Serotonergic modulation of visceral sensation: upper gastrointestinal tract

J Tack, G Sarnelli

Agents that modify serotonergic function have therapeutic potential for the treatment of visceral hypersensitivity, either through a direct effect on perception or through modulation of visceral tone or motility. Administration of selective serotonin reuptake inhibitors reduces oesophageal sensitivity to distension but not gastric sensitivity to distension. 5-HT ligands may also influence gastric mechanosensitivity by altering tone. Although the exact role of 5-HT receptors in the control of gastrointestinal functions remains unknown, 5-HT is generally considered to be the main candidate involved in the modulation of motor and sensory function from the gastrointestinal tract. Hence serotonergic modulation of upper gut sensitivity appears to be promising for the development of novel approaches to the treatment of functional disorders of the upper gastrointestinal tract.

INTRODUCTION
Serotonin and the gastrointestinal tract
Serotonin (5-hydroxytryptamine; 5-HT) is a neurotransmitter in the central nervous system (CNS). The presence of 5-HT in the gastrointestinal tract has been demonstrated immunohistochemically in enterochromaffin (EC) cells and also in enteric neurones.1–3 Release of 5-HT and other paracrine messengers from EC cells act as chemical and mechanical transducers for the initiation of local reflexes (for example, peristalsis) and for activation of afferent projections to the CNS.4

Accumulating evidence supports the hypothesis that 5-HT is a neurotransmitter in the enteric nervous system (ENS).5,4 However, due to the presence of multiple 5-HT receptor subtypes, and the lack of suitable ligands that can be safely used in vivo, the physiological role of neuronal 5-HT in the gastrointestinal tract remains unclear.6–7

Visceral sensation is modulated at different levels of the brain-gut axis. The neuroanatomical pathways involved in this process have been reviewed extensively.8–10 The gastrointestinal tract can respond to different sensory modalities, including chemo-, thermo-, and mechanosensitivity. Of these, only visceral mechanosensitivity has been studied in depth. Under normal circumstances, most of the visceral input to the CNS is not perceived consciously. Patients with functional bowel disease are thought to perceive visceral stimuli in an abnormal manner11 but it is not clear at what level this originates. An altered threshold of visceral mechanoreceptor sensitivity, altered modulation in the conduction of sensorial input, or a lowered pain threshold at a central level have all been suggested.12–13

The role of 5-HT in visceral perception requires further investigation. Descending serotonergic systems present in supraspinal and spinal pathways are thought to be involved in the modulation of antinociception, which suggests that 5-HT ligands may have the potential to alter visceral perception.14–16 Although the exact role of 5-HT receptors in the control of gastrointestinal functions remains unknown, 5-HT is generally considered to be the main candidate involved in the modulation of motor and sensory function from the gastrointestinal tract.1,17,18 and consequently 5-HT receptor ligands are being used, or are under investigation for use, in the treatment of different functional gastrointestinal disorders.

See end of article for authors’ affiliations

Correspondence to: Dr J Tack, Department of Internal Medicine, Division of Gastroenterology, University Hospital Gasthuisberg, Herestraat 49, B-3000 Leuven, Belgium; jan.tack@med.kuleuven.ac.be

SUMMARY
Agents that modify serotonergic function have therapeutic potential for the treatment of visceral hypersensitivity, either through a direct effect on perception or through modulation of visceral tone or motility. Administration of selective serotonin reuptake inhibitors (SSRIs) reduces oesophageal sensitivity to distension but not gastric sensitivity to distension. Administration of amitriptyline to patients with functional dyspepsia has no effect on sensitivity to gastric distension but may provide symptomatic benefit. The 5-HT, antagonist ondansetron partly reverses sensitisation to gastric distension during duodenal lipid infusion. 5-HT ligands may also influence gastric mechanosensitivity by altering tone. Cisapride, a 5-HT antagonist/weak 5-HT3 antagonist induces a small degree of gastric contraction in the fasting state but postprandially it markedly enhances gastric accommodation. Similarly, the SSRI paroxetine enhances relaxation in response to a liquid meal and may provide symptomatic benefit for patients with impaired gastric accommodation. The 5-HT receptor agonist sumatriptan activates intrinsic inhibitory neurones in the stomach. The resulting gastric relaxation has been shown to reduce postprandial symptoms in patients with functional dyspepsia caused by hypersensitivity. Buspiroine, a 5-HT agonist, reduces cholinergic tone to the stomach, thereby increasing the threshold for discomfort and reducing the severity of dyspeptic symptoms.

Abbreviations: CNS, central nervous system; EC, enterochromaffin cells; ENS, enteric nervous system; SSRIs, selective serotonergic reuptake inhibitors; 5-HT, serotonin.
5-HT RECEPTORS AND 5-HT RECEPTOR LIGANDS

Several 5-HT receptor subtypes have been identified in the gastrointestinal tract. These are located in nerves or on smooth muscle cells where they mediate a number of different actions (fig 1). Although a growing number of 5-HT receptor agonists and antagonists are available, only a limited number of selective ligands are suitable for human studies (table 1).

Enteric neurones resemble central serotonergic neurones in terms of their response to 5-HT reuptake inhibitors. SSRIs prolong the availability of physiologically released 5-HT and thereby enhance the effects of 5-HT released synaptically from neurones located centrally as well as those originating at the level of the ENS (fig 2). These agents have to be used to study involvement of 5-HT in gastrointestinal sensorimotor function in humans.

