Clinical outcome after infection with *Helicobacter pylori* does not appear to be reliably predicted by the presence of any of the genes of the *cag* pathogenicity island

P J Jenks, F Mégraud, A Labigne

Abstract

Background—The development of clinical disease after infection with *Helicobacter pylori* has been reported to be associated with expression of the *cagA* gene. Recently, it has been shown that *cagA* is part of a multigene locus, described as the *cag* pathogenicity island (PAI). The role of this region in determining clinical outcome remains to be established.

Aims—To investigate whether the presence of *cagA* is always associated with the presence of the complete *cag* PAI and to evaluate the distribution of selected *cag* genes in *H pylori* strains isolated from patients in France.

Methods—Clinical strains of *H pylori* were screened for selected genes of the *cag* PAI by polymerase chain reaction and colony hybridisation.

Results—Of 64 strains that harboured the *cagA* gene, 57 (89%) also contained the entire *cag* PAI. The entire *cag* PAI was found in 85% (48/56) and 53% (9/17) of duodenal ulcer and non-ulcer dyspepsia isolates, respectively. Eight strains had deletions within the *cag* PAI, including deletion of the *cagA* gene in one isolate; the deletions were not associated with the insertion sequence IS605. Of eight strains lacking the *cag* PAI, four were isolated from patients with duodenal ulcer.

Conclusion—The *cag* PAI is not a uniform, conserved entity. Although the presence of the *cag* PAI is highly associated with duodenal ulcer, the clinical outcome of infection with *H pylori* is not reliably predicted by any gene of the *cag* PAI.

Keywords: duodenal ulcer; *Helicobacter pylori*; *cag* pathogenicity island; non-ulcer dyspepsia.

Helicobacter pylori is a Gram negative, microaerophilic, spiral bacterium that colonises the human stomach. Infection with *H pylori* is associated with chronic superficial gastritis and peptic ulceration, and epidemiological evidence of a link with gastric adenocarcinoma and mucosa associated lymphoid tissue (MALT) lymphoma has resulted in classification of the organism as a group I carcinogen.

CagA was first described as an immunodominant antigen with a molecular mass of 120 kDa. This antigen is expressed by the majority of vacuolating cytotoxin producing isolates and consequently the gene encoding this high molecular weight antigen was designated the *cagA* gene (cytotoxin associated gene). The function of CagA remains unclear, as although it is frequently associated with cytotoxin production and the induction of interleukin 8 (IL-8) by gastric epithelial cells, neither of these features are affected by inactivation of *cagA*. Despite this, a number of studies have suggested that CagA is a useful marker for the more virulent strains that are associated with severe gastroduodenal disease. *H pylori* strains that express CagA cause more extensive inflammation of the gastric mucosa and infections with CagA positive strains have been reported to be more likely to result in peptic ulceration, atrophic gastritis and gastric adenocarcinoma. However, studies recently performed in some parts of the world have cast doubt on this association, reporting minimal correlation between the expression of CagA and either inflammation or clinical disease.

Recently, the multigenic locus upstream of *cagA* was characterised in the strain CCUG 17874 (also designated NCTC 11638) and was found to have the typical features of a pathogenicity island. In this strain, the locus is divided into two subregions, *cagI* and *cagII*, separated by intervening chromosomal DNA and a sequence reminiscent of an insertion sequence, designated IS605 (fig 1). The latter encodes two putative transposases, TnpA and TnpB, and full length or partial copies of this insertion sequence may also be present elsewhere in the chromosome.

