LETTERS TO THE EDITOR

Measurement of the stiffness of endoscopes—a plea for commonality

EDITOR,—In a previous issue (Gut 2000;46:801–8), Brooker and colleagues described their experience with an exciting new variable stiffness colonoscope. They made the point that a stiffer colonoscope shaft reduces recurrent looping but makes passage through an angulated sigmoid more difficult and causes more stretching and hence pain when loops do occur. Conversely, the more flexible colonoscope shaft is better for negotiating a fixed or narrow sigmoid colon but then tend to allow recurrent loop formation later in the procedure. Their randomised trial using either a standard Olympus CF-200HL (13.1 mm shaft diameter) or a prototype (Olympus XCF-SH230L—12.9 mm shaft diameter) variable stiffness colonoscope looked very promising although in one case a paediatric Olympus PCF230L (11.3 mm shaft diameter) was required to get past a fixed sigmoid secondary to diverticular disease.

In addition to Brooker et al, there are a number of research workers 1 and endoscope manufacturers interested in colonoscope/flexible sigmoidoscope shaft stiffness and its relation to patient discomfort/procedure time, yet sadly there is no agreement as to the best way to express (and thus directly compare) results. The beam deflection technique adopted by Brooker et al appeared to us to be an entirely arbitrary one involving a strain gauge, 5 cm shaft deflection, and just three duplicate measurements every 10 cm along the three instruments.

We agree with Wehrmeyer and colleagues1 that flexural rigidity is a more precise, accurate, and reproducible engineering parameter to measure when trying to compare endoscope shaft stiffness. In beam bending theory, the flexural rigidity is EI which is the product of the modulus of elasticity (or Young’s modulus) E and the second moment of area I of the beam cross section about an axis through the centroid perpendicular to the plane of bending. EI is given by the following expression:

\[
EI = Wl^2/192b
\]

where W is the load applied at the centre of the beam, l is the length of the beam, and \(\delta \) is the deflection at the centre. In our own studies, the value of W (typically either 0.5 to 1 Newtons) was selected such that \(0 \) (mean of 10 measurements) was less than 0.5% of the 20 cm “beam”. An example of the 10 readings) was less than 0.5% of the length Lo of the beam. Accurate estimation of the EI of the new commercially available variable stiffness Olympus colonoscopes can indeed significantly alter its shaft stiffness from being almost as floppy as a paediatric endoscope to being stiff as a standard Olympus 20HL near its most proximal end.

We agree with Brooker et al that modifications that may enhance the efficacy of a variable stiffness colonoscope might include “more floppiness in the paediatric setting and greater stiffness at the maximum stiffness setting”.

We welcome debate and discussion on how best to measure endoscope shaft stiffness. In the meantime, until a better way of expressing the results is suggested, it would seem to us that some form of beam deflection displacement methodology to determine flexural rigidity has the advantage of at least being relatively easy, reproducible, and inexpensive to perform.

G D BELL
Sunderland University Medical Sciences Faculty, University of Sunderland, Sunderland, UK

K BURN
School of Computing, Engineering and Technology, University of Sunderland, Sunderland, UK

Correspondence to: Professor GD Bell, Endoscopy Unit, Sunderland Royal Hospital, Kayll Road, Sunderland SR4 7TP, UK. duncan.bell@compuserve.com

Research outcomes in British gastroenterology: an audit of the subsequent full publication of abstracts presented at the British Society of Gastroenterology

EDITOR,—The presentation of abstracts at scientific meetings provides an opportunity to rapidly convey the results of novel research. It also allows the researcher a chance to receive informal peer review. This may help to clarify aspects of the work, particularly in the identification and correction of potential weaknesses prior to submission for full publication. Although abstracts submitted to conferences are peer reviewed, this process may not be as rigorous as that of an indexed journal considering publication of the full manuscript.

