**LETTERS TO
THE EDITOR**

### Grading system for inflammation in ulcerative colitis

**Editor,—Geboes et al described a grading system for inflammation in ulcerative colitis and carried out rigorous assessment of the reproducibility of this system (Gut 2000;47:404–9). This is a very useful study which fills a void in the histopathology assessment of ulcerative colitis. However, now that this system has been described, its use in clinical practice and clinical trials needs to be considered.**

Many of the features that Geboes et al have used in their grading system are described as continuous spectra—for example, chronic inflammation assessed from no increase through to marked increase—but are divided into discrete groups (for example, mild, moderate, marked). This means that these features are ordinal categorical variables rather than continuous real numbers—that is, they have a numerically labelled order but the distance between adjacent numbers will not be the same throughout the whole range and there are no non-integer values.¹ The consequences of this are that these grades cannot be used in processes which require continuous variables, such as linear regression.² The authors already seem to have made this mistake themselves as they give mean grades of the system in table 2 (to two decimal places), when they should have given frequency distribution histograms or possibly median grades with centiles as an indicator of spread. They do not state which method they used to measure the correlation between grades and microscopic inflammation. The results will be useful, especially as we decided to use the scoring system in reality present as continuous spectra. Therefore, the scoring system is composed of major grades and subgrades. The features which represent the major grades such as architecture and infiltration of round cells are clearly different from each other. The continuous spectrum extends within the grades, especially for architectural changes and chronic inflammation. Major grades are divided into different subgroups (for example, mild, moderate or diffuse) and these are indeed ordinal categorical variables.

The situation is even more complex. Indeed, the inflammatory cell population in the lamina propria is heterogeneous. It includes T and B lymphocytes, plasma cells, and CD68⁺ monocytes. The “crV” scoring system can synthesise cytokines or immunoglobulins, or express markers such as LFA-1 or ligand-receptor pairs such as CD40-CD40L which might be important for disease activity. In the past it has shown for instance that there is a correlation between disease activity and immunoglobulin containing cells.³ Hence changes in “chronic inflammation” do not have only a continuous spectrum. There are changes in subtypes of cells, and these changes show a continuous spectrum. Analysis of routinely haematoxylin and eosin stained sections is therefore obviously limited. The aim of our study was to construct and evaluate a scoring system which can be applied routinely. In this system, the distinction between the major grades (for example, structural change, chronic inflammatory infiltration, infiltration of neutrophils in the epithelium, crypt destruction, and erosion or ulceration) is much more important than the subgrades. The differences between these major grades are clearly defined and do not present as a continuous spectrum. A change from one grade to another is a major difference, which can indicate an important effect, while changes within a grade from mild to moderate are far less important. Furthermore, the distinction between active disease (neutrophils and epithelial damage) and inactive disease is clearly defined. For evaluation of neutrophils in the epithelium, the number of crypts involved was counted.

The results of the reproducibility study presented in table 2 as mean grades were meant to show an example of interobserver agreement. Frequency distribution histograms of the same data are available but were not included, perhaps wrongly, because we had to limit the data which were submitted for publication to keep the paper within a reasonable length. The score allows a good comparison for each individual patient as well as a comparison for the major grades and numbers of patients within each grade. The latter allows comparisons between patient groups. The scoring system is under prospective evaluation in clinical trials and has so far been easy to use for clinical assessment of microscopic inflammation. The results will be published in due course.

We realise that the distinction between different groups within one grade is not rigorously correct but we still feel that it can be useful, especially as we decided to use the worst aspect for the grading, rather than an average aspect. The correlation between location of neutrophils in the epithelium and occurrence of crypt destruction, erosions, and ulcerations was studied using Spearman’s correlation coefficients.

In general, we agree with Dr Cross that a correct scoring system is needed. On the other hand, such a scoring system should be simple and easy to use. We have tried to find a balance between the different needs and have shown that such a system can be applied with fair interobserver agreement.

