Regulation of circulating immune complexes by complement receptor type 1 on erythrocytes in chronic viral liver diseases

J Miyake, Y Iwasaki, A Takahashi, H Shimomura, H Taniguchi, N Koide, K Matsuura, T Ogura, K Tobe, T Tsuji

Background and aim: Complement receptor type 1 (CR1) is a transmembrane protein, and human erythrocyte CR1 (E-CR1) is involved in the transport of circulating immune complexes (IC) from the circulation to the reticuloendothelial system, including the liver and spleen. In chronic viral hepatitis, increased levels of IC containing viral particles and an association with various extrahepatic manifestations have been reported. However, regulatory mechanisms for IC levels are not fully understood.

Patients/subjects and methods: We analysed IC, E-CR1, and quantitative polymorphism of the CR1 gene in 149 patients with chronic viral liver diseases and in 64 normal blood donors using an enzyme linked immunosorbent assay, radioimmunoassay, and polymerase chain reaction-restriction fragment length polymorphism, respectively. We also analysed the effect of CR1 gene polymorphism on IC binding to E-CR1 using molecular methods.

Results: E-CR1 levels in patients with chronic hepatitis and chronic viral liver diseases as a whole correlated inversely with increased levels of IC. Moreover, significantly high levels of IC were observed in patients with chronic hepatitis C (CH-C) who were homozygous for the E-CR1 low density allele. We also found low levels of E-CR1 in liver cirrhosis and CH-C but not in CH-B. Low levels of E-CR1 in CH-C were observed, even after considering the polymorphism of the CR1 gene. Finally, we demonstrated CR1 gene polymorphism dependent binding of hepatitis virus containing IC.

Conclusions: Our results emphasise the important role of E-CR1 in clearance of IC from the circulation and the acquired, rather than inherited, decrease in E-CR1 in chronic viral liver diseases, especially of type C.

In chronic viral liver diseases, especially type C chronic liver diseases, increased serum levels of IC containing viral particles have been reported. Increased levels of IC in type C chronic liver diseases are thought to be associated with various extrahepatic manifestations, including arthritis, dermatitis, membranoproliferative glomerulonephritis, and cryoglobulinemia. However, detailed mechanisms of IC regulation in chronic viral liver diseases have not yet been thoroughly analysed.

In order to investigate the role of E-CR1 in the clearance of IC from the circulation of patients with chronic viral liver diseases, we analysed IC, E-CR1, and a quantitative polymorphism of the CR1 gene in these patients and normal subjects.

MATERIALS AND METHODS

Blood samples from normal subjects and patients

The mean number of CR1 per erythrocyte (CR1/E) and levels of IC were measured in erythrocytes and serum samples from

Abbreviations: AIDS, acquired immunodeficiency syndrome; CH-B, chronic hepatitis B; CH-C, chronic hepatitis C; controls, normal blood donors; CR1, complement receptor type 1; CR1/E, mean number of CR1 per erythrocyte; ECR1, erythrocyte CR1; HBV, hepatitis B virus; HCV, hepatitis C virus; HH, individuals homozygous for the CR1 high density allele; HL, individuals heterozygous for the CR1 gene polymorphism; IC, immune complex; LC-B, liver cirrhosis B; LC-C, liver cirrhosis C; LL, individuals homozygous for the CR1 low density allele; PBS, phosphate buffered saline; PCR-RFLP, polymerase chain reaction-restriction fragment length polymorphism; SLE, systemic lupus erythematosus.
this procedure was less than 0.01%, as measured in a cell coat removed each time. Leucocyte contamination following cold (4°C) phosphate buffered saline (PBS), with the buffy below. Erythrocytes were washed three times in eight volumes were removed and stored at centrifugation at 1000 g. After packing, plasma and buffy coat were removed and stored at −80°C for the analysis described below. Erythrocytes were washed three times in eight volumes of cold (4°C) phosphate buffered saline (PBS), with the buffy coat removed each time. Leucocyte contamination following this procedure was less than 0.01%, as measured in a cell coat. Erythrocytes were isolated from 1.5 ml of human blood by

