NORCCAP (Norwegian colorectal cancer prevention): a randomised trial to assess the safety and efficacy of carbon dioxide versus air insufflation in colonoscopy

M Bretthauer, E This-Evensen, G Huppertz-Hauss, L Gisselsson, T Grotmol, E Skovlund, G Hoff

Background: To eliminate the risk of combustion during electrosurgical procedures and to reduce patient discomfort, carbon dioxide (CO₂) insufflation has been recommended during colonoscopy. However, air insufflation is still the standard method, perhaps due to the lack of suitable equipment and shortage of randomised studies.

Aims: This randomised controlled trial was conducted to assess patient tolerance and safety when using CO₂ insufflation during colonoscopy.

Patients: Over an eight month period a successive series of patients referred for a baseline colonoscopy due to findings in a flexible sigmoidoscopy screening trial were randomly assigned to the use of either air or CO₂ insufflation during colonoscopy.

Methods: End tidal CO₂ (ETCO₂), a non-invasive parameter of arterial pCO₂, was registered before and repeatedly during and after the examination. The patient’s experience of pain during and after the examination was registered using a visual analogue scale (VAS). Sedation was not used routinely.

Results: CO₂ insufflation was used in 121 patients (51%) and air in 119 patients (49%). The groups were similar in age, sex, and caecal intubation rate. No rise in ETCO₂ was registered. There were statistically significant differences in VAS scores between the groups with less pain reported when using CO₂.

Conclusions: This randomised study of unsedated patients shows that CO₂ insufflation is safe during colonoscopy with no rise in ETCO₂ level. CO₂ was found to be superior to air in terms of pain experienced after the examination.

This trial compared CO₂ with air insufflation in colonoscopy with regard to patient pain during and after the examination and investigated whether CO₂ insufflation leads to a rise in body CO₂ level.

METHODS

Attendees

The NORwegian Colorectal CAncer Prevention (NORCCAP) study is an ongoing screening trial for the prevention of colorectal cancer. Fourteen thousand presumptively healthy men and women, aged 55–64 years, living in two separate areas in Norway are randomly drawn from the population registry and invited to undergo a screening flexible sigmoidoscopy (FS) for colorectal adenomas and cancer. Patients with former colonic resections, severe heart or lung disease (New York Heart Association (NYHA) III-IV), or ongoing treatment for malignant disease are excluded. Biopitically verified adenoma at screening FS, irrespective of size, qualifies for a baseline colonoscopy with polypectomy, to be performed within 6–8 weeks after FS.

NORCCAP participants referred for colonoscopy between October 1999 and April 2000 (267 patients) were included in the present study. All examinations were performed by one of three experienced endoscopists. According to recently published guidelines, colonoscopies were performed without any

Abbreviations: ETCO₂, end-tidal carbon dioxide; FS, flexible sigmoidoscopy; NORCCAP, NORwegian Colorectal CAncer Prevention; NYHA, New York Heart Association; VAS, visual analogue scale.
routine use of sedation. However, on demand medication with intravenous midazolam was given if indicated, as judged by the endoscopist. For bowel cleansing, a 4 litre polyethylene glycol solution was used, taken orally on the day before the examination.

Randomisation
Participants referred for colonoscopy were successively assigned to appointments as referrals were received and no sessions were available other than for participants in the NORCCAP screening study. Whole day sessions for colonoscopy were randomised for CO2 or air insufflation, using sealed envelopes. Randomisation of whole sessions rather than individual patients was done to avoid unblinding by change of gas couplings between patients. Both participants and endoscopists were blinded with regard to which gas was being used.