**K GEBOES**

G I Pathology Unit, KU Leuven, Belgium

**R RIDDLE**

McMaster University, Medical Center, Hamilton, Canada

**A ÖST**

Malmö AB and Karolinska Institute, Stockholm, Sweden

**B JENSFELT**

T PERSON

AstraZeneca AB

**R LOFBERG**

Department of Gastroenterology, Karolinska Institute, Huddings University Hospital, Sweden

### Insulin and gall stones

**Editor,—In showing for the first time that raised serum insulin is a risk factor for incident gall stones, independent of body mass index, Misciagna et al (Gut 2000;47:144–7) have made an important contribution. However, they do not seem to realise that we had similar findings in the East Bristol Gallstone Study (population based like theirs)—namely, that raised plasma insulin is a risk factor for prevalent gall stones, at least in men.¹ In our study, another significant factor was abdominal fatness or central obesity, but not body mass index (as is usually the case in men), and abdominal fatness probably explained the hyperinsulinaemia as the association of insulin with gall stones disappeared when we controlled for waist-to-hip ratio. Abdominal fatness is a well known determinant of fasting plasma insulin and it is a pity that Misciagna et al did not include any measure of it in their study.

Should Misciagna et al continue this line of enquiry, they will be well advised to measure the insulin response to eating because in our experience, postprandial as well as fasting levels of insulin are raised in men with gall stones.² I fully agree with Misciagna et al’s conclusion that “hyperinsulinaemia may play an important role in the aetiology of gall stones”. I also suggest that future studies of gall stone aetiology should include measurements of insulin sensitivity and of its determinants. One such determinant is physical fitness³ and this may be relevant because, in our study, there was a hint that loss of muscle bulk may be associated with gall stones in men. Men with gall stones had not gained weight during adult life more than controls, despite having more abdominal fat, suggesting they had lost more lean body mass.⁴**

**K W HEATON**

University of Bristol, Division of Medicine, Bristol, UK

**P M EMMETT**

University of Bristol, Division of Child Health, Bristol, UK

Correspondence to: Dr K W Heaton, Claverham House, Claverham, N Somerset BS49 4QD, UK. Ken.Heaton@compuserve.com

---


Heparin as an anti-inflammatory agent: it's no GAG to forget about chemokines

EDITOR,—We approached with enthusiasm the report by Salas and colleagues (Gut 2000;47:144–7) and the insightful comments. We regret not having cited their previous research findings on the relationship between plasma insulin and prevalent gallstones.1 We agree that waist to hip ratio may be an important variable to consider. However, waist to hip ratio and insulin are intimately related in the pathophysiological pathways linking insulin resistance to gall stone formation, therefore the interpretation of results from analytical models, including both of these variables, may be problematic. In addition, we concur with the potential importance of physical fitness, and would like to add that physical activity may also play a role in the aetiology of gallstones. Our conclusion is based on the findings from a previous paper by our group showing a strong association between physical activity and incident gall stones in a population based case control study.2

G MISCAGNA
Laboratorio di Epidemiologia e Biostatistica, IRCCS “S Di Bellis”-Ospedale Gastroenterologico, Castellana (Bari), Italy. gmisca@libero.it
M TREVISAN
Department of Social and Preventive Medicine, School of Medicine and Biomedical Sciences, SUNY at Buffalo, Buffalo, New York. mtrevisan@acsa.edu.buffalo.edu


Management of varical haemorrhage in cirrhotic patients

EDITOR,—We have serious concerns about several of the recent UK guidelines for the management of varical haemorrhage in cirrhotic patients (Gut 2000;46(suppl 3 and 4):iii–115), particularly those that contradict current published evidence. We highlight below the ones we feel are the most important.

In the management of acute varical bleeding, varical sclerotherapy is the method of first choice which was given an AI recommendation. Meta-analysis of all trials of acute bleeding of banding versus injection sclerotherapy have shown no statistically significant difference between the two treatments for either control of bleeding or survival (data derived from 12 studies with 419 patients), with no statistical heterogeneity.3 Consequently, if this management strategy is used. In any case, the randomised studies showed that endoscopic therapy used non-selective β blockers empirically to the maximum tolerated by patients so that use of drugs without pressure measurement was effective. Lastly, if the recommendation of using drugs with re-measurement of pressure is taken to its logical conclusion, all patients should be tried on drugs first, as those who respond have far less rebleeding (10% or less) than patients who receive banding, and secondly, a recommendation of what to do next would need to be made for those who do not reduce their portal pressure (for which as yet there is no evidence).

