stimulated MLN cells isolated from IL10 treated rats showed a 45% reduction of IFNγ and IL2 production from PG-APS/RSA treated animals.

Discussion

This study shows that murine recombinant IL10 treatment successfully attenuated acute and chronic granulomatous inflammation induced by bacterial cell wall polymers and downregulated cytokine expression in vivo and in vitro. Continuous IL10 administration had a greater effect on chronic, granulomatous enterocolitis than on the acute phase of inflammation. IL10 treatment significantly improved macroscopic, histological, and immunological parameters of chronic intestinal inflammation 17 days after PG-APS injection. The improvement in neutrophilic infiltration was less pronounced, as reflected by only minor changes of caecal tissue myeloperoxidase levels, although the acute histological score in the ileum (but not the caecum) was significantly decreased with IL10 treatment. These results suggest that IL10 treatment affects mononuclear cell (lymphocytes and macrophages) infiltration to a greater extent than neutrophils, in agreement with two previously published studies. In murine acute pancreatitis IL10 did not influence cellular infiltration despite inhibiting tissue necrosis. Furthermore, IL10 treatment did not improve the morphology or degree of cellular infiltrate in footpads injected with Th1 lymphocytes in a murine model of delayed type hypersensitivity, albeit IL10 inhibited footpad swelling by decreasing vascular permeability. Although we did not quantitate the degree of oedema or vascular leakage in this study, the significant improvement in acute macroscopic inflammation was mainly due to decreased bowel wall thickening, corresponding with observations in the delayed type hypersensitivity model.

The macroscopic and histological improvement of chronic inflammation by IL10 treatment was accompanied by a downregulation of gene expression of monokines as well as IFNγ in tissues, consistent with the ability of IL10 to inhibit expression of these cytokines by PG-APS stimulated splenocytes in vitro. These results agree with the ability of IL10 to inhibit macrophage and lymphocyte activation and to increase survival in a model of endotoxaemia by downregulating TNFα.

The effects of IL10 treatment on in vivo gene expression of the monokines IL1, IL6, and TNFα were most pronounced in the liver, in
Interleukin 10 suppresses experimental chronic, granulomatous inflammation induced by bacterial cell wall polymers

parallel with a marked inhibition of hepatic granulomas. Kupffer cells and newly recruited monocytes are important in the genesis of hepatic granulomas after intraperitoneal injection of PG-APS. Kupffer cells rapidly clear these bacterial polymers from the circulation and large amounts of PG-APS remain in the phagolysosomes of these cells after 14–21 days. Our studies suggest that continuous IL10 administration to PG-APS treated rats downregulates monokine production by activated Kupffer cells and mononuclear phagocytes, thereby inhibiting formation of hepatic granulomas. This hypothesis is supported by in vitro studies showing that isolated Kupffer cells secrete IL1 and TNFα after stimulation with PG-APS and that LPS or PG-APS stimulated TNFα secretion by Kupffer cells can be inhibited by IL10 (and H Herfarth, S Lichtman unpublished results).

IL10 nearly completely prevented chronic arthritis in this model, probably by down regulation of IL1, IL6 or TNFα, as shown in the liver. A role for these macrophage products in the pathogenesis of experimental arthritis is demonstrated by reactivation of PG-APS induced arthritis by systemic injections of IL1 or TNFα and by induction of acute, transient arthritis by intraarticular injection of IL1α or β. Furthermore, treatment with recombinant IL1 RA or anti-TNFα antibody inhibits PG-APS induced arthritis, as does systemic treatment with TGFβ. In vitro TGFβ decreases LPS induced macrophage production of TNFα and IL1 to a similar extent as IL10, but inhibits cytokine translation in contrast with the activity of IL10 on transcriptional downregulation. IL1, IL6, and TNFα are also implicated in the pathophysiology of human rheumatoid arthritis and blocking endogenously produced IL10 in synovial cultures markedly increased these cytokines, suggesting an important immunoregulatory role of IL10 in the joint. It is likely that IL10 has a similar key role in maintaining mucosal homeostasis, as targeted deletion of this cytokine leads to spontaneous intestinal inflammation.

IL10 treatment more successfully inhibited extraintestinal inflammation in liver and joints than in the intestine, similar to the therapeutic effects of IL1 RA in this model. The amount of PG-APS in various organs may be a critical component because concentrations of this polymer are highest at intestinal injection sites. Another variable is tissue concentrations of the administered IL10 within the various inflamed organs, which could not be measured in this study. Given the ability of PG-APS to activate multiple inflammatory pathways and the redundancy of many immunological processes, treatment with IL10 alone might not be sufficient to completely suppress aggressive enterocolitis. An additional anti-inflammatory agent may be necessary to provide synergistic benefit. This concept is elegantly demonstrated by Powrie et al, who showed in a delayed type hypersensitivity model that the combination of IL4 and IL10 is more effective than monotherapy. In preliminary investigations, we have demonstrated additive activities of IL10 and corticosteroids in the PG-APS model.