Preparation of erythrocytes

Erythrocytes and serum samples were stored at 4°C and −80°C for the analysis described below. Erythrocytes were washed three times in eight volumes of cold (4°C) phosphate buffered saline (PBS), with the buffy coat removed each time. Leucocyte contamination following this procedure was less than 0.01%, as measured in a cell coat. Erythrocytes were isolated from 1.5 ml of human blood by

Preparation of erythrocytes

Erythrocytes were isolated from 1.5 ml of human blood by centrifugation at 1000 g. After packing, plasma and buffy coat were removed and stored at −80°C for the analysis described below. Erythrocytes were washed three times in eight volumes of cold (4°C) phosphate buffered saline (PBS), with the buffy coat removed each time. Leucocyte contamination following this procedure was less than 0.01%, as measured in a cell coat. Erythrocytes were isolated from 1.5 ml of human blood by

Measurement of CR1/E

Mean numbers of CR1 antigenic sites on erythrocytes were measured using a direct RIA, as described previously by Wilson and colleagues with a minor modification using anti-CR1 monoclonal antibody 31R (isotype; IgG1 and kappa; Seikagaku-Kogyo Inc., Osaka, Japan), instead of using rabbit anti-CR1 polyclonal antibody. Radiolabelling of the monoclonal antibody was performed with 125I (Amersham Pharmacia Biotech KK, Tokyo) using Iodogen (Pierce, Rockford, Illinois, USA) to a specific activity of 1–2 µCi/µg. Assays were performed in duplicate in each patient and control subject, and data were expressed as the means of the assays. Each assay included duplicate twofold dilution series of the radiolabelled monoclonal antibody. Results were analysed by Scatchard plot, as described previously, expressed as mean number of antigenic sites per erythrocyte (CR1/E). Day to day variability of CR1/E values was assessed by analysing three time points in five controls and the estimated coefficient of variation was 8%.

Measurement of IC

IC were measured in serum with an enzyme linked immunosorbent assay using mouse antihuman C3d monoclonal antibody (Quidel, San Diego, California, USA) and peroxidase conjugated antihuman immunoglobulin (Dako, Glostrup, Denmark), according to the method described previously. IC levels were determined according to the standard curve obtained from heat aggregated human immunoglobulin. The assays were performed in duplicate.

Figure 1 Comparison of mean number of complement receptors type 1 per erythrocyte (CR1/E) and immune complexes (IC) in chronic liver diseases [A] and chronic hepatitis C (CH-C) [B]. An inverse correlation was found in each group. The regression equation was y = −9.3x + 669, r = −0.280 with p < 0.001 for chronic liver diseases [A] and y = −9.4x + 674, r = −0.325 with p < 0.004 for CHC [B].

Figure 2 Correlation between mean number of complement receptor type 1 per erythrocyte (CR1/E) and immune complexes (IC) in chronic liver diseases (A) and chronic hepatitis C (CH-C) (B). An inverse correlation was found in each group. The regression equation was y = −9.3x + 669, r = −0.280 with p < 0.001 for chronic liver diseases (A) and y = −9.4x + 674, r = −0.325 with p < 0.004 for CHC (B).
Genomic determination of CR1 quantitative polymorphism

Genomic DNA was extracted from the buffy coat stored at –80°C. CR1 quantitative polymorphism on erythrocytes was assayed using polymerase chain reaction (PCR) and Hind III restriction endonuclease digestion, as described previously.""},