Based on the analysis of a series of isolates, which included strains with deletions within the *cag* PAI, Censini et al proposed that subpopulations with intermediate virulence arose after integration of IS605 into the chromosome and subsequent rearrangements and deletions within the *cag* PAI. In the recently sequenced strain 26695 the *cag* PAI was found as a contiguous unit. The *cag* PAI encodes proteins with similarity to components of bacterial secretory pathways, including the type IV system, and it has been proposed that the region encodes a secretion system for the export of virulence determinants. Mutation of several of the predicted coding regions of the *cagI* region resulted in abolition of IL-8 induction, increased haemolytic activity and altered duplication times in liquid culture. The induction of pedestal structures and host protein tyrosine phosphorylation, observed in
in vivo assays when *H pylori* contacts epithelial cells,\(^*\) is also abolished by mutations mapping to the *cag* region, which suggests it may also export macromolecules involved in the *H pylori*–host cell interaction.\(^*\)

To date, only the expression of the CagA antigen, as measured by the detection of antibodies to CagA in *H pylori* infected patients, or the presence of the *cagA* gene, as determined by polymerase chain reaction (PCR) or hybridisation, have been investigated in large scale studies of clinical isolates. We therefore decided to investigate a large number of *H pylori* strains (i) to examine whether the presence of *cagA* was always associated with the presence of a complete *cag* PAI and (ii) to study the distribution of several *cag* genes in relation to the clinical presentation of the patients from whom the strains originated.

Methods

MATERIALS

Antral biopsy specimens were taken from patients consulting for duodenal ulcer disease (n=62) and non-ulcer dyspepsia (NUD) (n=20) in 30 different centres in France. None of the patients was receiving antisecretory or non-steroidal anti-inflammatory drugs. Biopsy samples were ground into brucella broth to disperse the bacteria and the ground material was inoculated onto Wilkins Chalgren plates (Oxoid, Lyon, France) supplemented with 10% human blood and the following antibiotics: vancomycin (10 mg/l), cefsulodine (5 mg/l), and cyclohexamide (100 mg/l). Plates were incubated at 37°C under microaerobic conditions for seven days. From each biopsy specimen all the colonies that grew on selective media were pooled and resuspended into 100 to 500 μl of distilled water, to give a suspension with an A₆₀₀ of 0.5. The suspension was boiled for five minutes, cooled on ice, and centrifuged for five minutes at 12 000 × g. Supernatants were collected and frozen at −20°C until processed for gene amplification experiments. Pellets were independently stored at −20°C for colony hybridisation. Lysates from the strains CCUG 17874, 26695, and 85P were prepared in a similar fashion for use as controls.\(^{26,27,12}\)

POLYMERASE CHAIN REACTION

Table 1 shows the nucleotide sequences of the primers used for the different amplification reactions; they were derived from the published sequences of the *H pylori cag* region (GenBank accession numbers U601176, AC000108 and AE000511) and the phosphoglucomutase gene, *glmM* (previously designated *ureC*).\(^*\) PCR was performed as follows: target DNA (the bacterial lysate) was heat denatured prior to the addition to 50 pmol of each primer, 10 mM Tris-HCl (pH 8.3), 50 mM KCl, 1.5 mM MgCl₂, 0.01% (w/v) gelatin, 0.2 mM of each deoxynucleotide (Pharmacia Biotech, St-Quentin-Yvelines, France) and 2.5 units of Taq polymerase (Amersham, Little Chalfont, UK). Gene amplification was carried out through 30 consecutive cycles consisting of a denaturation step of 94°C for two minutes, a primer annealing step ranging from 50–56°C for two minutes (depending on the melting temperature of the various primers) and an extension step at 72°C for two minutes. At the end of the reaction 40 μl of each sample was loaded onto

