Intestinal intraepithelial lymphocytes and anti-transglutaminase in a screening algorithm for coeliac disease

We have noticed the frequent publication of important advances in the serological screening of coeliac disease (CD), such as the interesting and useful technique described by Baladas et al (Gut 2000;47:628–31). Humoral screening of CD is coming closer than ever towards representing an affordable population-wide strategy (Gut 2000;47:628–31), largely due to the identification of tissue transglutaminase (tTG) as the main—if not only—autoantigen for antiendomysial antibodies (EMA). This finding highlights the possibility of antigen specific testing and, today, determination of anti-tTG is a valid alternative to EMA. However, we believe that the recent advances in the cellular component of the diagnosis of CD have been somewhat overlooked. The study of intestinal intraepithelial lymphocytes (IEL) by flow cytometry has added specificity to mere histological study of the small bowel biopsy. It has been shown that CD is characterised by an important increase in the TcR-\(\gamma \delta \) subset which constitute the majority of IEL. The increase in \(\gamma \delta \) IEL (average 4% in controls \(\gamma \delta \) 25% in coeliacs, with respect to total IEL) is not per se diagnostic of CD as it has been observed, although to a lower extent, in food allergy and occasionally in other conditions. But CD is the only entity in which \(\gamma \delta \) IEL have been described as systematically, permanently, and markedly raised. The combined study of total, \(\gamma \delta \), and NK-like IELs, that could be termed “IEL lymphogram”, allows for nearly 94% specificity and sensitivity in the diagnosis of CD after clinical suspicion. This technique, complementary to the diagnosis of symptomatic and silent CD, shows its real value in latent and potential presentations of the disease, and offers important data for the differential diagnosis from other enteropathies. It is noteworthy that the increase in IEL is the earliest detectable alteration in the mucosa,\(^2\) prior to the increase in lamina propria lymphocytes or architectural changes. Many recent reviews\(^3\) have commented on these characteristic serological and cellular findings of CD but their incorporation into clinical practice is very different. While tTG testing is spreading, IEL phenotyping—particularly by flow cytometry—is still regarded as a research tool rather than a diagnostic test. We consider that the easy procedure of IEL procurement and phenotyping\(^4\) could be routinely performed in many medium sized hospitals, and we propose an initial screening algorithm that takes this “IEL lymphogram” into account (Fig 1).

Screening would be based on tTG IgA determination, and seric IgA quantification if anti-tTG was negative. If there was an IgA deficiency, only IgG tests would then be performed. If serum and blood were obtained at the first visit and temporarily cryopreserved, many tests (serum IgA, AGA, EMA, HLA, IgE, other autoantibodies, etc.) could be performed without the patient attending the clinic again.

The establishment of the putative diagnosis would be achieved by mandatory small bowel biopsy. But the IEL lymphogram would allow for serological and clinical evaluation of gluten withdrawal (and challenge) if it fitted into the coeliac pattern and histology showed a typical coeliac enteropathy. If the lymphogram shows normal or non-specific CD, it has a high negative predictive value of 99% against the existence of CD.\(^5\) If the interpretation of the immunohistological study is not straightforward, the classical ESPGAN criteria can be followed.\(^6\) We believe that this algorithm, which can be conveniently adapted to the needs of each centre, can correctly classify the vast majority of patients, saving time and money, and avoiding morbidity.

F Leon, P Eiras, G Roy
Department of Immunology, Hospital Ramón y Cajal, Ctra Colmenar km 9, 28034 Madrid, Spain
C Camarero
Department of Paediatric Gastroenterology, Hospital Ramón y Cajal, Ctra Colmenar km 9, 28034 Madrid, Spain

Correspondence to: F Leon; immun_leon@altavista.com

Acknowledgements
Our work was financed by the Spanish Fondo de Investigaciones Sanitarias (FIS), grants Nos 00/0196 (G Roy) and 01/9417 (F León).