Analysis of IC binding to erythrocytes

Erythrocytes (5×10^8 in 100 µl of PBS) from healthy donors with CR1 gene polymorphism of HH, HL, and LL, prepared as described above, were incubated in vitro in triplicate at 37°C for 15 minutes with an equal volume of sera of CH-B or CH-C, which contain a high titre of IC. The incubated erythrocytes were washed extensively with PBS and analysed for viral genomes. DNA and RNA bound to erythrocytes were extracted by QIAamp DNA Blood Mini Kit or QIAamp Viral RNA Mini Kit (Qiagen, Tokyo, Japan), respectively, according to the instructions provided by the manufacturer. Hepatitis C virus (HCV) RNA was reverse transcribed to cDNA with M-MLV reverse transcriptase (Gibco BRL, Gaithersburg, Maryland, USA) and random hexamer. Hepatitis B virus (HBV) DNA and cDNA of HCV were amplified with primer sets, as described previously, and detected using ABI GeneAmp 5700 sequence detector (Applied Biosystems, Foster City, California, USA) using SYBR Green chemistry (Applied Biosystems) according to the instructions provided by the manufacturer. The assays were performed in triplicate.

Statistical methods

Data are expressed as median (range) values. The relationship between different variables was tested by linear regression analysis; p values <0.05 were considered statistically significant.

RESULTS

E-CR1 in controls and various liver diseases

As the anti-CR1 monoclonal antibody 31R recognises a single epitope on the CR1 molecule, CR1/E estimated with this monoclonal antibody should be equal to the number of CR1 molecules on an erythrocyte. Namely, CR1/E in controls ranged from 349 to 1000, as reported previously. E-CR1 in chronic viral liver diseases and controls were compared (fig 1A). CR1/E was significantly lower in CH-C (median 565 (25/75 percentiles 490–645); p=0.007), LC-B (507 (429–591); p=0.007), and controls (505 (455–592); p=0.0077) than in controls (634 (570–691)). In contrast, there was no significant difference in CR1/E between CH-B (592 (509–682)) and controls (p=0.163).

<table>
<thead>
<tr>
<th>Diagnosis</th>
<th>n</th>
<th>HH</th>
<th>HL</th>
<th>LL</th>
<th>Allelic frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHB</td>
<td>36</td>
<td>20</td>
<td>10</td>
<td>3</td>
<td>0.76</td>
</tr>
<tr>
<td>CHC</td>
<td>78</td>
<td>37</td>
<td>25</td>
<td>4</td>
<td>0.75</td>
</tr>
<tr>
<td>LCB</td>
<td>13</td>
<td>7</td>
<td>2</td>
<td>2</td>
<td>0.73</td>
</tr>
<tr>
<td>LCC</td>
<td>22</td>
<td>12</td>
<td>8</td>
<td>2</td>
<td>0.73</td>
</tr>
<tr>
<td>Controls</td>
<td>64</td>
<td>37</td>
<td>25</td>
<td>3</td>
<td>0.77</td>
</tr>
<tr>
<td>Total</td>
<td>213</td>
<td>113</td>
<td>70</td>
<td>13</td>
<td>0.76</td>
</tr>
</tbody>
</table>

*Numbers in parentheses represent frequency (%) of each CR1 gene polymorphism.

Comparison of IC levels in controls and in various liver diseases

IC levels were significantly higher in CH-B (median 8.7 µg/ml (25/75 percentiles 7.5–10.2)), CH-C (10.3 (8.4–13.4)), LC-B (11.8 (7.6–16.0)), and LC-C (12.4 (10.5–15.7)) than in controls (6.3 (4.0–8.1)) (p<0.001 in all pairwise comparisons) (fig 1B). In CH-B, IC levels were significantly lower than in CH-C and LC-C (p=0.005 and p<0.001, respectively). The level of IC in LC-C was significantly higher than in CH-C (p=0.013).