Table 1 Oligonucleotide primers used in this study

<table>
<thead>
<tr>
<th>Oligonucleotide</th>
<th>Gene</th>
<th>Strand</th>
<th>Sequence (5'–3')</th>
<th>Strain of origin</th>
</tr>
</thead>
<tbody>
<tr>
<td>HP1</td>
<td>glmM</td>
<td>+</td>
<td>GGAATACGTTTATAGGGGTGTTAAGG</td>
<td>85P</td>
</tr>
<tr>
<td>HP2</td>
<td>glmM</td>
<td>–</td>
<td>GCTTCATTTCTACACTAACGCC</td>
<td>85P</td>
</tr>
<tr>
<td>CAG1*</td>
<td>cagA</td>
<td>+</td>
<td>GTAACACGGCAAGTCATGGG</td>
<td>CCUG 17874</td>
</tr>
<tr>
<td>CAG2*</td>
<td>cagA</td>
<td>+</td>
<td>CAGCAGTTTTCGCTGGC</td>
<td>CCUG 17874</td>
</tr>
<tr>
<td>CAG3*</td>
<td>cagE</td>
<td>+</td>
<td>GTTTATAGGTTAAGGAGG</td>
<td>CCUG 17874</td>
</tr>
<tr>
<td>CAG4*</td>
<td>cagE</td>
<td>+</td>
<td>CAAATTATTGGAAGTTCAG</td>
<td>CCUG 17874</td>
</tr>
<tr>
<td>CAG5*</td>
<td>cagM</td>
<td>+</td>
<td>ACAATGCAAAAAAAAGGAC</td>
<td>CCUG 17874</td>
</tr>
<tr>
<td>CAG6*</td>
<td>cagM</td>
<td>–</td>
<td>ATTTTTTCAACAATGGGAGG</td>
<td>CCUG 17874</td>
</tr>
<tr>
<td>CAG7*</td>
<td>cagQ</td>
<td>+</td>
<td>TTGGTGGTTGGAATGTGTTTGC</td>
<td>CCUG 17874</td>
</tr>
<tr>
<td>CAG8*</td>
<td>tspA</td>
<td>+</td>
<td>CGCCTTCCTCCTAATCCCAAAGGC</td>
<td>CCUG 17874</td>
</tr>
<tr>
<td>CAG9*</td>
<td>tspA</td>
<td>–</td>
<td>AGTCATGAGAAAATCTGCTATG</td>
<td>CCUG 17874</td>
</tr>
<tr>
<td>CAG10*</td>
<td>tspA</td>
<td>–</td>
<td>AGTCATGCAAACATGTTCCTC</td>
<td>CCUG 17874</td>
</tr>
<tr>
<td>CAG11*</td>
<td>tspA</td>
<td>–</td>
<td>TATGTTGATTATAATCAAGG</td>
<td>CCUG 17874</td>
</tr>
<tr>
<td>CAG12</td>
<td>cagS</td>
<td>+</td>
<td>GCACTATGTAAGGAGTATTTC</td>
<td>NCTC 11638</td>
</tr>
<tr>
<td>CAG13*</td>
<td>cagT</td>
<td>+</td>
<td>TTCGATTTGTTGTAAGT</td>
<td>NCTC 11638</td>
</tr>
<tr>
<td>CAG14*</td>
<td>cagT</td>
<td>+</td>
<td>CTGAGTCGTCGTACATGAGT</td>
<td>NCTC 11638</td>
</tr>
<tr>
<td>CAG15*</td>
<td>ORF13+</td>
<td>+</td>
<td>CGTCGTCGTCGTACATGAGT</td>
<td>NCTC 11638</td>
</tr>
<tr>
<td>CAG16*</td>
<td>ORF13−</td>
<td>–</td>
<td>GTTATGACGTTAAGGAGG</td>
<td>NCTC 11638</td>
</tr>
<tr>
<td>CAG17*</td>
<td>ORF10+</td>
<td>+</td>
<td>CTGAGTCGTCGTACATGAGT</td>
<td>NCTC 11638</td>
</tr>
<tr>
<td>CAG18*</td>
<td>ORF6+</td>
<td>+</td>
<td>TTCGAGTCGTCGTACATGAGT</td>
<td>NCTC 11638</td>
</tr>
<tr>
<td>CAG19</td>
<td>ORF6+</td>
<td>+</td>
<td>TTCGAGTCGTCGTACATGAGT</td>
<td>NCTC 11638</td>
</tr>
<tr>
<td>CAG20</td>
<td>ORF6+</td>
<td>+</td>
<td>TTCGAGTCGTCGTACATGAGT</td>
<td>NCTC 11638</td>
</tr>
<tr>
<td>CAG21*</td>
<td>ORF6−</td>
<td>–</td>
<td>GTTGTTGTTGTAAGT</td>
<td>NCTC 11638</td>
</tr>
<tr>
<td>CAG22*</td>
<td>ORF6−</td>
<td>–</td>
<td>GTTGTTGTTGTAAGT</td>
<td>NCTC 11638</td>
</tr>
</tbody>
</table>