Presentation of an abstract at a prestigious meeting may suggest that full publication is probable. Certainly, acceptance as opposed to rejection increases the likelihood of subsequent publication, but this is not absolute.2 Other medical specialities have studied their societies’ publication rates and this value varies from 21% to 66%.3

There have been no studies evaluating the outcome of abstracts presented at gastroenterology meetings. Therefore, we audited the publication rate of abstracts presented at a single British Society of Gastroenterology (BSG) meeting.

All abstracts presented at the BSG meeting of March 1994 (n=225) were assessed. Two independent database searches were performed (MEDLINE and EMBASE) using cross referencing of first author, senior author, and key words from the abstract title. The abstract and possible resultant manuscript were then examined to ensure they represented the same study. Where no paper appeared to have been published, the authors were contacted to ascertain the outcome of their abstract.

Factors which may influence publication, including study type, design, category, sample size, journal of publication, impact factor, and lag time to publication were analysed. Data pertaining to submission/publication at the meeting of the American Gastroenterology Association (AGA) in the same year were also collected. Statistical analyses were performed using contingency tables and \(\chi^2 \) statistics for nominal data and the Mann-Whitney U for continuous data.

There were 178 abstracts (69.8%) published from this meeting. Median lag time to full publication (fig 1) was 19 months (range 0–63). Of the abstracts submitted, 27 (23.9%) were in high impact factor journals (arbitrarily designated \(\geq 4 \)). The mean impact factor was 2.5 (median 2.9).

There were 96 abstracts from this particular AGA that were concordantly submitted to the AGA. Of these, 73 were accepted for presentation. Ultimately, 58 were fully published. Presentation at the AGA in the same year was the only factor that significantly increased the likelihood of publication \((p=0.001; \text{odds ratio } 3.1 \text{ (95% confidence interval } 1.5–6.4))\). Acceptance at the AGA was a strong predictor of subsequent publication and may represent the hypothesis that concordance of two independent referee systems often reflects the papers of greatest scientific merit.4 Alternatively, this may suggest that AGA reviewers are more stringent. This is not possible to assess with the data available.

This is the first study to assess publication rates of the BSG or indeed any specialty in the UK. We chose to study the abstracts of the 1994 BSG meeting because previous reports have suggested that the majority of abstracts are published in indexed journals within four years of presentation.1,2 The outcome of one individual meeting may not be considered a representative of other meetings and could limit the validity of our
Leptin in the human stomach

Editor—After the report in 1998 by Bado and colleagues describing the presence of leptin in rat stomach, we have recently reported the first evidence of leptin in the stomach mucosa of humans. It was shown that the cells in the lower half of the stomach glands were clearly immunoreactive for leptin, and both leptin mRNA and leptin protein in the human gastric epithelium were detected. Western blot analysis showed the presence of a 16 kDa band corresponding to leptin and a 19 kDa band which, as suggested for rats, could represent a leptin precursor. It was also shown that secretory granules of chief cells contain this hormone, suggesting that gastric leptin could function in the short term system control of feeding behaviour and that it is secreted (probably together with pepsinogen) in the stomach lumen by chief cells. Confirmation of these findings was reported by Sobhani and colleagues. They also showed the presence of leptin receptor in stomach epithelium, suggesting a possible paracrine pathway for leptin. Stomach leptin levels seem to be higher in humans than in rats.

Interestingly, Sobhani et al. have also shown that gastric leptin is simultaneously released into the blood and into the gastric juice by pentagastrin and secretin. They suggested that secretin has a direct effect on gastric chief cells and, on the presence of secretin receptors on these cells and on the efficacy of secretin in stimulating pepsinogen secretion.

However, by immunoelectron microscopy we observed the presence of leptin not only in chief cells but also in endocrine cells exhibiting a distinctive morphology in the basolateral portion of the gland. These cells showed secretory granules labelled with many leptin/gold particles. Its ultrastructure corresponded to the P cell type.