Lastly, two meta-analyses comparing TIPS with endoscopic therapy concluded that TIPS did not improve survival.4 The increased encephalopathy, greatly increased cost, as well as poor availability of TIPS treatment does not make it a first choice treatment for rebleeding, even in centres with expertise such as the authors' own, as stated in the guidelines. Thus the AI recommendation grading is particularly inappropriate.

With respect to primary prevention of portal hypertensive bleeding in cirrhosis, we see that a single intubation would be preferable and would take less time. At best the recommendation should be that either endoscopic technique could be used as first choice, dependent on operator expertise and facilities.


Management of varical haemorrhage in cirrhotic patients

EDITOR,—We have serious concerns about several of the recent UK guidelines for the management of varical haemorrhage in cirrhotic patients (Gut 2000;46(suppl 3 and 4):iii–115), particularly those that contradict current published evidence. We highlight below the ones we feel are the most important.

In the management of acute varical bleeding, varical sclerotherapy is the method of first choice which was given an AI recommendation. Meta-analysis of all trials of acute bleeding of banding versus injection sclerotherapy have shown no statistically significant difference between the two treatments for either control of bleeding or survival (data derived from 12 studies with 419 patients), with no statistical heterogeneity.3 Consequently, if this management strategy is used. In any case, the randomised studies showed that endoscopic therapy used non-selective β blockers empirically to the maximum tolerated by patients so that use of drugs without pressure measurement was effective. Lastly, if the recommendation of using drugs with re-measurement of pressure is taken to its logical conclusion, all patients should be tried on drugs first, as those who respond have far less rebleeding (10% or less) than patients who receive banding, and secondly, a recommendation of what to do next would need to be made for those who do not reduce their portal pressure (for which as yet there is no evidence).

Lastly, two meta-analyses comparing TIPS with endoscopic therapy concluded that TIPS did not improve survival.4 The increased encephalopathy, greatly increased cost, as well as poor availability of TIPS treatment does not make it a first choice treatment for rebleeding, even in centres with expertise such as the authors' own, as stated in the guidelines. Thus the AI recommendation grading is particularly inappropriate.

With respect to primary prevention of portal hypertensive bleeding in cirrhosis, we
recommendation that nitrates should be used if neither β blockers nor banding are available or contraindicated is potentially dangerous. A long term randomised study has shown that at least in elderly patients, nitrates on their own decrease survival.1 Thus to err on the side of caution, nitrates cannot be recommended as a substitutive therapy.

Finally, the guidelines should have included some issues of general management—for example, association with fluids, easy assessment of portal vein patency, and presence of hepatocellular carcinoma—and an AI recommendation for the use of prophyactic antibiotics in acute bleeding based on the meta-analysis of the authors quoted.4 A corrected and improved update of these guidelines is needed soon.

A K BURROUGHS
D W PATCH
Liver Transplantation and Hepatobiliary Unit, Royal Free Hospital, Pond Street, London NW3 2QG, UK
Correspondence to: Dr A K Burroughs andrew.burroughs@talk21.com


Reply

EDIT: We thank Dr Burroughs and Dr Patch for their interest and helpful comments on the guidelines in the management of variceal bleeding. A number of the points raised by them reflects the fact that it is not always possible to directly translate the evidence that is obtained from clinical trials into clinical practice because of the subjectivity in the definition of evidence based medicine. There is a lot of argument in the literature about what constitutes research evidence. Indeed, there is ongoing debate whether the results of a good randomised controlled trial are more reliable than a meta-analysis on the same subject because the latter often suffers from problems introduced by heterogeneity between studies.1

For the preparation of the present “guide lines”, about 300 papers were reviewed and 208 have been referred to in the paper. It is clear that the vast majority of these studies were not adequately powered to detect differences in mortality and a number of points that have been raised by Dr Burroughs and Dr Patch represent alternative interpretation of the available data which are not necessarily in variance with the “guidelines”.