Oligonucleotides used to generate probes for colony hybridisation.
The membranes were prehybridised in 50% formamide solution (20 ml per membrane) at 42°C for six hours. The prehybridisation mixture was replaced by the same fresh solution to which 20 µl of the probe was added. After 12 hours of incubation at 42°C under rotative agitation, the membranes were washed three times in 2 x SSC (0.3 M NaCl, 0.03 M sodium citrate)/0.1% sodium dodecyl sulphate at 68°C, were wrapped in plastic films and autoradiography was performed with x ray film (Hyperfilm, Amersham) for 18 to 48 hours. The membranes were reused after stripping of previously hybridised probes with 0.1 M NaOH.

Results

Defining CagA Status

To account for the possibility that patients might have been infected with multiple strains of *H pylori* all colonies that grew from each biopsy sample were collected and pooled. All the lysates were coded and the analysis was performed blindly. Initially, the 82 lysates were tested in parallel with two sets of oligonucleotides, HP1 and HP2, and CAG1 and CAG2. The HP1 and HP2 oligonucleotides were used to calibrate the lysates and to confirm the presence of *H pylori* DNA. Figure 2A shows that when the glmM gene was targeted, a 294 bp PCR product was visualised as a unique and homogenous band, which had a similar intensity in all lanes. All lysates which consistently gave a negative amplification with HP1 and HP2 were considered of insufficient quality to allow detection of the selected genes by PCR and were removed from the study (n=9). The CAG1 and CAG2 oligonucleotides were designed to detect the presence of the cagA gene and amplified a 404 bp product. The cagA status of the remaining 73 lysates was determined by PCR (fig 2A) and colony hybridisation (fig 2B) and lysates were designated cagA negative if they were negative for both these investigations. All others were designated cagA positive lysates. The correlation between results obtained for cagA by PCR and colony hybridisation was 98.7%.

Distribution of Selected Genes within the Cag PAI

Two criteria were used to select the genes of the cag PAI targeted in this study: (i) representative spacing along the 40 kilobase cag PAI and (ii) either the ability to induce IL-8 secretion by gastric epithelial cells or similarity to recognised virulence factors in other bacteria (fig 1). Three loci were selected in the cagI region: cagA, cagE (induces IL-8 and similarity to the virB4 gene of *Agrobacterium tumefaciens*³³) and cagM (induces IL-8 and similarity to the hook associated protein type 3 of *Vibrio parahaemolyticus*³⁴). Four loci were chosen from the cagII region: cagT (similarity to *IPAC* surface antigen of *Shigella flexneri*³⁵); open reading frame (ORF) 13 (similarity to *virB10*³⁶), ORF10 (similarity to *virD4*³⁷) and ORF6 (the start of the cag PAI, GenBank accession number AC000108). In addition, both *mpA* and *mpB* genes of the insertion sequence IS605 were selected.

![Figure 2](http://example.com/figure2.png)

Figure 2 (A) Example of detection of PCR products by agarose gel electrophoresis and ethidium bromide staining. Strains were initially tested for the presence of glmM (upper lanes) and cagA (lower lanes). Lanes 1 to 12 represent strains 26 to 37; lanes L contain a molecular weight marker (Gibco/BRL Ltd, Paisley, UK). (B) Representative colony hybridisation to detect the presence of glmM and cagA. Dots 1 to 12 represent strains 26 to 37. The photocomposition of the figure was obtained from the original Polaroid film plus the autoradiographs from the colony hybridisations with a Studioscan IIsi scanner (AGFA, Mortsel, Belgium). After the initial image was scanned and saved as a PICT file, the file was opened in Adobe Photoshop, version 3.0 (Adobe system Inc. Mountain View, California, USA).
The presence of these selected genes within the cag PAI of the 73 strains was initially determined by PCR amplification. Eight of the oligonucleotide primer pairs selected to target these loci were found to have 100% homology to the equivalent sequences in the recently sequenced H pylori strain 26695.27 The oligonucleotide CAG19, which targeted ORF6, was not found in strain 26695. This was due to a 97 bp deletion at the 5’ end of this gene in strain 26695 compared with NCTC 11638.27 The oligonucleotide primers CAG21 and CAG22 were therefore designed to amplify a region of ORF6 known to be present in all currently sequenced strains. These were used to test the three clinical strains which were negative for ORF6 with CAG19 and CAG20, but which were positive for all the other genes in the cag PAI. These three strains all contained this truncated version of ORF6 (data not shown).