Thus secretory granules of both endocrine and chief cells contain leptin. It is probably secreted in the stomach lumen by chief cells and into the stomach circulation by a special type of endocrine cell. The observation that intravenous infusions of pentagastrin or secretin caused an increase in circulating leptin levels and leptin release into gastric juice is in keeping with both endocrine and exocrine secretory sources. They could function in the short term system to control feeding behaviour and in the gastrointestinal lumen to regulate the availability of nutrients acting in the sites where a non-degraded form of hormone would approach.

Our observation of much lower levels of leptin immunostaining in a patient under postprandial conditions compared with five fasted patients is in agreement with a likely functional response of human stomach leptin to food intake. The effects of cholecystokinin in the rat and of gastrin and secretin in humans stimulating emptying of stomach leptin are all strong arguments for a short term satiety role of leptin. There is also the observation that leptin interacts synergically with other short term satiety peptides.

There is a need for further investigation in humans, with difficulties arising from ethical limitations. However, taken together, both articles on leptin in the human stomach and the previous report in rats, we can conclude that three important pathways (endocrine, exocrine, and autocrine) for the action of leptin are present in human stomach, where the main physiological role for this hormone is foreseen.

D S SANDERS
M J CARTER
D P HURLSTONE
A J LOBO
Gastroenterology and Liver Unit, Royal Hallamshire Hospital, Sheffield, UK
N HOGGARD
Department of Neuroradiology, Royal Hallamshire Hospital, Sheffield, UK
Correspondence to: Dr AJ Lobo, P Floor (Room S10 2JF, UK. alan.lobo@csuh.nhs.uk

EDITOR,—The recent paper by Sirivatanaukorn et al (Gut 1999;45:761–5) focused once again on the unresolved question as to whether (i) hepatocellular carcinoma (HCC) in human liver develops from a single clone or from multiple parallel clones (ii) among multiple tumour nodules present in many patients, the smaller lesions represent intrahepatic metastases or “de novo” cancers. The authors correctly acknowledge that “information on the clonal origin of tumours will influence management strategies for prevention of recurrence after operation”. They used arbitrarily primed polymerase chain reaction (AP-PCR) to compare the DNA fingerprint of HCCs and regenerative nodules (RNs) removed from 13 cirrhotic explant livers. They found considerable genomic heterogeneity in 54 HCCs and 31 RNs that were microdissected. No tumour nodules (either RNS or HCCs) had identical electrophoretic

Correspondence to: Professor A Palou. dbraapo0@ps.uib.es

This work was supported by European Commission contract QLG1-1998 Action from DGXII to A Palou; by S Cinti; by Ancona University grants to S Cinti; by project “Physiopathology, Pharmacology and Clinical Aspects of Obesity”, to S Cinti and by DGESIC, Secretaría de Estado de Educación, Universidades, Investigación y Desarrollo, Spain (grant PM97-0089) to A Palou.

Histological and genetic heterogeneity in synchronous hepatocellular carcinoma

Editor—In conclusion, acceptance of outcome of research abstracts submitted to a scientific meeting is unforeseen. In acceptance of abstracts presented at the annual meeting of the American Society for Investigative Pathology, based on a comparison of published and unpublished abstracts, it appears to have a large influence on the outcome of research abstracts submitted to a scientific meeting.

Thus secretory granules of both endocrine and chief cells contain leptin. It is probably secreted in the stomach lumen by chief cells and into the stomach circulation by a special type of endocrine cell. The observation that intravenous infusions of pentagastrin or secretin caused an increase in circulating leptin levels and leptin release into gastric juice is in keeping with both endocrine and exocrine secretory sources. They could function in the short term system to control feeding behaviour and in the gastrointestinal lumen to regulate the availability of nutrients acting in the sites where a non-degraded form of hormone would approach.