IL10 suppresses Th1 cytokine production as well as Th1 lymphocyte proliferation in vitro, if macrophages are used as antigen presenting cells. IL4, however, seems to be more important than IL10 in crossregulating a Th1 response towards a Th2 response. The crucial role of T lymphocytes in chronic intestinal and systemic inflammation in the PG-APS model is well documented. In our model in vivo IL10 treatment downregulated IFNγ and IL2 protein secretion of mesenteric lymph nodes after Con A stimulation and inhibited tissue IFNγ gene expression. Furthermore in vitro IL10 decreased IFNγ upregulation in PG-APS activated splenocytes. Negative regulation of IFNγ by IL10 is the suggested mechanism of disease prevention in the experimental allergic encephalomyelitis model and in the non-obese diabetic mouse model.

As shown here, IL10 downregulated expression of several pro-inflammatory cytokines in vivo. However, we cannot determine if these cytokines are direct or indirect through induction of other inhibitory cytokines, like IL1 RA, or by inhibition of pro-inflammatory mediators like IL12. IL1 RA, which attenuates PG-APS induced enterocolitis and systemic inflammation, is upregulated in the presence of IL10 in LPS activated neutrophils, whereas IL10 had no effect on IL1 RA production by mononuclear cells isolated from patients with rheumatoid arthritis or in vitro endotoxin stimulated whole blood from healthy volunteers after intravenous IL10 administration. In our study, tissue IL1 RA mRNA expression was not affected by IL10 treatment, but by downregulating IL1 production, IL10 increased IL11 RA and IL11 towards a protective environment. A similar shift towards an immunosuppressive ratio of IL11 RA/IL1 was recently demonstrated in isolated mononuclear cells from patients with Crohn’s disease exposed to IL10. IL10 also downregulates the pro-inflammatory cytokine IL12, which is involved in the pathogenesis of intestinal inflammation, as recently shown by the successful treatment of experimental colitis by IL12 antibodies. IL12 is secreted by activated macrophages and B cells and strongly increases IFNγ production by T lymphocytes, thus shifting the immunological response towards a Th1 repertoire, as recently shown in a parasitic experimental model.

The PG-APS model, which displays genetically determined host susceptibility, ileocecal inflammation, extraintestinal manifestations of anaemia, leucocytosis, hepatobiliary inflammation, arthritis, and exhibits spontaneous relapses of inflammation, resembles many features of Crohn’s disease. Furthermore, PG-APS is an environmentally relevant agent, which is present in high concentrations in the lumen of the distal ileum and colon. Ubiquitous anaerobic bacteria and their cell wall components seem to be involved in IBD.
and reactive arthritis.\(^1\)\(^{60}\) Our results demonstrate that IL10 down regulates experimental chronic granulomatous inflammation induced by bacterial cell wall components in genetically susceptible hosts. In this model IL10 appears to act by suppressing the expression of mono-
kines and IFN\(\gamma\). Immunomodulating IL10 treatment could be a new effective therapeutic approach for chronic inflammatory diseases in humans, particularly Crohn's disease and rheumatoid arthritis, which are exacerbated by increased tissue concentrations of products of activated macrophages and TH1 lymphocytes.\(^5\)\(^\text{44}\)\(^\text{61}\)

This research was supported by NIH grants DK 40249, DK 47700 and DK 54089, the Deutsche Forschungsgemeinschaft (He 2379/1-1), and partially supported by the Schering Plough Research Institute. The authors thank Roger Allen for preparation of PG-APS and Diane Bender, Julie Mitchell and Lisa Holt for technical support.

Parts of this article were presented at the 46th Annual Meeting of the American Association for the Study of Liver Disease, November 3-7, 1995 and were published in abstract form in Hepatology 1995; 22: 364A.

3. Sartor RB. Insights into the pathogenesis of inflammatory bowel diseases provided by new rodent models of spontaneous colitis. Inflammatory Bowel Disease 1995; 11: 64-75.

12. Powrie F, Leach MW, Mauze S, Menon S, Caddie LB, Coffman RL. Inhibition of Th1 responses prevents inflammatory bowel disease in mice reconstituted with CD45RB\(^+\)CD4\(^+\) T cells. Immunology 1994; 81: 553-62.

Interleukin 10 suppresses experimental chronic, granulomatous inflammation induced by bacterial cell wall polymers

54 Hart PH, Ahern MJ, Smith MD, Finlay-Jones JJ. Comparison of suppressive effects of interleukin-10 and interleukin-4 on synovial fluid macrophages and blood monocytes from patients with inflammatory arthritis. Immunology 1995; 84(4): 536-42.
Interleukin 10 suppresses experimental chronic, granulomatous inflammation induced by bacterial cell wall polymers.

H H Herfarth, S P Mohanty, H C Rath, S Tonkonogy and R B Sartor

Gut 1996 39: 836-845
doi: 10.1136/gut.39.6.836

Updated information and services can be found at: http://gut.bmj.com/content/39/6/836

These include:

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Topic Collections
Articles on similar topics can be found in the following collections

Crohn's disease (932)

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/