Endoscopic examination
Procedures were performed using Olympus video colonoscopes (Olympus, Hamburg, Germany). However, the standard gas/water valves of the endoscopes which only redirect a continuous gas flow into the gut lumen or atmospheric air, were replaced with another type of valve (MIJ-521, Olympus) preventing gas leakage into the environment. To administer CO2 or air was administered using two different pressure and flow controlled devices connected to the CO2 and air reservoirs provided (Endoscopic CO2 Regulator; Key Med Ltd (Southend-on-Sea, Essex, UK) for CO2, Norsk Hydro Ltd (Oslo, Norway) for air). The endoscopy assistant was responsible for switching on and off the CO2 and air devices, respectively. To prevent unblinding, the devices were placed behind the endoscopy rack and hidden from the view of the endoscopist.

End-tidal CO2 measurements
End-tidal (ET) CO2 has been shown to give adequate approximations of arterial pCO2 in spontaneously breathing adults and is therefore a good and commonly used non-invasive method of expressing arterial pCO2.8

However, before starting the trial we conducted ETCO2 measurements and arterial pCO2 samples simultaneously on five consecutive patients. The two methods were comparable, with a maximum deviation of the ETCO2 value of only 0.2 kPa. Additionally, we performed repeated measurements within the group of investigators to test the validity of the method, with no evidence of method failure.

ETCO2 was measured successively: (1) at the start of each examination, (2) when the endoscope had reached the caecum, (3) when the rectum was passed during withdrawal, and (4) 10 minutes after finishing the examination. At these measuring points, patients were asked to take a deep breath and to expire deeply and slowly through the mouthpiece of the provided mainstream infrared capnograph (Novametrix Ltd, Wallingford, Connecticut, USA). The endoscopy assistant performed the measurements and registered the readings. Both the participant and endoscopist were blinded to the results.

Measurement of pain
Pain was registered on a questionnaire given to participants immediately after the examination. A 100 mm visual analogue scale (VAS) was used, ranging from “no pain” on the left to “pain as bad as it could be” on the right end. Participants were asked to score the amount of pain experienced at one, three, six, and 24 hours after the examination. In addition, the questionnaire contained a similar VAS scale for the amount of pain experienced during the examination. Once completed, questionnaires were returned by mail to the screening centre.

Table 1 Participant and examination characteristics in the CO2 and air groups

<table>
<thead>
<tr>
<th></th>
<th>CO2 group (n=121)</th>
<th>Air group (n=119)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sex [M/F]</td>
<td>77/44</td>
<td>75/44</td>
</tr>
<tr>
<td>Mean age [y]</td>
<td>59.5</td>
<td>59.6</td>
</tr>
<tr>
<td>Caecum reached [No (%)]</td>
<td>109 [90]</td>
<td>108 [90]</td>
</tr>
<tr>
<td>Time to caecum [min] (mean [SD])*</td>
<td>13.1 [7.6]</td>
<td>15.2 [8.5]</td>
</tr>
</tbody>
</table>

*p=0.09.

Statistical analysis
A pilot study was conducted to estimate the SDs of the pain and ETCO2 measurements, respectively. Regarding the pain measurements, with an assumed SD of 30 mm, we estimated that 240 patients were needed to achieve at least 95% power to detect a 15 mm difference in VAS between the two groups, which was considered to be clinically important. Assuming that the difference in ETCO2 would have to be >0.5 kPa to be clinically important (SD 0.6), the power to detect this with 150 patients was 95%.

For statistical analysis of repeated measurements of pain and ETCO2, ANOVA for repeated measures was used. Some variables were not normally distributed and thus the Wilcoxon rank sum test was used as a supplementary analysis to compare groups at each time point. The proportion of individuals reporting no pain on the VAS was compared at each time point using the χ² test. Statistical significance was defined as p<0.05. Only two sided tests were used. Statistical analyses were performed using SPSS 9.0.

Ethics
The regional ethics committee approved the study protocol. Informed consent was obtained from all participants before entering the trial.

RESULTS
A total of 267 patients were randomised and examined; 249 patients (93%) completed the questionnaire. Ten patients (seven in the air group and three in the CO2 group; p<0.01) received sedation and were excluded from further analysis. Thus 240 patients were included in the study; 121 (51%) were received sedation and were excluded from further analysis. 240 patients (93%) completed the questionnaire. Ten patients (49%). There were no differences in baseline characteristics between the two groups (table 1). No statistically significant differences were observed between endoscopists. There was a trend towards more rapid caecal intubation in the CO2 group (table 1).