Our observation of much lower levels of leptin immunostaining in a patient under postprandial conditions compared with five fasted patients is in agreement with a likely functional response of human stomach leptin to food intake. The effects of cholecystokinin in the rat and of gastrin and secretin in humans stimulating emptying of stomach leptin are all strong arguments for a short term satiety role of leptin. There is also the observation that leptin interacts synergically with other short term satiety peptides.

There is a need for further investigation in humans, with difficulties arising from ethical limitations. However, taken together, both articles on leptin in the human stomach and the previous report in rats, we can conclude that three important pathways (endocrine, exocrine, and autocrine) for the action of leptin are present in human stomach, where the...
patterns. Contrary to expectation, even “satellite nodule” in close proximity within the same segment of the liver were found to have distinct genomic patterns. They concluded that their data suggest poor patient survival after surgical resection if the smaller tumours are missed rather than metastases.

We would like to make some comments. HCC arising in cirrhosis is frequently multifocal. This is supported by epidemiological studies and by the fact that a diffuse underlying viral disease facilitates multifocality, in particular when HCC is related to hepatitis C viral infection. In addition, primary multifocality is supported by the high incidence of “preneoplastic lesions” such as dysplastic nodules found in patients with liver cirrhosis. Even when greater than 5–6 cm (up to 10 cm), these HCCs had conspicuous histological variants (up to five), each of which had different initial nodule, showing different in-

Phenotypic expression of the HFE gene mutation (C282Y) among the hospitalised population

Edron, – Distante and colleagues (Gut 2000;47:315–22) found that C282Y homozygotes detected by testing all acute liver disease patients admitted to our hospital, 14/18 (78%) liver biopsy proved haemochromatosis patients had an increased transferrin saturation (>50%). In line with Cotler and colleagues, we also found a significant elevation of transferrin saturation in 27/105 (26%) patients with alcoholic liver disease and 11/132 (8.3%) with chronic non-alcoholic liver disease.

We agree with Drs Moodie and Maxwell’s suggestion that transferrin saturation screening for haemochromatosis should be performed in relatively well subjects. Both their comments and our findings highlight some of the limitations of transferrin saturation as a screening parameter for genetic haemochromatosis.

S DISTANTE
H BELL
Hepatology Unit, Department of Medicine, Aker University Hospital, Oslo 0154, Norway

Correspondence to: Dr S Distante.
Sonia.distante@aked.uio.no
With respect to the clinical implications of our study, we have not advocated treatment of Helicobacter pylori infected patients with intestinal parasites for the purpose of inducing a shift in the Th1/Th2 immune response, a possibility raised by Professor MacDonald. As Professor MacDonald is well aware, this approach has been suggested for a number of chronic diseases such as inflammatory bowel disease. However, in the case of chronic Helicobacter pylori infection, antibiotic therapy has proved effective and in our opinion is a much safer and more palatable approach for most patients.

We appreciate Professor MacDonald’s careful analysis of our histopathological results. However, we are confused regarding his use of the term “negative points” that were not sufficiently emphasised. The main findings in our study were that Helicobacter pylori co-infection attenuated the degree of parietal cell loss, mucous cell hyperplasia, and metaplasia, and resulted in an increase in bacterial colonisation. The changes in inflammation, as graded histologically, were clearly less marked. These latter findings simply underscore the notion that it is the Th helper type of immunity that either rather than the overall severity or histological grade of inflammation that determines eventual epithelial injury. In addition, it is generally recognised that in the Helicobacter pylori mouse model, there is some degree of variation with respect to the degree of inflammatory response, which is well illustrated by our data. It is puzzling that Professor MacDonald would equate this biological variation with a problem regarding the “quality of the data.”