Before discussing the specific points raised by them, it is important to point out that:

● Although the guidelines were written by us, they have undergone several revisions based on peer review organised by the British Society of Gastroenterology (BSG). Liver Section. This review process we believe was extensive and largely anonymous. The guidelines therefore represent the views of the BSG.

● The guidelines were first commissioned in 1996 but found to be out of date following several alterations in mid-1998. Some of the more important data were added into the text (the antibiotic prophylaxis section) during the proof stage.

With respect to the specific comments:

(a) We agree with Dr Burroughs and Dr Patch that studies have shown significantly different differences between band ligation and sclerotherapy in their “ability to control bleeding”. Also, most patients who have had a variceal bleed and are undergoing endoscopy are not bleeding actively. It is therefore relatively easy to band in these situations and a double intubation using the new multi-band ligation devices is not necessarily a problem. Studies have also shown that complications from endoscopic therapy in the form of oesophageal ulcers, mediastinitis, and pneumonia are significantly less in the group treated with band ligation compared with sclerotherapy. This is associated with reduced mortality in patients treated with band ligation. It stands to reason therefore that band ligation should be used where possible because there is no significant difference between treatments in their ability to control bleeding but the rate of complications has been shown to be significantly less in the band ligation group.4

(b) Interpretation of data regarding the combination of vasoactive drugs with endoscopic therapy in the setting of acute bleeding is fraught with difficulties and there is no clear evidence to suggest that combination reduces mortality. This is despite a large number of trials in this area. The meta-analysis that Burroughs and Patch (published in 1999) refer to as a justification for the combination treatment shows no differences in survival between groups. The role of vasoactive drugs in the management of variceal bleeding is an area of intense research by a number of groups and is needed before the combination treatment can be recommended in routine clinical practice.

(c) With respect to secondary prophylaxis of variceal haemorrhage, the literature suggests that band ligation is as effective as sclerotherapy, β blockers, or a combination of these that are similar in the long term (reviewed by D’Amico and colleagues). Most patients that we treat in the UK with variceal bleeding have underlying alcoholic liver disease and who have a questionable compliance. The recommendation is that if only a β blocker is used we should ensure that this is having some effect on the most important parameter predictive of rebleeding, a portal pressure gradient <12 mm Hg (about 30% of patients in different studies show inadequate portal pressure response to β blocker therapy). It has been shown in a prospective study that in patients being treated with β blockers, none with a hepatic venous pressure gradient <12 mm Hg bled and only 8% of those whose hepatic venous pressure gradient fell by more than 20% on therapy bled during follow up.2 However, if the patients included in the studies were those in which β blockers are not adopted and also patients being treated with β blockers, this is likely to increase both the cost and invasiveness. We do agree that we should add to the guidelines that a reduction in portal pressure gradient by 20% or more from baseline is acceptable.

(d) The guidelines clearly state what Dr Burroughs and Dr Patch suggest in their letter: “TIPS is more effective than endoscopic treatment in reducing variceal rebleeding but does not improve survival and is associated with more encephalopathy”. Three studies have shown that TIPS is as cost effective as endoscopic treatment.6 7 8 The only study that suggests that TIPS is more expensive is an Italian study in which TIPS was not strictly being used for secondary prophylaxis with patients being randomised to use either TIPS or balloon banding 6 months after their initial variceal bleed.9 Studies that have compared TIPS with band ligation have not shown any significant differences in encephalopathy between groups.6 7

This has, however, not been borne out in a meta-analysis.4 But it is clear from individual trials and also from the meta-analysis that TIPS significantly reduces the rate of rebleeding.

We do agree with Dr Burroughs and Dr Patch that the treatment options in portal hypertension are continuously evolving and with the emergence of new data, “guidelines” should be revised to incorporate the advances that have occurred in that time.