| Table 2 Detection of selected genes of the cag PAI in clinical strains of H pylori |
|-----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|
| Strain | Diagnosis | ORF6 | ORF10 | ORF13 | cagT | cagM | cagE | cagA | tnpA | tnpB |
| 1 | DU | + | + | + | + | + | + | + | + |
| 2 | DU | + | + | + | + | + | + | + | + |
| 3 | DU | − | − | − | − | + | + | + | + |
| 4 | DU | + | + | + | + | + | + | + | − |
| 5 | DU | + | + | + | + | + | + | + | + |
| 6 | DU | + | + | + | + | + | + | + | + |
| 7 | DU | + | + | + | + | + | + | + | − |
| 8 | DU | + | + | + | + | + | + | + | − |
| 9 | DU | + | + | + | + | + | + | + | − |
| 10 | DU | + | + | + | + | + | + | + | − |
| 11 | DU | + | + | + | + | + | + | + | − |
| 12 | DU | + | + | + | + | + | + | + | − |
| 13 | DU | + | + | + | + | + | + | + | − |
| 14 | DU | + | + | + | + | + | + | + | − |
| 15 | DU | − | − | − | − | − | − | − | − |
| 16 | DU | + | + | + | + | + | + | + | + |
| 17 | DU | − | − | − | − | − | − | − | − |
| 18 | DU | + | + | + | + | + | + | + | + |
| 19 | DU | + | + | + | + | + | + | + | + |
| 20 | DU | + | + | + | + | + | + | + | + |
| 21 | DU | + | + | + | + | + | + | + | + |
| 22 | DU | + | + | + | + | + | + | + | + |
| 23 | DU | + | + | + | + | + | + | + | + |
| 24 | DU | + | + | + | + | + | + | + | + |
| 25 | DU | + | + | + | + | + | + | + | + |
| 26 | DU | − | − | − | − | − | − | − | − |
| 27 | DU | + | + | + | + | + | + | + | + |
| 28 | DU | + | + | + | + | + | + | + | + |
| 29 | DU | + | + | + | + | + | + | + | + |
| 30 | DU | + | + | + | + | + | + | + | + |
| 31 | DU | + | + | + | + | + | + | + | + |
| 32 | DU | + | + | + | + | + | + | + | + |
| 33 | NUD | + | + | + | + | + | + | + | − |
| 34 | DU | + | + | + | + | + | + | + | + |
| 35 | NUD | − | − | − | − | − | − | − | − |
| 36 | DU | − | − | − | − | − | − | − | − |
| 37 | NUD | − | − | − | − | − | − | − | − |
| 38 | NUD | + | + | + | + | + | + | + | + |
| 39 | DU | + | + | + | + | + | + | + | + |
| 40 | DU | + | + | + | + | + | + | + | + |
| 41 | DU | + | + | + | + | + | + | + | + |
| 42 | NUD | − | − | − | − | − | − | − | − |
| 43 | DU | + | + | + | + | + | + | + | + |
| 44 | NUD | + | + | + | + | + | + | + | + |
| 45 | DU | + | + | + | + | + | + | + | + |
| 46 | NUD | − | − | − | − | − | − | − | − |
| 47 | NUD | − | − | − | − | − | − | − | − |
| 48 | DU | − | − | − | − | − | − | − | − |
| 49 | DU | + | + | + | + | + | + | + | + |
| 50 | DU | + | + | + | + | + | + | + | − |
| 51 | NUD | + | + | + | + | + | + | + | − |
| 52 | NUD | + | + | + | + | + | + | + | − |
| 53 | DU | + | + | + | + | + | + | + | − |
| 54 | NUD | + | + | + | + | + | + | + | − |
| 55 | DU | + | + | + | + | + | + | + | − |
| 56 | DU | + | + | + | + | + | + | + | − |
| 57 | DU | + | + | + | + | + | + | + | − |
| 58 | DU | + | + | + | + | + | + | + | − |
| 59 | NUD | + | + | + | + | + | + | + | − |
| 60 | DU | + | + | + | + | + | + | + | − |
| 61 | DU | + | + | + | + | + | + | + | − |
| 62 | DU | − | − | − | − | − | − | − | − |
| 63 | DU | + | + | + | + | + | + | + | − |
| 64 | NUD | − | − | − | − | − | − | − | − |
| 65 | DU | + | + | + | + | + | + | + | − |
| 66 | NUD | + | + | + | + | + | + | + | − |
| 67 | NUD | + | + | + | + | + | + | + | − |
| 68 | NUD | − | − | − | − | − | − | − | − |
| 69 | DU | − | − | − | − | − | − | − | − |
| 70 | NUD | + | + | + | + | + | + | + | − |
| 71 | DU | + | + | + | + | + | + | + | − |
| 72 | DU | + | + | + | + | + | + | + | − |
| 73 | NUD | − | − | − | − | − | − | − | − |

