Activin A is an autocrine activator of rat pancreatic stellate cells: potential therapeutic role of follistatin for pancreatic fibrosis

N Ohnishi, T Miyata, H Ohnishi, H Yasuda, K Tamada, N Ueda, H Mashima, K Sugano

Background and aim: The present study was conducted to examine the effect of activin A on activation of rat pancreatic stellate cells (PSCs).

Methods: PSCs were prepared from rat pancreas using collagenase digestion and centrifugation with Nycodenz gradient. Activation of PSCs was examined by determining smooth muscle actin expression with western blotting. The presence of activin A receptors in PSCs was investigated by reverse transcription-polymerase chain reaction (RT-PCR), western blotting, and immunocytochemistry. Expression of activin A and transforming growth factor β (TGF-β) mRNA was examined by RT-PCR. Activin A and TGF-β peptide concentrations were examined with ELISA. Existence of activin A peptide in PSCs was investigated by immunocytochemistry. Collagen secretion was determined by Sirius red dye binding.

Results: Activin A receptors I and Ila were present in PSCs. PSCs expressed activin A mRNA and secreted activin A. Activin A enhanced PSC activation and collagen secretion in a dose dependent manner. TGF-β and activin A increased each other’s secretion and mRNA expression of PSCs. Follistatin decreased TGF-β mRNA expression and TGF-β secretion of PSCs, and inhibited both PSC activation and collagen secretion.

Conclusion: Activin A is an autocrine activator of PSCs. Follistatin can inhibit PSC activation and collagen secretion by blocking autocrinized activin A and decreasing TGF-β expression and secretion of PSCs.
activin A and reducing TGF-β release and mRNA expression of PSCs. Hence activin A is an autocrine activator of PSCs and follistatin can be used potentially in the treatment of pancreatic fibrosis.

METHODS

Materials

Recombinant human activin A and rabbit anti-activin A polyclonal antibody were kindly provided by Dr Yuzuru Eto (Ajinomoto Co., Japan). Pronase, Nycodenz, and anti-SMA antibody were purchased from Sigma (St Louis, Missouri, USA). DNase I was from Roche (Basel, Switzerland). Collagenase P was from Boehringer Mannheim (Mannheim, Germany). Follistatin was from R&D Systems (Abington, UK). Antiactivin receptor type I and type IIa antibodies were from Santa Cruz (Santa Cruz, California, USA). Horseradish conjugated donkey antimouse IgG, Cy3 conjugated donkey anti-rabbit IgG, Cy3 conjugated donkey antigoat IgG, and FITC conjugated donkey antimouse IgG antibodies were from Jackson Immuno Research (West Grove, Pennsylvania, USA).

Isolation and culture of rat pancreatic stellate cells

Rat pancreatic stellate cells were prepared as described previously.21 Briefly, rat pancreas was digested in Gey’s balanced salt solution supplemented with 0.05% collagenase P, 0.02% pronase, and 0.1% DNase I. After filtration through nylon mesh, cells were centrifuged in a 13.2% Nycodenz gradient at 1400g for 20 minutes. PSCs in the band just above the interface of the Nycodenz solution and the aqueous one were collected, washed, and resuspended in Iscove’s modified Dulbecco’s medium containing 10% fetal calf serum, 100 U/ml penicillin, and 100 mg/ml streptomycin. PSCs were cultured in a 5% CO2 atmosphere at 37°C. All experiments were carried out using PSCs between passages one and two.

Western blotting

Western blotting was carried out as described previously,22 using the enhanced chemilluminescence reagent to visualise the secondary antibody. For gel electrophoresis, 10 μg of protein were loaded on each lane of a 10% sodium dodecyl sulphate-polyacrylamide gel.

Immunofluorescence microscopy

Immunofluorescence microscopy was performed as described previously23 using an Olympus BX51 microscope (Olympus Co., Tokyo, Japan). Images were digitised and then processed using Photoshop 5.0 software (Adobe Systems Inc., Mountain View, California, USA).

Quantification of activin A and TGF-β

Concentrations of activin A and TGF-β in culture media of PSCs were determined using commercial kits from R&D Systems and DRG International (Mountainside, New Jersey, USA), respectively, according to the manufacturer’s instructions.