Further questions were raised regarding the conclusion that Helicobacter pylori infection biased the immune response to Helicobacter pylori along the same pathway. Our data clearly show that Th1 immune responses were decreased and Th2 immune responses were increased, and this was supported not only by cytokine profiles but also by Helicobacter pylori specific humoral responses. We agree that this immunomodulatory effect may not be true for every intestinal parasite. However, as pointed out in our paper, other parasites such as Schistosoma mansoni have also been shown to induce polyclonal Th1 responses and downregulate intestinal Th1 responses. The question that Professor MacDonald raises regarding the specificity of the Th2 response for Helicobacter pylori (as opposed to Helicobacter pylori) is an interesting one. However, the explanation that the increased Helicobacter pylori cytokines in the stomach of mice infected with both Helicobacter pylori and Helicobacter pylori are derived from “migration into the inflamed gastric mucosa of Th2 cells responding to Helicobacter pylori antigens” seems less likely in our opinion.

We would agree that induction of a Th2 anti-Helicobacter pylori response may not be desirable in every instance. However, this comment again seems to miss the point. Data from numerous animal models have shown that a reduction in mucosal Th1 response together with upregulation of a mucosal Th2 response is associated with decreased progression to gastric atrophy and intestinal metaplasia, and taken in this context, a Th2 polarised response is clearly a desirable outcome. Data from a number of laboratories have suggested that increased bacterial colonisation by itself does not lead to adverse consequences; in fact, in most mouse models the level of bacterial colonisation was inversely related to the degree of atrophy and metaplasia. It is our contention that the decrease in Th1 response associated with a high rate of gastric colonisation is highly preferable to a strong Th1 response associated with decreased Helicobacter pylori colonisation.

Finally, we concluded from our study that the ability of a concurrent helminth infection to ameliorate Helicobacter pylori induced gastric disease might partially explain the African enigma. It is clear that intestinal helminth infections are common in Africa, and also that there is marked variation in the pattern of helminth infections from continent to continent. The review by Professor MacDonald, aside from contributing insightful commentary on the topography of Africa and South America, has not provided additional information regarding the variable patterns and types of helminth infections in the two continents. Recent data from Mitchell and colleagues have supported the hypothesis that a Th2 polarised response to Helicobacter pylori is more common in Africa while a Th1 polarised response is more common in Europe and Australia. We would suggest that further investigations of intestinal helminths, as well as host genetics, should be considered to account for this phenomenon of immune response to Helicobacter pylori, as well as the differing rates of gastric cancer induction.

J G FOX
Division of Comparative Medicine, Massachusetts Institute of Technology, 77 Massachusetts Ave, Bldg. 16-825G, Cambridge, MA 02139, USA

T C WANG
Division of Gastroenterology, University of Massachusetts Medical Center, Biotech 2, Suite 202, 373 Plantation St, Worcester, MA 01605-2377, USA

C NAGLER-ANDERSON
Mucosal Immunology Laboratory, Massachusetts General Hospital East, Building 149, 1st Street, Charlestown, MA 02129, USA

Correspondence to: JG Fox. jfox@mit.edu

Liver biopsy: “blind” or under ultrasound control

EDITOR,—We wish to comment on the paper by Shah et al (Gut 1999;45:628–9) and subsequent correspondence (Gut 2000;47:455) from Aspinall. The case for the superior safety of ultrasound guided liver biopsy has not yet been proved and the British Society of Gastroenterology Guidelines (1999) do not advocate this as routine best practice. Perforation of the gall bladder is a very rare complication (eight times more common than bile duct injuries in the series reported by Piccinino and colleagues) and one of us has seen the records of a case in which the gall bladder was punctured at liver biopsy done under real time ultrasound guidance. Until such time as the evidence clearly supports a change in standard practice, a bid for legal redress by patients who suffer a complication of “blind” liver biopsy is unlikely to succeed, assuming that the indication for the biopsy was sound, the usual precautions were observed, that detailed informed consent was obtained setting out the nature of the risks and their frequency, and that the operator had sufficient experience or supervision.

Reply

EDITOR,—We agree with Dr Murray-Lyon and Mr de Wilde that patients should be properly informed about how a procedure is performed, the complications and risks, as well as alternatives. It is also important that practitioners who suggest a “prudent patients” will choose to have an ultrasound guided biopsy. In the era of the Bristol Enquiry into deaths associated with cardiac surgery, any “reasonable doctor” can do no worse than to prefer the ultrasound guided approach.