Figure 1 Proposal of an initial diagnostic algorithm for coeliac disease (CD). After screening with anti-transglutaminase (tTG), and taking into account the high negative predictive value of HLA typing, study of mandatory intestinal biopsy would include phenotyping of intraepithelial lymphocytes (IEL). The proportion of “total IEL” is calculated with respect to the cellularity of the epithelium while the proportions of \(\gamma \delta \) IEL and “natural killer [NK]-like IEL” are relative to the total IEL. The combined analysis of the pathology and the “IEL lymphogram” allows for a correct classification of >95% of patients after the first biopsy, reducing the need for subsequent invasive procedures. N, normal values.
The changing scope of colorectal cancer

We read with great interest the commentary by Boland and Savides (Gut 2001;48:522–5) on our paper “Flexible sigmoidoscopy and the changing distribution of colorectal cancer: implications for screening” (Gut 2001;48:322–5). The authors make several important points about the changing pattern of distribution of colorectal cancer and the possible reasons for the changes we observed. Our data showed an increased percentage of colorectal cancers diagnosed proximal to the splenic flexure between 1976–78 and 1990–97. As Boland and Savides point out, this change may be linked to a true increase in the incidence of proximal cancers or to a reduction in the incidence of distal and rectal tumours owing to the widespread use of flexible sigmoidoscopy and the consequent removal of premalignant adenomas.

We recently carried out further analysis of data from the Northern Ireland Colorectal Cancer Registry for the years 1995–97. The results of this analysis are shown in table 1 together with our previously published data for the years 1976–78. All incidences were age standardised per 100 000 for each sex using the world standard population.

<table>
<thead>
<tr>
<th>Year</th>
<th>Proximal colonic cancer</th>
<th>Distal colonic cancer</th>
<th>Rectal cancer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
1976–78 | 4.7 | 6.1 | 12.5 |
1995–97 | 9.5 | 8.4 | 12.2 |

| Female |
1976–78 | 4.7 | 5.8 | 6.0 |
1995–97 | 8.2 | 6.2 | 6.6 |

These values show that the age standardised incidence of colonic carcinoma has increased in both sexes over the period studied (proximal more than rectal) while the incidence of rectal cancer has remained relatively constant. These data suggest that the changing pattern of distribution of colorectal cancer which we have observed is unlikely to be due to a decreased incidence of distal and rectal cancers. These results may well represent a true increase in proximal colorectal cancers, although as Boland and Savides suggest, they could also be explained by a rising incidence in all subsites, with relative sparing of the distal colon and rectum due to either the protective effect of non-steroidal anti-inflammatory drugs or endoscopic polypectomy.

A Paneth cell surrogate?

We read with interest the article by Cunliffe et al (Gut 2001;48:176–85) on defensin 5 stored in normal Paneth cells and in metaplastic Paneth cells in inflammatory bowel disease (IBD).

In recent years a great deal of interest has centred around Paneth cells as carriers of innate host defence, effective through their content of antimicrobial peptides and proteins.1 In humans, that mechanism seems to be conveyed by a complex system of proteins present in the granules of the Paneth cells: lysozyme, secretory phospholipase A, and probably α defensins (that is, cryptidins, α1–3) as well as the antimicrobial peptide lysozyme.2 The lysozyme rich granules in Paneth cells appears to be one of the main sources of anti-microbial peptide in the normal small bowel (where Paneth cells are normally present). Although such cells are not found in the normal colorectal mucosa, Paneth cell metaphasia may be present in the colorectal mucosa of some (but not all) patients with longstanding IBD. Demonstration of human neutrophil defensins (HNP 1–3) and lysozyme in epithelial cells of active IBD has fuelled interest in the molecular events behind defense mediated intestinal host defence.

Against that background, it may be of interest to point out that another source of cytoplasmatic lysozyme has recently been unveiled.3 Thirty five years ago, Azzopardi and Evans1 found mucin containing macrophages (denominated muciphages) in the colonic mucosa. Those cells were described as normal phagocytes in an otherwise normal mucosa. The mucoprotein present in their cytoplasm stained with a variety of mucous colors—alcan blue, aldehyde fuchsin, and mucicarmine. Muciphages which were subsequently found to be associated with mucosal abnormalities induced by an inflammatory disruption of the crypts would otherwise be scavengers to keep the lamina propria free of the liberated mucin. Until now, muciphages have been considered as a non-specific manifestation of mucosal damage.