Correlation between IC and E-CR1

Linear regression analysis showed an inverse correlation between IC levels and CR1/E when data from the entire population sample were analysed (patients and controls), data from all patients with liver diseases, and data from those with chronic hepatitis only (CH-B and CH-C) (r=−0.327, p<0.001; r=−0.280, p<0.001; and r=−0.284, p<0.003, respectively) (fig 2A and data not shown). There was also an inverse correlation between the two variables in CH-C (r=−0.325, p=0.004) but not in CH-B, LC-B, or controls (r=−0.141 p=0.429; r=0.503, p=0.097; r=0.159, p=0.521; and r=−0.101, p=0.548, respectively) (fig 2B and data not shown).

Figure 3

Comparison of mean number of complement receptors type 1 per erythrocyte (CR1/E) between CR1 gene polymorphisms in controls and chronic hepatitis C (CHC). Box plots of CR1/E levels for each polymorphism are shown. The boxes and bars are as in fig. 1. Genotypes are indicated at the bottom of the figure: HH, individuals homozygous for the CR1 high density allele; HL, individuals heterozygous for the CR1 gene polymorphism; LL, individuals homozygous for the CR1 low density allele. CR1 gene polymorphism and disease associated differences in CR1/E levels were noted. *p=0.025, **p=0.023, ***p=0.013, ****p=0.010, *****p<0.001.
genotype LL in controls (fig 3), as reported previously.

Comparison of erythrocyte CR1 expression levels with liver diseases (table 1).

gene frequencies of the H and L alleles and distribution of HH, HL, and LL, which were also similar to those reported previously for Caucasians and Japanese (table 1).

in the order of LL, HL, and HH, respectively. IC levels for the genotype LL (13.9 (12.4–16.4) µg/ml) were significantly higher than those for the genotype HH (9.8 (7.6–12.5) µg/ml) (fig 4B, p=0.011). There was no significant difference in IC levels between HL and HH (10.8 (9.3–14.1)) or LL (p=0.113 and p=0.411, respectively). There were also no significant differences in IC levels among CR1 genotypes in CH-B, LC-B, LC-C, and controls (fig 4A and data not shown).

CR1 gene polymorphism dependent binding of IC to erythrocytes

Erythrocytes were incubated with IC and bound viral genomes were quantified and compared in terms of CR1 gene polymorphisms of the blood donors (fig 5). Significant differences in the amount of bound HBV DNA or HCV RNA were noted between HH and HL or LL (fig 5). These results indicate that the CR1 gene polymorphism is associated with the capacity of erythrocytes for binding to HBV or HCV containing IC.

Analysis of quantitative polymorphism of the CR1 gene

Three patterns of digested fragments were obtained by PCR-restriction fragment length polymorphism (RFLP) and were expressed as follows: HH, individuals homozygous for the CR1 high density allele; HL, individuals heterozygous for the CR1 gene polymorphism; and LL, individuals homozygous for the CR1 low density allele. In CH-C, an additional three patients with genotype LL, whose data on CR1/E were not available, are included. (B) *p=0.011.

Comparison of erythrocyte CR1 expression levels among quantitative polymorphisms of the CR1 gene

E-CR1 was highest in the genotype HH and lowest in the genotype LL in controls (fig 3), as reported previously. Similar results were observed in CH-C. Significant differences in E-CR1 levels between CH-C and controls were observed in genotypes HH and HL but not in genotype LL (p=0.013, 0.023, and 0.643, respectively) (fig 3).

Comparison of IC levels among quantitative polymorphisms of the CR1 gene

IC levels in CH-C were compared among CR1 quantitative polymorphisms (fig 4). Mean IC levels were highest to lowest in the order of HH, HL, and LL, respectively.