R JALAN
Institute of Hepatology, University College London Medical School, London, UK
Correspondence to: Dr R Jalan, Institute of Hepatology, University College London Medical School, 69–75 Chewton Way, London WC1E 6HX, UK. r.jalan@ucl.ac.uk

Table 1  Number (%) of patients who cleared HBsAg at different times in the four treatment groups

<table>
<thead>
<tr>
<th>Time</th>
<th>Group 1 (n=8)</th>
<th>Group 2 (n=34)</th>
<th>Group 3 (n=5)</th>
<th>Group 4 (n=12)</th>
<th>Total (n=59)</th>
</tr>
</thead>
<tbody>
<tr>
<td>End of treatment</td>
<td>6 (75%)</td>
<td>23 (67.6%)</td>
<td>3 (60%)</td>
<td>6 (50%)</td>
<td>38 (64.5%)</td>
</tr>
<tr>
<td>12 months after stopping treatment</td>
<td>6 (75%)</td>
<td>23 (67.6%)</td>
<td>3 (60%)</td>
<td>6 (50%)</td>
<td>38 (64.5%)</td>
</tr>
<tr>
<td>End of follow up</td>
<td>8 (100%)</td>
<td>34 (100%)</td>
<td>5 (100%)</td>
<td>12 (100%)</td>
<td>59 (100%)</td>
</tr>
</tbody>
</table>

Interferon alpha dosage and duration: group 1, 10 MU/m2 three times a week for six months; group 2, 5 MU/m2 three times a week for six months; group 3, 5 MU/m2 three times a week for 12 months; group 4 (non-responders to previous interferon alpha treatment), 10 MU/m2 three times a week for six months.

Renal sodium handling in preasctic cirrhosis

EDITOR,—We read with interest the comment by Clária and Rodés (Gut 1999;45:639) on our paper published in Gut which re-examined the mechanisms of renal sodium retention in patients with preasctic cirrhosis. In our study, we demonstrated a low renal excretion of sodium, which is due to an increase in the glomerular filtration rate. This results from a decreased sodium load that is reabsorbed by the distal nephron (26.9 + 6.7%) < 12.5 (3.4%), respectively, p<0.05.

Clária and Rodés advanced two criticisms and confirmed that our results, obtained by means of the lithium clearance and fractional excretion technique, may be influenced by two fundamental flaws. Firstly, the reliability of lithium clearance as a marker of distal fluid delivery in clinical conditions characterised by low fractional sodium excretion (dose of 0.4%) has not been proved due to possible lithium reabsorption in the distal nephron. Secondly, in Clária and Rodés’s opinion, our observation of more avid fractional sodium reabsorption by the distal nephron in compensated cirrhosis merely reflects diminished delivery of fluid and sodium to the distal segments (due to reduced glomerular filtration) rather than increased distal tubular sodium reabsorption.
Correspondence to: Professor J Rodes, Liver Unit, Hospital Clinic, Villarreal 170, 08036 Barcelona, Spain. rodes@medicina.ub.es

Reply

—In their letter, Sansoè and Ferrari make some excellent points on our accompanying comment (Gut 1999;45:639) to their paper published in (Gut 1999;45:750–5). In that paper, Sansoè et al investigated the status of central blood volume and examined the distribution of sodium reabsorption along the segments of the renal tubule in a group of 12 preascitic cirrhotic patients. Whereas the results of central fluid volume were quite conclusive, the findings on renal function merit some discussion (Gut 1999;45:639). As precisely pointed out by Sansoè and Ferrari in their letter, the contention was mainly methodological and was related to the use of lithium and creatinine clearances for determination of distal sodium reabsorption and glomerular filtration rate, respectively. Lithium clearance is a useful marker of proximal tubule sodium handling because in theory this ion is reabsorbed in proportion to sodium and water along the entire proximal tubule. However, the validity of fractional sodium excretion below which lithium clearance is disqualifed as an index of proximal sodium delivery remains unresolved in cirrhosis, data derived from this method in cirrhotic patients should be interpreted with caution.

We should also point out that preascitic cirrhotic patients included in Sansoè et al’s study (Gut 1999;45:750–5) had significantly lower values than controls for glomerular filtration rate, as determined by creatinine clearance. These findings are not consistent with those previously reported in compensated cirrhotics using more sensitive clearance techniques such as inulin clearance.