It is important that members of the medical and legal profession appreciate the difference between an “act of god” and an “accident”. Everybody appreciates that complications arising from these procedures are not deliberate. Settlements for “acts of god” are unlikely to be successful whereas “accidents” (be it car, train, or medical) are considered appropriate to seek recompense if they could have potentially been avoided or the risks reduced.

We agree that death and/or gall bladder perforation is rare following liver biopsy. This does not remove the requirement however for best practice with the least invasive procedure that is appropriate for the patient. In layman’s terms, Lindor et al reported a twofold higher risk of bleeding using the “blind” approach with the probability of this occurring by chance being one in 14. We very much hope that practitioners such as Dr Murray-Lyon are advising their patients of figures such as these as part of their consent procedure so that the patient can make an informed decision as to which method they opt for.

An additional point of our original article, which has not been alluded to by Dr Murray-Lyon and Mr de Wilde, is that many centres no longer use the “blind approach”. The ultrasound training available for registrars to become proficient in this approach is therefore declining. As stated in previous correspondence, the culture of “see one, do one, teach one” is no longer acceptable.

It is unfortunate that this discussion is unlikely to be settled until a legal action takes place. The scenario is becoming clearer: a civil court action (where most likely probability is the burden of proof) with a patient who has suffered a complication following a “blind” procedure. The case will be decided on the perceived competence and training of the doctor involved and on the details of the information provided to the patient and the consent obtained. What is clear however is that the unfortunate patient is unlikely to be a gastroenterologist or radiologist as, of the numerous colleagues we have spoken to, a single one has opted for the blind approach if both were available.

R J PLAYFORD
Gastroenterology Section, Imperial College School of Medicine, Hammersmith Campus, London, UK
Guidelines for the management of iron deficiency anaemia

Editor,—In reply to Dr Scott's letter (Gut 2001;48:284), I would add that when iron deficiency coexists with the anaemia of chronic disorders (ACD) such as rheumatoid arthritis, a low transferrin saturation loses its diagnostic specificity due to the fact that comparable degrees of transferrin saturation occur in patients with the sole diagnosis of ACD.1 The corollary, in this context, is that the behaviour of ferritin as an acute phase reactant negates the expected fall in serum ferritin, with consequent loss of sensitivity in this parameter.2 Even so, in a comparison of bone marrow findings with tests such as transferrin saturation and serum ferritin in a study comprising patients with a variety of haematological disorders, “the most useful single variable to discriminate patients with iron deficiency from all other patients was serum ferritin.”3 Since then, the most promising test for identifying iron deficiency when it coexists with chronic inflammation has been the ratio of serum transferrin receptor/log serum ferritin (so-called TR-F index), which achieves an unequivocal separation between iron deficient patients with coexisting chronic inflammation compared with those with the sole diagnosis of chronic inflammation.4 Even in that study, the receiver operating characteristic curve for serum ferritin, on its own, was diagnostically superior to the one generated by transferrin saturation.5

O JOLOBE
Department of Medicine for the Elderly,
Tameside General Hospital, Fountain St,
Ashton under Lyne OL6 9RW, UK
andrea.hunter@exchange.tg.ntrust.nhs.uk

Research outcomes in British gastroenterology: an audit of the subsequent full publication of abstracts presented at the British Society of Gastroenterology

D S SANDERS, M J CARTER, D P HURLSTONE, A J LOBO and N HOGGARD

Gut 2001 49: 154-155
doi: 10.1136/gut.49.1.154a

Updated information and services can be found at:
http://gut.bmj.com/content/49/1/154.2

These include:

References
This article cites 6 articles, 2 of which you can access for free at:
http://gut.bmj.com/content/49/1/154.2#BIBL

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/