The only complication registered was one perforation requiring colonic resection (air group). This occurred after snare polypectomy of a large sessile adenoma with severe dysplasia in the sigmoid colon.

End-tidal CO2
According to power estimates it was considered sufficient to measure ETCO2 in a limited number of patients and hence ETCO2 measurements were restricted to the first 156 examinations performed without sedation, including 81 patients in the air group and 75 patients in the CO2 group. As shown in fig 1, there was no rise in ETCO2 during or after the examination in any group. On the contrary, we observed a significant reduction in ETCO2 levels during examination in both groups (p<0.001). This reduction was more pronounced when air was used. The time point differences between the groups reached significance only for ETCO2 readings registered towards the end of the examination (p=0.01) (fig 1). However, this difference was estimated to be 0.28 kPa (95% confidence interval (CI) 0.06–0.49) and thus far below the
parametric analysis at each separate time point gave results similar to the overall analysis.

An alternative visualisation of the pain score results is to compare the proportion of patients with score zero (no pain) on the VAS. Figure 3 shows these proportions at each measurement. The finding of a clinically relevant difference in pain, favouring the use of CO₂ was supported.

DISCUSSION

This randomised double blind trial in unsedated patients showed that CO₂ insufflation during colonoscopy reduced the amount of pain during and after the examination. No rise in ET\textsubscript{CO₂} during or after the examination was registered.

The caecum reach ratio in this trial (90%) was somewhat lower than the rates probably expected in colonoscopy performed by experienced endoscopists. It must be pointed out that the participants in the present trial were different from patients attending a normal hospital endoscopy unit. They were asymptomatic, with adenomas discovered at screening FS, most of a size not even qualifying for colonoscopy in other FS screening trials. In addition, any spread of information in the community about painful colonoscopies would probably influence compliance for both screening and later surveillance. The endoscopists in this trial would therefore be more inclined to discontinue the examination if pain was inflicted during the procedure.

Pain during and after examination

Although a VAS scale is considered to be a reliable method for assessment of patient’s pain, it has been claimed that more patients fail to score on a VAS scale compared with other pain registration methods. However, in the present study 93% of the questionnaires were returned, all completed.

The observed mean difference between the CO₂ and air groups regarding pain perception was less than the predefined 15 mm on the VAS scale considered to be clinically important (fig 2). However, in the CO₂ group, more than 90% of patients reported that they were completely free from pain after the examination whereas in the air group more than 40% of patients reported pain during the first hours after the procedure (fig 3). In our opinion, this difference is large enough to be clinically relevant and shows clearly the superiority of CO₂ compared with air regarding patient pain.

As far as we are aware, only one study has been published comparing pain perception using CO₂ and air insufflation in colonoscopy. The authors reported statistically significant reductions in the amount of pain in favour of CO₂ at both six and 24 hours after the examination. In their study, all patients received analgesia (meperidine) and a sedative (diazepam) prior to and during the examination. As diazepam has a long lasting effect with a half life of more than 24 hours, sedation amnesia may influence the validity of scores given. In our trial, patients receiving sedation were excluded from analysis; hence the VAS scores and ET\textsubscript{CO₂} measurements were not influenced by sedation. However, the results of the two studies are similar with a reduction in pain using CO₂.

In the present study the use of sedation differed between the two groups, with more individuals in the air group requiring sedation. If these patients had not been excluded from the present analyses, the observed differences would have been somewhat larger. Although the need for on demand administration of sedation in this study was judged subjectively by the endoscopist, the endoscopist’s observation of the patient’s need was consistent with the differences between the groups in VAS scores given by the patients.