Quantification of collagen secretion

Collagen secreted into culture media by PSCs was determined using Sircol Sirius red dye (Biocolor Ltd, Newtownabbey, UK), as described previously.24 Collagen was measured by spectrophotometry at 540 nm.

Reverse transcription-polymerase chain reaction (RT-PCR)

Total RNA was isolated from PSCs with TRIzol reagent (Life Technologies BRL, Grand Island, New York, USA). First strand cDNA was made from total RNA using ReverTra Ace system (Toyobo, Tokyo, Japan) according to the manufacturer’s instructions. PCR for TGF-β was carried out using the PCR kit for rat TGF-β (Maximbio, San Francisco, California, USA). PCR for rat activin A βα subunit, activin type I receptor, activin type IIa receptor, and rat glyceraldehyde-3-phosphate dehydrogenase (GAPDH) was performed with the following primers:

- rat activin A βα subunit: sense 5’-GGACCTAACCTCTCAGCCAGAGATG-3’, antisense 5’-TCTAAA-ATGCAAGTGCTCTCCGTG-3’
- rat activin type I receptor: sense 5’-GGGTTGCTAGACCGGAAGATGAC-3’, antisense 5’-ACATTTGCCTTTGCGACC-3’
- rat activin type IIa receptor: sense 5’-AGATGGAAGTCACACAGCCAC-3’, antisense 5’-CACACTGTG-GCTCTTTTCTCTG-3’
- rat GAPDH: sense 5’-CATGACACAGTCCATGACCAC-3’, antisense 5’-CACCTGTGTCGAT-GCCATATC-3’

The reactions were conducted in a DNA Thermal Cycler (Perkin-Elmer Corp., Norwalk, Connecticut, USA) with the following cycle conditions: denaturation at 94°C for one minute, annealing at 52°C for 45 seconds, and extension at 72°C for 45 seconds. The number of cycles was 30 for rat activin A βα subunit, TGF-β, and rat activin receptors, and 18 for GAPDH.

Statistical analysis

ANOVA was used to determine statistical significance. A p value of <0.05 was considered significant.

RESULTS

Activin receptors I and IIa are present in PSCs

As the first attempt to elucidate activin A effects on PSCs, we examined the presence of activin A receptors in PSCs. As activin receptors function as a heterodimer of type I and type II receptors, we examined the presence of both activin receptor type I and type IIa. As shown in fig 1A, RT-PCR with primers specific for rat activin receptor I and IIa amplified 480 (activin receptor I) and 423 (activin receptor IIa) base pair sequences, respectively. These PCR products were verified by sequencing (data not shown). These data indicate that mRNAs of both activin receptors I and IIa are expressed in PSCs. To confirm expression of activin receptor I and IIa proteins, we carried out western blotting of PSC lysate using antiactivin receptor I and IIa antibodies. As shown in fig 1B, western blotting revealed expression of both activin receptor I and IIa proteins in PSCs. As an independent test of the presence of activin receptors, we applied immunocytochemistry using antiactivin receptor I and IIa antibodies. As shown in fig 2, immunocytochemistry revealed that both signals of activin type I and type IIa receptors are observed in PSCs. These signals were abolished when antibodies were pre-incubated with competing peptides to each antibody (data not shown). These data indicate that activin receptor components essential in forming functional activin receptor heterodimers are present in PSCs.

Activin A activates PSCs and increased collagen secretion

We next examined the effect of activin A on PSC activation and collagen secretion. As shown in fig 3A, activin A increased the amounts of z-SMA in PSCs in a dose dependent manner. The maximum increase was observed at 1 nM. Activin A also enhanced collagen secretion by PSCs (fig 3B). These data indicate that activin A activates PSCs and suggest activin A participation in pancreatic fibrosis.
Activin A is secreted from PSCs
As activin A exerts its effect in an autocrine manner in some cell types, we examined whether activin A is secreted from PSCs. As shown in figure 4, activin A peptide was detected in PSC culture medium. In particular, activin A concentration in PSC culture medium markedly increased on the first day after the culture medium was changed to fresh medium. No activin A activity was detected in fresh culture medium. These data indicate that activin A is secreted from PSCs. As an independent test of secretion of activin A from PSCs, we examined the existence of activin A peptide in PSCs with immunocytochemistry. We applied double staining with an antiactivin A polyclonal antibody and an anti-α-SMA

Figure 1 Expression of activin receptors I and IIa in pancreatic stellate cells (PSCs). (A) Reverse transcription-polymerase chain reaction of activin receptors I (lane 1) and IIa (lane 2) was carried out using PSC total RNA (1 μg) as a template. The right lane is a size marker of 1 kb DNA ladder. The bands were confirmed by sequencing. (B) Western blotting of activin receptors I (lane 1) and IIa (lane 2) was performed using their specific antibodies. Molecular markers are indicated on the right.