DU, duodenal ulcer; NUD, non-ulcer dyspepsia.
Table 3 Distribution of selected genes of the cag PAI and clinical presentation

<table>
<thead>
<tr>
<th>ORF6</th>
<th>ORF10</th>
<th>ORF13</th>
<th>cagT</th>
<th>cagM</th>
<th>cagE</th>
<th>cagA</th>
<th>tnpA</th>
<th>tnpB</th>
<th>DU</th>
<th>NUD</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>+</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>−</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>−</td>
<td>+</td>
<td>+</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>40</td>
<td>7</td>
</tr>
<tr>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>−</td>
<td>−</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>−</td>
<td>−</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>+</td>
<td>+</td>
<td>+</td>
<td>−</td>
<td>−</td>
<td>+</td>
<td>+</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>+</td>
<td>+</td>
<td>+</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>56</td>
<td>17</td>
</tr>
</tbody>
</table>

DU, duodenal ulcer; NUD, non-ulcer dyspepsia.

targeted by these primers could still have resulted in non-detection of some of the selected genes in certain strains. The presence of the selected genes was therefore also determined by colony hybridisation. The correlation between the results obtained by PCR and colony hybridisation was 97.9% for the genes of the cag PAI, 98.6% for tnpA and 82.2% for tnpB.

Table 2 shows the detection of the seven selected genes of the cag PAI in strains of *H pylori*. All of the selected genes of the cag PAI were detected in 57 (78%) of the strains tested. In 47 of these, the IS605 insertion sequence was not found and it can therefore be assumed that the cag PAI was present as a single and entire block of genes in at least 64% of the analysed isolates. Of the 57 strains that contained the entire genetic information of the cag PAI, 10 (18%) contained either partial or complete copies of IS605. We wished to determine whether the elements of IS605 were localised within the cag PAI or elsewhere in the chromosome, and also whether the overall structure of the cag PAI of these isolates was similar to that of the first cag PAI described by Censini *et al* for strain CCUG 1787426 (in which the IS605 element is most likely to be localised outside the cag PAI described by Censini *et al* with nine (53%) of 17 NUD strains. A number of patients with peptic ulcer disease harboured strains with partial deletions of the cag PAI. In addition, there were four duodenal ulcer strains in which the entire cag PAI was absent. In 11% of the isolates that harboured the cagA gene, the genetic information encoded by the cag PAI was incomplete, thus rendering the PAI non-functional as a conserved unit.