Non-SSRIs such as the tricyclic antidepressants have received a relatively high level of attention whereas the effects of SSRIs on gastrointestinal function and their role in the treatment of functional gastrointestinal disorders remains largely unexplored.

SEROTONERGIC MODULATION OF OESOPHAGEAL SENSITIVITY

Conflicting results have been reported concerning the ability of 5-HT to modify oesophageal sensitivity. According to one study, administration of the tricyclic antidepressant amitriptyline, a non-SSRI, failed to alter thresholds for perception, discomfort, and pain induced by oesophageal balloon distension. However, in another study, the tricyclic antidepressant imipramine reduced the pain threshold, but not the perception threshold, during balloon distension in healthy volunteers but the difference was small. Recently, we demonstrated that administration of the SSRI citalopram significantly lowered mechano- and chemosensitivity in healthy subjects. The action of citalopram occurred without alteration of basal oesophageal motility. Although this finding supports the involvement of 5-HT in the modulation of oesophageal sensitivity, it does not provide information about whether a central or peripheral mechanism of action is involved.

Motility abnormalities and hypersensitivity to acid, cholinergic agents, and intraluminal distension stimuli are pathophysiological abnormalities found in patients with non-cardiac chest pain. The results of a relatively small study

Table 1 Overview of 5-HT receptors and their ligands

<table>
<thead>
<tr>
<th>Subtype</th>
<th>Selective agonist</th>
<th>Selective antagonist</th>
<th>Non-selective agonist</th>
<th>Non-selective antagonist</th>
</tr>
</thead>
<tbody>
<tr>
<td>1A</td>
<td>8-OH-DPAT</td>
<td>WAY 100365</td>
<td>Buspirone</td>
<td></td>
</tr>
<tr>
<td>1B</td>
<td>Sumatriptan</td>
<td>GR 55562</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1D</td>
<td>Sumatriptan</td>
<td>BRL 15572</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1F</td>
<td>LY 334370</td>
<td>Ketanserin</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2A</td>
<td>α-Me-5-HT</td>
<td>MDL 100907</td>
<td>Mianserin</td>
<td></td>
</tr>
<tr>
<td>2B</td>
<td>α-Me-5-HT</td>
<td>SB 200646</td>
<td>Cyproheptadine</td>
<td></td>
</tr>
<tr>
<td>2C</td>
<td>α-Me-5-HT</td>
<td>BV 723C86</td>
<td>Cyproheptadine</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>SR 57227</td>
<td>OB 1227</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>BIM U8</td>
<td>GR 113808</td>
<td>Cisapride</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RS 67506</td>
<td>SB 20470</td>
<td>Renzapride</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ML 10302</td>
<td>RS 100235</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tegaserod</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Prucalopride</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Those suitable for use in humans are italicised.
Figure 2 Rationale for the use of selective serotonin reuptake inhibitors (SSRIs) and the role of 5-HT in gastrointestinal sensorimotor function.

(n=19) showed that imipramine improved symptoms in these patients but chemo- or mechanosensitivity of the oesophagus was not investigated. However, the authors suggested that the improvement might have been associated with a 5-HT mediated visceral analgesic effect. Preliminary data indicate that ondansetron increases oesophageal thresholds to distension in patients with non-cardiac chest pain suggesting that 5-HT receptor agonists, and 5-HT4 receptors all appear to have beneficial effects in patients with functional dyspepsia and impaired accommodation. The 5-HT3 receptor agonist buspirone may have additional therapeutic potential for the treatment of gastric visceral hypersensitivity. The effect of these agents on visceral sensitivity appears to be associated with a change in gastric tone.

SEROTONERGIC MODULATION OF DUODENAL SENSIBILITY

Upper gastrointestinal viscerovisceral reflexes are predominantly mediated through vagal afferents and triggered physiologically by intestinal mechanical stimuli and by the presence of duodenal nutrients. Several observations suggest the involvement of 5-HT in the control of duodenogastric reflexes. In animals, low intensity non-painful duodenal distension inhibits gastric motility. This response is abolished by low doses of granisetron administered peripherally but not centrally, suggesting a peripheral site of action for this 5-HT antagonist. In humans, ondansetron reduces the sensation of nausea provoked by the combined stimuli of intraduodenal lipid infusion and gastric distension. As the drug does not alter gastric tone or sensitivity, it probably acts at duodenal vagal afferents.
A recent study demonstrated reduction in dyspepsia symptoms in patients treated with the 5-HT3 receptor antagonist alosetron.

CONCLUSION
Serotonergic modulation of upper gut sensitivity appears promising for the development of novel approaches to the treatment of functional disorders of the upper gastrointestinal tract.

References

Serotonergic modulation of visceral sensation: upper gastrointestinal tract

J Tack and G Sarnelli

Gut 2002 51: i77-i80
doi: 10.1136/gut.51.suppl_1.i77

Updated information and services can be found at:
http://gut.bmj.com/content/51/suppl_1/i77

These include:

References
This article cites 44 articles, 12 of which you can access for free at:
http://gut.bmj.com/content/51/suppl_1/i77#BIBL

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/