When investigating the occurrence of those cells in rectal biopsies from patients with a variety of diseases, we found muciphages either scattered in the lamina propria or diffused in a more “organised” fashion underneath the superficial epithelium and at the base of the crypts (lysozyme-Muramidase without counterstain, 25x).

Table 1 Incidence of proximal, distal, and rectal colorectal cancers in the years indicated. All incidences were age standardised per 100 000 for each sex using the world standard population.

Figure 1 Rectal mucosa in remission in a patient treated in the past for ulcerative colitis. Note the arrangement of lysozyme laden muciphages along the muscularis mucosae, both underneath the superficial epithelium and at the base of the crypts [lysozyme-Muramidase without counterstain, 25x].
that muciphages may be an important source of antinicrobial peptides in mucosa in protracted remission from earlier inflammatory episodes.

C A Rubio
Gastrointestinal and Liver Pathology, Research Laboratory, Karolinska Institute and Hospital, 171 76 Stockholm, Sweden. Carlos.Rubio@onkpat.ki.se

References

Falk Symposium No 128: Exogenous Factors in Colonic Carcinogenesis
This will be held on 2–3 May 2002 in Würzburg, Germany. Further information: Falk Foundation e.V.-congress Division, Leinenweberstr. 5, PO Box 6529, D-79041 Freiburg, Germany. Tel: +49 761 15 14 0; fax: +49 761 15 14 39; email: symposia@falkfoundation.de

Artificial Oxygen Carriers—A Clinical Future?
This conference will be held on 9 May 2002 in Edinburgh, UK. Further information: Rosemary Hector, Acting Consensus Conference Co-ordinator, Education and Standards Department, Royal College of Physicians of Edinburgh, 9 Queen Street, Edinburgh EH2 1LQ, Tel: +44 (0)131 225 7324; fax: +44 (0)131 220 3939; email: r.hector@rcpe.ac.uk

12th International Workshop of Digestive Endoscopy, Ultrasonography, and Radiology
This will be held on 30–31 May 2002 in Marseille, France. Further information: Nathalie Fontant, Atelier Phenix, 41 rue Docteur Morucci, 13006 Marseille, France. Tel: +33 04 91 37 50 83; fax: +33 04 91 57 15 28; email: nfontant@aphenix.com

Endoscopic Oncology: Gastrointestinal Endoscopy and Cancer Management
This conference will be held on 30 May to 1 June 2002 in Amsterdam, The Netherlands. Further information: Secretariat, Nicolaes Tulp Institute, Academic Medical Center, PO Box 23123, 1100 DS Amsterdam, The Netherlands. Tel: +31 20 566 8305; fax: +31 20 696 3228; email: tulpins@amc.uva.nl.

EASL Monothematic Conference on Vascular Function in Liver Disease
This conference will take place on 30 June to 2 July 2002 in London, UK. Further information: Professor Jordi Bruix, EASL Liaison Bureau, c/o Kenses International, 17 rue du Cendrier, PO Box 1726, CH-1211 Geneva, Switzerland. Tel: +41 2 22 908 0488; fax: +41 22 732 2850; email: info@easl.ch; www.easl.com. Deadline for abstract submission 15 May 2002. Further information: kmoore@rific.ucl.ac.uk; tel: +44 (0)20 743 2876.

5th International Workshop on Pathogenesis and Host Response in Helicobacter Infections
This will be held on 4–7 July 2002 in Helsingør, Denmark. Further information: Dr Tina Ken Hansen, Department of Cardiology-Endocrinology E, Frederiksberg Hospital, Ndr. Fasanvej, DK-2000 Frederiksberg, Denmark. Fax: +45 3545 7708; email: helputim@biobase.dk
The changing scope of colorectal cancer

Gut 2002 50: 741
doi: 10.1136/gut.50.5.741

Updated information and services can be found at:
http://gut.bmj.com/content/50/5/741.1

These include:

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/