Figure 2 Fluorescence micrographs showing the immunoreactivity of (A) activin receptor type I and (B) activin receptor type IIa in pancreatic stellate cells, with corresponding Nomarski images (C, D). Bar 40 μm.

Figure 3 Effect of activin A on α smooth muscle actin (α-SMA) expression and collagen secretion by pancreatic stellate cells (PSCs). (A) Top panel: western blotting of α-SMA in total homogenates of PSCs was carried out after 48 hours of incubation with the indicated amounts of activin A. Activin A increased α-SMA expression of PSCs. Bottom panel: the blots were reprobed with anti-α-tubulin antibody. Expression of α-tubulin protein, examined as an internal control, was not altered by activin A. (B) Collagen secretion by PSCs into culture medium during 48 hours of incubation with the indicated amounts of activin A was quantified with Sirius red dye. Results are expressed as per cent collagen concentration of controls. Values are means (SEM) of three independent experiments (*p<0.05).
monoclonal antibody, a marker of activated PSCs. As depicted in fig 5, activin A signals were observed as small dots in PSCs in which α-SMA signals were detected as fine linear architecture. These data indicate that activin A peptide is present in PSCs, confirming that activin A is secreted from PSCs.

Activin A and TGF-β enhanced each other’s secretion and mRNA expression of PSCs

In PSC activation, TGF-β is also known to play a stimulatory role in an autocrine manner. To elucidate the interaction of the stimulatory effects of autocrined activin A and TGF-β on PSC activation, we examined their effects on each other’s secretion and mRNA expression of PSCs. As shown in fig 6, activin A enhanced TGF-β secretion from PSCs in a dose dependent manner (fig 6B). In the same manner, TGF-β also increased activin A secretion from PSCs (fig 6A). These data indicate that activin A and TGF-β potenti ted each other’s secretion from PSCs. Moreover, activin A and TGF-β increased each other’s mRNA expression in PSCs in a dose dependent manner (fig 6C, D). These data indicate that activin A and TGF-β cooperatively activate PSCs. Moreover, these results provide a hypothesis that blockade of autocrined activin A may be able to decrease TGF-β mRNA expression and TGF-β secretion of PSCs, and consequently reduce PSC activation and collagen secretion by blocking both activin A and TGF-β stimuli.

Follistatin decreased TGF-β secretion and mRNA expression of PSCs

To examine this hypothesis, we investigated the effect of follistatin, an activin A binding protein that blocks activin A activity, on TGF-β secretion and mRNA expression of PSCs. As shown in fig 7, follistatin decreased TGF-β secretion from PSCs in a dose dependent manner (fig 7A). Follistatin also reduced TGF-β mRNA expression in PSCs (fig 7B). Together with the data shown above that activin A enhanced TGF-β secretion from PSCs, it is suggested that follistatin inhibited TGF-β secretion and mRNA expression of PSCs by inhibiting the autocrined activin A stimulus, indicating that follistatin can concurrently inhibit both autocrined activin A and TGF-β stimuli.

Follistatin inhibited PSC activation and collagen secretion

Knowing that follistatin blocks both activin A and TGF-β stimuli to PSCs, we finally examined whether follistatin...

Figure 4 Activin A secretion from pancreatic stellate cells. Activin A concentration in culture medium was determined 1–4 days after the culture medium was changed. Results are means (SEM) of three independent experiments.