End-tidal CO₂

The ideal gas for insufflation during colonoscopy should be inert. However, this gas has yet to be found. CO₂ is not ideal as it interferes with normal metabolic processes. It has been
known for a long time that intraperitoneal CO₂ insufflation during laparoscopic surgery causes a rise in arterial pCO₂ levels but this side effect is probably less marked in retroperitoneal compared with intraperitoneal insufflation. Furthermore, a laparoscopic procedure is quite different from colonoscopy (mechanical ventilation, Trendelenburg position, CO₂ kept under a positive pressure). Therefore, there was a need to investigate the effect on pCO₂ during insufflation of CO₂ in colonoscopy. To measure arterial pCO₂, arterial blood samples are needed. This was considered impractical in the present study. We used ETCO₂ measurement as an approximation of arterial pCO₂. Continuous measurement of ETCO₂, often through a nasal or nasopharyngeal canula, has been the preferred method in other studies. In the present study patients were awake, non-sedated, and would probably not have tolerated such canulae. We therefore measured ETCO₂ repeatedly using a mouthpiece connected to a capnograph. This method may not be as accurate as those published previously but it is an easily performed approximation to arterial pCO₂ in this setting. The purpose of our measurements was to exclude a clinically significant rise in body CO₂ level, not to evaluate exact values within the reference area.

We did not detect any rise in ETCO₂ levels. On the contrary, we observed an overall decrease in ETCO₂ during and after the procedure, slightly more marked in the air group. A possible explanation for this is that patients may have hyperventilated during the procedure, and that insufflation of CO₂ to some extent outweighed this reduction in ETCO₂. Rogers reported a rise, although not statistically significant, in arterial pCO₂ during colonoscopy. In that study, all patients were sedated and sedation is known to cause changes in pCO₂ and other metabolic parameters. Hence these results are difficult to compare with ours.

No patient with severe heart or lung diseases (NYHA III-IV) was included in this study. Therefore, our results cannot be generalised to these patient categories. The safety for these patients and for sedated patients has to be investigated further before extending recommendations to other than our described patient population.

CONCLUSIONS

This randomised trial of unsedated patients showed that CO₂ insufflation during colonoscopy is safe with no rise in ETCO₂ levels. CO₂ was found to be superior to air regarding pain after the examination. In this study, CO₂ insufflation led to an almost complete absence of post examination pain. We recommend CO₂ insufflation in colonoscopy.

ACKNOWLEDGEMENTS

We thank the nurses at the NORCAP Centre without whose enthusiastic support this study would not have been possible. The trial was supported financially by the Norwegian Department of Health and Social Affairs, the Norwegian Cancer Society, the Norwegian Gastroenterological Association, and Endotronic Ltd. The study was presented in part at the UEGW 2000 in Brussels.

Authors’ affiliations

M Brethauer, E Thiis-Evenes, G Huppertz-Hauss, G Hoff, NORCAP-Centre, Telemark Central Hospital, Porsgrunn, Norway

L Gisselsson, Department of Anaesthesiology, Telemark Central Hospital, Porsgrunn, Norway

T Grotmol, The Cancer Registry of Norway, Oslo, Norway

E Skovlund, Section of Medical Statistics, University of Oslo, Oslo, Norway

REFERENCES

NORCCAP (Norwegian colorectal cancer prevention): a randomised trial to assess the safety and efficacy of carbon dioxide versus air insufflation in colonoscopy

M Bretthauer, E Thiis-Evensen, G Huppertz-Hauss, L Gisselsson, T Grotmol, E Skovlund and G Hoff

Gut 2002 50: 604-607
doi: 10.1136/gut.50.5.604

Updated information and services can be found at:
http://gut.bmj.com/content/50/5/604

These include:

References

This article cites 17 articles, 0 of which you can access for free at:
http://gut.bmj.com/content/50/5/604#BIBL

Email alerting service

Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Topic Collections

Articles on similar topics can be found in the following collections

Colon cancer (1547)
Endoscopy (1003)

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/