DISCUSSION

In this study, we investigated levels of E-CR1 and IC, and the prevalence of CR1 gene polymorphisms, in patients with chronic viral liver diseases. We observed a correlation between CR1/E and IC in all samples analysed, in liver disease, and in chronic hepatitis. Moreover, in CH-C, we found this correlation and significantly higher levels of IC in the CR1 genotypes HL and LL, which exhibited lower E-CR1 expression levels than the CR1 genotype HH, indicating an association between CR1 gene polymorphism and levels of IC in CH-C. These observations highlight the important role of E-CR1 in clearance of IC from the circulation in patients with liver diseases, especially of type C, although we cannot rule out the
by the evidence that the monoclonal antibody 31R recognises a single epitope on the CR1 molecule that bears at least two C3b and C4b binding sites independent of structural allotypes. Moreover, autoantibodies against CR1 have been reported in a very limited number of cases of autoimmune disease, for example SLE, and incubation of erythrocytes with serum from patients with CH-C did not affect measurement of CR1/E with the particular monoclonal antibody 31R used in our study (data not shown). Therefore, in patients with CH-C and LC-C, the decrease in E-CR1 did not appear to be due to occupancy of E-CR1 by IC or autoantibodies against CR1, but rather to actual loss of the E-CR1 epitope. Whether loss of the E-CR1 epitope is associated with actual loss of the CR1 molecule itself on erythrocytes, or with conformational changes in E-CR1 structure during interaction with and release of IC, remains to be determined.

We also examined and demonstrated the effect of the CR1 gene polymorphism on binding of erythrocytes to IC in patients with HBV and HCV. The results indicate that binding of a virus containing IC to erythrocytes depends on the CR1 gene polymorphism, suggesting an association between E-CR1 and efficiency of IC clearance from the circulation in CH-C and LC-C. However, not all viral particles form IC and not all IC in CH-B and LC-C contain viral particles or viral genomes. Therefore, further investigations are required with sensitive and quantitative methods to clarify this phenomenon.

In conclusion, the results of this study emphasise the important role of E-CR1 in the regulation of circulating IC levels in patients with chronic viral liver diseases, in particular of type C. Low expression of E-CR1 in chronic viral liver diseases, especially of type C, appears to be an acquired phenomenon and may be associated with reduced clearance of IC from the circulation in these patients.

ACKNOWLEDGEMENT

The authors thank Dr Douglas T Fearon for helpful discussions and critical review of this paper. This work was supported in part by grants from the Study Group for Intractable Hepatitis Research Committee, the Ministry of Health, Labour and Welfare, Japan (TT).

Authors’ affiliations

1 Miyake Y, Iwasaki A, Takahashi H, Shimomura H, Taniguchi T, Tsuji F, First Department of Internal Medicine, Okayama University Medical School, Okayama, Japan
2 Koide N, Department of Laboratory Medicine, Okayama University Medical School, Okayama, Japan
3 Matsuzuka T, Ogura K, Tobe H, Health and Medical Centre, Okayama University, Okayama, Japan

REFERENCES

1 Fearon DT, Ahearn JM. Complement receptor type 1 (CR1/C3b receptor; CD35) and complement receptor type 2 (C3d/Epstein-Barr virus receptor; CD21). In: Lambris JD, ed. Current topics in microbiology and immunology. Berlin: Springer Verlag, 1989:83–98.
Want to know more?

Data supplements

Limited space in printed journals means that interesting data and other material are often edited out of articles; however, limitless cyberspace means that we can include this information online. Look out for additional tables, references, illustrations.

www.gutjnl.com
Regulation of circulating immune complexes by complement receptor type 1 on erythrocytes in chronic viral liver diseases

J Miyaike, Y Iwasaki, A Takahashi, H Shimomura, H Taniguchi, N Koide, K Matsuura, T Ogura, K Tobe and T Tsuji

Gut 2002 51: 591-596
doi: 10.1136/gut.51.4.591

Updated information and services can be found at:
http://gut.bmj.com/content/51/4/591

These include:

References
This article cites 24 articles, 7 of which you can access for free at:
http://gut.bmj.com/content/51/4/591#BIBL

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Topic Collections
Articles on similar topics can be found in the following collections

- Cirrhosis (331)
- Hepatitis C (160)

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/