Figure 5 Fluorescence micrographs showing the immunoreactivity of activin A in pancreatic stellate cells (PSCs). Cells were double stained with an anti-activin A rabbit polyclonal antibody (B, D) and an anti-α smooth muscle actin (α-SMA) mouse monoclonal antibody (A, C). Activin A immunoreactivity was observed in PSCs identified with their α-SMA fine network architecture. Bars 40 μm.
activin A and transforming growth factor β (TGF-β) on each other’s secretion and mRNA expression of pancreatic stellate cells (PSCs). (A, B) Concentration of activin A (A) and TGF-β (B) secreted from PSCs into culture medium was quantified after 48 hours of incubation with the indicated amounts of TGF-β (A) or activin A (B). Results are means (SEM) of three independent experiments (*p<0.05, **p<0.01). (C, D) mRNA expression of activin A (A subunit (C)) and TGF-β (D) was determined by reverse transcription-polymerase chain reaction after 24 hours of incubation with the indicated amounts of TGF-β (C) or activin A (D), using glyceraldehyde-3-phosphate dehydrogenase (GAPDH) mRNA expression as a control.

Figure 6: Effect of activin A and transforming growth factor β (TGF-β) on each other’s secretion and mRNA expression of pancreatic stellate cells (PSCs). (A, B) Concentration of activin A (A) and TGF-β (B) secreted from PSCs into culture medium was quantified after 48 hours of incubation with the indicated amounts of TGF-β (A) or activin A (B). Results are means (SEM) of three independent experiments (*p<0.05, **p<0.01). (C, D) mRNA expression of activin A (A subunit (C)) and TGF-β (D) was determined by reverse transcription-polymerase chain reaction after 24 hours of incubation with the indicated amounts of TGF-β (C) or activin A (D), using glyceraldehyde-3-phosphate dehydrogenase (GAPDH) mRNA expression as a control.

Inhibits PSC activation and collagen secretion. As shown in fig 8A, follistatin decreased α-SMA content in PSCs in a dose-dependent manner, indicating that follistatin inhibited PSC autoactivation. In addition, as shown in fig 8B, follistatin inhibited collagen secretion by PSCs. These data indicate that follistatin is a potent inhibitor of PSC activation and collagen secretion.

DISCUSSION
In this study, we demonstrated that activin A activates PSCs and promotes collagen secretion in an autocrine manner. We also showed that activin A and TGF-β enhance each other’s secretion and mRNA expression of PSCs. We also found that follistatin, an activin A binding and blocking protein, inhibits TGF-β secretion and mRNA expression of PSCs and attenuates PSC activation and collagen secretion. These data suggest the participation of activin A in pancreatic fibrosis and the potential application of follistatin in its treatment.

With regard to the effects of activin A on the pancreas, much attention has been directed towards its physiological role in regulation and differentiation of pancreatic islet cells. Activin A has been shown to be present in progenitor cells of fetal pancreas and in islet A and D cells of adult pancreatic islets. Both in vitro and in vivo studies have revealed that activin A regulates differentiation of pancreatic endocrine cells. It is also reported that activin A stimulates insulin release from islet B cells. To date, however, activin A participation in pancreatic disorders, including pancreatic fibrosis, has been uncertain and its presence in PSCs has not been described. Thus the current study provides the first evidence of activin A participation in pancreatic fibrosis.

The mechanism of digestive organ fibrosis has been extensively studied on hepatic fibrosis, including hepatic stellate cell (HSC) participation. Thus the mechanism of pancreatic fibrosis has been assessed in the analogy of that of hepatic fibrosis. Although activin A has been demonstrated to contribute to hepatic fibrosis and to increase HSC collagen expression, it is noteworthy that the cellular source of activin A is quite different between the pancreas and liver. In both normal and fibrotic livers, activin A is mainly expressed in parenchymal hepatocytes. Although HSCs express activin A, the cellular population of parenchymal hepatocytes is much greater than that of HSCs in the liver. Thus it is assumed that activin A promotes hepatic fibrosis mainly in a paracrine manner. In contrast, pancreatic acinar cells, a major inhabitant of the pancreas, do not express activin A. Although A and D cells in pancreatic islets express activin A, their population is small, especially in fibrotic pancreas. Therefore, it can be postulated that activin A activates PSCs and promotes pancreatic fibrosis in an autocrine manner. Taken together, we suggest that distinct mechanisms underlie pancreatic and hepatic fibrosis.