In summary, it is gratifying to see that Sansoè and Ferrari report a certain amount of uncertainty may be introduced in studies dealing with renal function by using creatinine and lithium clearances. We believe that their paper will undoubtedly foster new studies investigating the central fluid volume status and renal tubular avidity for sodium in preascitic cirrhotic patients.

J CLÀRIA

Liver Unit, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) Hospital Clinic, Barcelona 08036, Spain

Correspondence to: Professor J Rodes, Liver Unit, Hospital Clinic, Villarreal 170, 08036 Barcelona, Spain. rodes@medicina.ub.es

J RODES

Liver Unit, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) Hospital Clinic, Barcelona 08036, Spain

Correspondence to: Professor J Rodes, Liver Unit, Hospital Clinic, Villarreal 170, 08036 Barcelona, Spain. rodes@medicina.ub.es

BOOK REVIEWS


The rapid and exciting developments in hepatology in recent years make an innovative and comprehensive textbook of clinical hepatology very welcome. The editors, who are themselves international authorities in the field, have assembled an impressive array of multinational hepatological talent to compile their comprehensive textbook of clinical hepatology. It is a pleasure to read a textbook where each of the chapters is written by an authority in the field. One problem of such multiauthor books can be the often jarring changes in style between different contributors, but the editors of this book are to be congratulated in assimilating a diverse group of writers and editing their work into a uniform and very readable style. The other aspect of this book, which impresses you immediately, is the clarity of the presentation, particularly the figures. The editors have been completely fully laid out and the figures are superb. If the publishers made these figures available on a CD-ROM, I am sure that all of us who lecture on liver disease would snap them up immediately. The surgical chapters are particularly impressive, not only for the quality of the figures and the straightforward explanation of the techniques, but also because they have been included in a textbook of hepatology. This is evidence of the multidisciplinary approach, which is such an important part of treating patients with liver disease. Given the interest of the editors it is not surprising that liver transplantation is given the prominence it deserves in a textbook of hepatology and the subject is covered comprehensively from surgical techniques and patient selection through to the excellent chapter from Geoff McCaughan on immunological suppression. Other highlights include the superb chapter by Fan and Steer on cell biology, where again the quality of the illustrations makes it a pleasure as a contribution to read, and a welcome chapter on the liver in the critically ill, a common but often neglected clinical problem.

So are there any criticisms? I have a few complaints about areas that in my opinion have been neglected. The chapters are organised by individual diseases, which means that some of the more general processes are not covered in full. For instance, it would have been added to the book to have a chapter on fibrogenesis and the development of cirrhosis; two other areas that probably warrant a chapter of their own are radiology, particularly with the increasing capabilities of interventional radiology, and the role and interpretation of liver biopsy. As far as clinical areas are concerned, I could find no mention of liver disease in bone marrow transplantation, a difficult area which would benefit from being covered in a book such as this. A minor quibble is the indexing which I would revise for the next addition. There are several omissions; for example, benign intrahepatic cholestasis and veno-occlusive disease, both diseases of interest but not listed in the
index and I personally do not like the idea of paginating in sections and chapters. With a book of this length it is surely easier to simply number the pages. However, these are minor complaints and on the whole I would recommend this book to anyone interested in liver disease and particularly to trainees in gastroenterology, hepatology, or hepatobiliary surgery who will come back to this book again and again.

D H ADAMS


“A picture is worth a thousand words” is as applicable to the teaching of gastroenterology as in any other context now that gastroenterology has become a visual science. Any atlas must stand or fall on the quality of the photographs and here the reader will not be disappointed as the vast majority are of excellent clarity and content. The second edition of this Atlas of Gastroenterology provides the most comprehensive visual images in gastroenterology this reviewer has seen, covering the broad spectrum of gastroenterology—histology, endoscopic images, CT scans, radiouclide imaging, and magnetic resonance imaging, including MR cholangiopancreatography. However, there are no “virtual endoscopy” images, which is a surprise and disappointment.