Discussion

The recently described locus upstream of cagA is the first region with the features of a pathogenicity island to be described in *H pylori* and to date it has been assumed that cagA is a marker for this group of genes. In this study the presence of cagA was associated with the presence of the whole cag PAI in only 89% of strains. Like Censini *et al*, we found a number of strains which had deletions within the PAI, including one isolate in which cagA was absent. None of the genes we tested, including cagA, proved to be reliable markers for the presence of the entire island and it appears that the cag PAI is not a uniform, conserved entity. The presence of cagA, as detected by PCR or hybridisation, or the expression of CagA, cannot therefore be considered an absolute marker for the presence of the cag PAI as a complete set of genes associated with pathogenicity.

Clinical isolates of *H pylori* have previously been classified into two broad families on the basis of the presence of cagA and the expression of the vacuolating cytotoxin (VacA). It has been proposed that strains...
associated with more severe gastrointestinal diseases (type I) express both CagA and VacA and exhibit vacuolating activity, while those with attenuated virulence (type II) lack the cagA gene and have a vacA that is silent or encodes for a non-toxic but immunoreactive molecule.\(^{7,15}\) It has also been suggested recently that the cag PAI encodes factors important for virulence and Censini et al reported that this region was unique to strains associated with more severe gastrointestinal disease.\(^{17,18}\) They also proposed that integration of IS605 was associated with subsequent rearrangements and deletions within the cag PAI.\(^{20}\) We found that most of the strains we tested contained cagI and cagII regions that were not disrupted by an IS605 element and were more likely fused together, and this form of the cag PAI was present in 48 (85%) of 56 duodenal ulcer strains. Importantly, although our series contained relatively few NUD strains, 53% of these also contained the entire cag PAI, suggesting that this region is not restricted to strains associated with severe gastroduodenal disease at the time of presentation. In addition, the strain that contained only the genes of the cagII region, two strains with an apparent deletion upstream of cagE, and four strains negative for the entire PAI were isolated from patients with duodenal ulcers. It is recognised that the presence of cagA is not restricted to strains isolated from patients with duodenal ulcers.\(^{14,18}\) Our results provide evidence that the same is true for the entire cag PAI and that this region is not an essential requirement for duodenal ulcer formation. Although it is recognised that heterogeneity of clinical presentation in H. pylori infected clinical patients may be due to a mixed infection with CagA positive and CagA negative strains,\(^{36}\) we were careful to include in our analysis all colonic strains that grew from each biopsy specimen in an attempt to account for the possibility of mixed infection. More recently it has been argued that instability and loss of the cag region after infection is established is a better explanation for this phenomenon than infection with multiple strains.\(^{39}\) Our results suggest that either the PAI is not exclusively found in ulcerogenic strains, or the region is highly unstable and easily lost once infection is established.

In contrast to previous studies, we found the entire insertion sequence IS605 in only 11 strains, whereas a further two strains contained one of either tapA or tapB. In addition the presence of IS605 was not associated with deletions within the cag PAI. Three of the strains which only contained the genes of the cagI region, the strain that only contained the genes of the cagII region and one of the strains that only contained cagA and cagE did not harbour either of these transposases. The deletions in these strains cannot have arisen as a result of IS605 and must have been mediated by some other mechanism. This implies that the role of this insertion sequence in the evolution of the cag PAI requires further evaluation.

In summary, we have demonstrated that the cag PAI is highly associated with duodenal ulceration, but is not restricted to strains causing severe gastroduodenal disease. We have also shown that patients with peptic ulcer disease may harbour strains with partial or complete deletions of the cag PAI. This suggests that although the cag PAI may be involved in establishing clinical disease, other factors important for pathogenicity remain to be identified. Finally, none of the 73 isolates analysed contained the cag PAI structure (cagI and cagII interrupted by IS605) reported to be present in the CCUG 17874 isolate. This may reflect differences in the structure of the cag PAI in strains isolated from different geographical locations.

PJ Jenks was supported by a Research Training Fellowship in Medical Microbiology from The Wellcome Trust, UK. We thank Cecile Birac from the Pellegrin Hospital, Bordeaux, for processing the clinical strains.

Clinical outcome after infection with *Helicobacter pylori* does not appear to be reliably predicted by the presence of any of the genes of the *cag* pathogenicity island

P J Jenks, F Mégraud and A Labigne

Gut 1998 43: 752-758
doi: 10.1136/gut.43.6.752