Our observations that activin A and TGF-β increased each other’s mRNA expression and secretion of PSCs are unique. They imply the existence of an autocrine loop of activin A and TGF-β in PSCs. In parenchymal hepatocytes, both activin A and TGF-β are expressed and regulate their proliferation in an autocrine manner. However, the interaction between autocrined activin A and TGF-β in hepatocyte growth control is still unknown. The current study demonstrated, for the first time, the interaction between autocrined activin A and TGF-β, suggesting activin A and TGF-β synergistically promote pancreatic fibrosis. Although this interaction implies that both activin A and TGF-β are potent fibrogenic factors, it provides a novel therapeutic strategy for pancreatic fibrosis. Accordingly, blockade of either activin A or TGF-β can inhibit
both effects of activin A and TGF-β on PSC activation. Indeed, follistatin reduced TGF-β secretion and mRNA expression of pancreatic stellate cells (PSCs). Results are means (SEM) of three independent experiments (*p<0.05, **p<0.01). B mRNA expression of TGF-β in PSCs was determined by reverse transcription-polymerase chain reaction after 24 hours of incubation with the indicated amounts of follistatin, using glyceraldehyde-3-phosphate dehydrogenase (GAPDH) mRNA

Figure 7 Effect of follistatin on transforming growth factor β (TGF-β) secretion and mRNA expression of pancreatic stellate cells (PSCs). (A) Concentration of TGF-β secreted from PSCs into culture medium was quantified after 48 hours of incubation with the indicated amounts of follistatin. Results are means (SEM) of three independent experiments (*p<0.05, **p<0.01). (B) mRNA expression of TGF-β in PSCs was determined by reverse transcription-polymerase chain reaction after 24 hours of incubation with the indicated amounts of follistatin, using glyceraldehyde-3-phosphate dehydrogenase (GAPDH) mRNA

Figure 8 Effect of follistatin on pancreatic stellate cell (PSC) activation and collagen secretion. (A) Top panel: western blotting of α smooth muscle actin (α-SMA) in total homogenates of PSCs was carried out after 48 hours of incubation with the indicated amounts of follistatin. Follistatin reduced α-SMA expression of PSCs. Bottom panel: the blots were reprobed with anti-α-tubulin antibody. Expression of α-tubulin protein, examined as an internal control, was not altered by activin A. (B) Collagen secretion by PSCs into culture medium during 48 hours of incubation with the indicated amounts of follistatin was quantified with Sirius red dye. Results are expressed as per cent collagen concentration of control. Values are means (SEM) of three independent experiments (*p<0.05).

In conclusion, we have shown that activin A is an autocrine activator of PSCs and follistatin inhibited PSC activation. These observations provide new insights for understanding the mechanism of pancreatic fibrosis and developing novel therapeutic strategies.

ACKNOWLEDGEMENTS

We are grateful to Dr Yuzuru Eto for providing activin A and antiaactivin A antibody, and to Ms Mie Shikata for technical and secretarial assistance. This work was supported by grants-in-aid from the ministry of Education, Culture, Sports, Science, and Technology.

Authors’ affiliations
N Ohnishi*, T Miyata*, H Ohnishi, K Tamada, K Sugano, Department of Internal Medicine, Division of Gastroenterology, Jichi Medical School, Tochigi, Japan
H Yasuda, Division of Gastroenterology, Showa University Fujigaoka Hospital, Kanagawa, Japan
N Ueda, H Mashima, Department of Gastroenterology, University of Tokyo School of Medicine, Tokyo, Japan

*N Ohnishi and T Miyata contributed equally to this study.
REFERENCES

Activin A is an autocrine activator of rat pancreatic stellate cells: potential therapeutic role of follistatin for pancreatic fibrosis

N Ohnishi, T Miyata, H Ohnishi, H Yasuda, K Tamada, N Ueda, H Mashima and K Sugano

Gut 2003 52: 1487-1493
doi: 10.1136/gut.52.10.1487

Updated information and services can be found at:
http://gut.bmj.com/content/52/10/1487

These include:

References
This article cites 34 articles, 11 of which you can access for free at:
http://gut.bmj.com/content/52/10/1487#BIBL

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Topic Collections
Articles on similar topics can be found in the following collections
Pancreas and biliary tract (1949)

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/