The atlas has a user friendly format setting pictures in their clinical context making perfect sense and easy access. There is a series of chapters entitled “Approaches to common gastrointestinal problems” beginning with a brief review of the clinical problem followed by a range of images used in establishing diagnosis, thus putting the image in context with the clinical findings at the appropriate point in the management pathway. There are also chapters on particular gastrointestinal diseases and a series of chapters illustrating diagnostic and therapeutic techniques, all written and compiled by acknowledged experts in their field. Reference lists are suitably brief and up to date.

The atlas seeks to provide more than a picture book of gastroenterology but perhaps goes rather too far by providing information that would normally be within the textbook of gastroenterology. For example, there is a chapter entitled “Advice to travellers” that gives information about required vaccinations in various parts of the world and drug treatment for traveller’s diarrhoea. There are also several chapters with extensive clinical information that is more than just an accommodation to the images. In one chapter, there is a long list of drugs likely to induce liver disease—appropriate for a textbook but not for an atlas, particularly when this atlas is designed for use with its partner The Textbook of Gastroenterology by the same editors.

This atlas provides the most up to date high quality illustrative review of gastroenterology and could perhaps only be improved by the addition of a slide or CD version. Access to the images via the Internet will probably be the next step but I for one would miss the pleasure of leafing through a book.


This is a small book which looks at specific aspects of gastric surgery from a laparoscopic approach. The overall format is attractive in that a chapter on physiology precedes the section on laparoscopic surgery. It does, however, in view of the rather concise nature, fall between two stools in that it is a specialist book and therefore does not necessarily appeal to the general trainee, but it is too short and the referencing is too limited to be a definitive text. The book proceeds on the basis that the laparoscopic approach is correct and there is very little discussion on non-laparoscopic and open surgery. This may well be appropriate in the form of laparoscopic antireflux surgery and cardiomcyotomy but is certainly not in the form of antiobesity surgery or surgery for cancer. The impression that the laparoscopic approach is well established is inaccurate for these latter conditions and malignancy, where open surgery holds sway. The discussion on laparoscopic antireflux surgery is limited to the 360° Nissen loose floppy wrap. The operation is described nicely with clear photographs which is a characteristic of the entire text. However, there is no discussion on the alternatives to a 360° wrap, namely a toupee 180° procedure or even the more modern partial anterior fundoplications. The various merits of these procedures would be an addition to the text as well as the role of the laparoscope in revisional surgery, and some comparison with open operations. Similarly, for cardiomycotomy for achalasia, a success rate related to open cardiomcyotomy would be beneficial. Preceding these two operative sections however are two good chapters on the pathophysiology of reflux and achalasia. It is a pity in laparoscopic antireflux surgery that more comment is not made on the significance in the incidence of such surgery with the advent of the laparoscope. Is this a good thing or not? The pros and cons of treatment could be better discussed. With regard to cardiomycotomy, this really has to be emphasised as being experimental. Comparison with these success rates versus those of open surgery and a reflection on the reality of the situation, as seen in Western Europe, where the disease presents at a more advanced stage, and the role of other modalities such as chemo/radiotherapy, would benefit the textbook and would expand it into a more comprehensive text. On the plus side however, the illustrations are superb and the intraoperative photographs explain the laparoscopic nodal dissection extremely clearly. It is not however a textbook of operative surgery. This book will appeal to the more specialist clinicians in upper gastrointestinal surgery and provides a cheaper and smaller alternative to the more weighty texts.

R C MASON

CORRECTION

An error occurred in the abstracts supplement Gut 2000;49(suppl 1):Ae68. For abstract 254, PC Hayes was the senior author.

S CAIRNS
Long term follow up of interferon responder children with chronic hepatitis B

N KOÇAK, I N SALTIK, H ÖZEN, F GÜRAKAN and A YÜCE

Gut 2001 48: 740
doi: 10.1136/gut.48.5.740

Updated information and services can be found at:
http://gut.bmj.com/content/48/5/740.1

These include:

References
This article cites 4 articles, 0 of which you can access for free at:
http://gut.bmj.com/content/48/5/740.1#BIBL

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the
box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/