The intestinal mucosa as a target and trigger for enteric reflexes

D Grundy

The gastrointestinal tract must balance the ostensibly conflicting needs of nutrient assimilation and protection against potentially harmful pathogens, enterotoxins, and antigens. Furthermore, it must provide a functional barrier for the latter but allow nutrients, electrolytes, and water to cross the mucosa readily in order to meet the eventual metabolic demands of the individual (fig 1). Apparent in these conflicting needs is the ability to sense luminal contents in order to establish, through reflex and endocrine mechanisms, the appropriate motor and secretory activity either to facilitate uptake or to dilute and rapidly expel contents through diarrhoea and/or emesis.

Enteroendocrine cells may be secondary sense cells for sensory signal transduction. Their apical microvilli could detect the mechanical and chemical environment in the lumen, and in response to an appropriate stimulus would release mediators across the basolateral membrane. These mediators could then act as paracrine agents on neighbouring cells, including the terminals of afferent fibres situated below the mucosal epithelium or act in an endocrine fashion following diffusion into the systemic circulation. The former has been proposed for both cholecystokinin (CCK), which plays a pivotal role in the reflex responses to luminal protein and lipid, and for 5-hydroxytryptamine (5-HT) which will be discussed below. Another mechanism ofafferent activation from the lumen that is pertinent for responses to luminal antigen involves mast cells. As both toxins acted via a hexamethonium sensitive pathway there must be difference in the intrinsic afferent innervation of the mucosa high. Song et al (1991) estimated that each villus was innervated by >60 Dogiel type II myenteric neurones using fibre tracing methods. Bertrand et al (1998) also found massive overlap of receptive fields mapped by electrical stimulation and calculated that >230 neurones innervated the same region of mucosa.

Intrinsic sensory neurones in the submucosal plexus which synaptically stimulate myenteric neurones have been visualised using c-fos expression as a marker of neuronal excitation. Using immunocytochemistry it was possible to stimulate certain cells in the submucosal and myenteric ganglia to “light up” following both physiological stimulation by mechanical distortion and the luminal application of cholera toxin. Induction of fos immunoreactivity in neurones by both stimuli was prevented by a 5-HT receptor antagonist, N-acetyl-5-hydroxytryptophyl-5-hydroxytryptophan, suggesting that endogenous 5-HT plays a role in the transduction of these luminal stimuli to intrinsic sensory activation.

Such dependence on 5-HT for reflex stimulation of intestinal secretion by cholera toxin was confirmed recently by Turvill et al (1998). However, secretion stimulated by the heat labile toxin of E. coli, while chemically closely related to cholera toxin, was not dependent on 5-HT. Thus not all enterotoxins stimulate secretion following activation of enterochromaffin cells. As both toxins acted via a hexamethonium sensitive pathway there must be different mechanisms by which enteric secretory reflexes can be triggered. Heat stable toxin from E. coli

Figure 1 Conflicting mucosal functions.

Nutrients, electrolytes, vitamins, bile salts, water

- **Eliminated**
- **Pathogens, toxins, antigens**
- **Inflammatory cells**
- **Absorbed**

Abbreviations used in this paper: CCK, cholecystokinin; 5-HT, 5-hydroxytryptamine.
(Sta) may also stimulate secretion via a mechanism independent of 5-HT but involving extrinsic afferents since the response was attenuated by treatment with the sensory neurotoxin capsaicin.9

Extrinsic afferents are also sensitive to 5-HT.10 11 These afferents project from the mucosa, via the vagus nerves, to the brain stem. The sensitivity of these afferents to the 5-HT3 receptor agonist 2-M-5-HT and abolition of the response by granisetron suggest that the 5-HT3 receptor is the predominant (or possibly the only) receptor involved in activation of these extrinsic afferents. In contrast with innervation by intrinsic afferents, that by extrinsic afferents is limited (table 1).12 Small regions of mucosa receive the arborising terminals of single vagal afferents while large areas of mucosa are without vagal afferent innervation. This suggests that the processing of intrinsic and extrinsic afferent information is different. Individual intrinsic afferents may not function alone but instead form a sensory network which influences the gain in enteric reflex pathways. In contrast, the sparse extrinsic afferent innervation may serve as a trigger function, activated under specific circumstances to bring about a stereotypic response such as the giant retrograde contractions that occur during emesis. In this respect, one could liken the extrinsic pathway to an alarm system with little capacity for discrimination but which, once activated, triggers an extensive response.

Table 1 Comparison of intrinsic and extrinsic afferent innervation of the mucosa

<table>
<thead>
<tr>
<th></th>
<th>Intrinsic afferent</th>
<th>Extrinsic afferent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cell bodies</td>
<td>Submucosal or myenteric plexus</td>
<td>Nodose or DRG</td>
</tr>
<tr>
<td>Receptive fields</td>
<td>8–10 mm²</td>
<td>Similar</td>
</tr>
<tr>
<td>Density</td>
<td>Overlapping</td>
<td>Sparse</td>
</tr>
<tr>
<td>Sensitivity to 5-HT</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Modality</td>
<td>Mechano- and chemo-sensitivity</td>
<td>Mechano- and chemo-sensitivity</td>
</tr>
</tbody>
</table>

5-HT, 5-hydroxytryptamine; DRG, dorsal root ganglion.
The intestinal mucosa as a target and trigger for enteric reflexes

D Grundy

Gut 2000 47: iv44-iv45
doi: 10.1136/gut.47.suppl_4.iv44

Updated information and services can be found at:
http://gut.bmj.com/content/47/suppl_4/iv44

These include:

References
This article cites 11 articles, 1 of which you can access for free at:
http://gut.bmj.com/content/47/suppl_4/iv44#BIBL

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Topic Collections
Articles on similar topics can be found in the following collections
- Gastrointestinal hormones (848)
- Diarrhoea (663)

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/