Potential role for peroxisome proliferator activated receptor (PPAR) in preventing colon cancer

L Jackson, W Wahli, L Michalik, S A Watson, T Morris, K Anderton, D R Bell, J A Smith, C J Hawkey, A J Bennett

Background: Peroxisome proliferator activated receptors (PPARs) are nuclear hormone receptors involved in genetic control of many cellular processes. PPAR and PPAR have been implicated in colonic malignancy. Here we provide three lines of evidence suggesting an inhibitory role for PPAR in colorectal cancer development.

Methods: Levels of PPAR mRNA and protein in human colorectal cancers were compared with matched non-malignant mucosa using RNAse protection and western blotting. APC51/+, mice were randomised to receive the PPAR activator methylclofenapate 25 mg/kg or vehicle for up to 16 weeks, and small and large intestinal polyps were quantified by image analysis. The effect of methylclofenapate on serum stimulated mitogenesis (thymidine incorporation), linear cell growth, and annexin V and propidium iodide staining were assessed in human colonic epithelial cells.

Results: PPAR mRNA and protein expression levels were significantly depressed in colorectal cancer compared with matched non-malignant tissue. Methylclofenapate reduced polyp area in the small intestine from 18.7 mm (median (interquartile range 11.1, 26.8)) to 9.90 (4.88, 13.21) mm (p=0.003) and in the colon from 9.15 (6.31, 10.5) mm to 3.71 (2.71, 5.99) mm (p=0.009). Methylclofenapate significantly reduced thymidine incorporation and linear cell growth with no effect on annexin V or propidium iodide staining.

Conclusions: PPAR may inhibit colorectal tumour progression, possibly via inhibition of proliferation, and may be an important therapeutic target.

Colon cancer is the fourth commonest form of cancer occurring worldwide, with an estimated 783 000 new cases diagnosed in 1990, and is responsible for 7.2% of all cancer deaths worldwide. A moderately predictable evolution of oncogenic transformation is recognised but as yet little current understanding has translated into therapeutic gain. Among the most promising approaches to chemoprevention are the use of aspirin or non-aspirin non-steroidal anti-inflammatory drugs (NSAIDs) or inducible cyclooxygenase (COX)-2 inhibitors. However, toxicity and cost considerations may limit application at a population level. Moreover, how such chemopreventative strategies work, whether there are common or multiple mechanisms, and how interactions with oncogenic expression take place are all far from clear.

Peroxisome proliferator activated receptors (PPARs) are ligand-activated nuclear transcription factors first recognised for their role in rodent livers where they mediate the proliferative response of peroxisomes to various compounds. Since their identification, it has become clear that PPARs play a much wider and central role in orchestrating gene expression in response to exogenous ligands. In particular, they have an intimate two way relationship with NSAIDs. PPAR activation can lead to altered expression of COX-2, while NSAIDs have been reported to be capable of activating PPARs. In addition, NSAIDs, through effects on COX activity, can alter synthesis of eicosanoids that may bind to and act as ligands for PPARs.

In addition, NSAIDs have themselves been reported to inhibit DNA binding activity of PPARs with apparent functional consequences such as induction of apoptosis. Much attention has focused on the role of the different PPARs in the human intestine, in particular on their importance in neoplastic transformation. PPARβ and to a lesser degree PPARγ have been proposed as possible promoters of colorectal carcinoma. Less attention has been paid to PPARα, probably because of a relatively lower baseline expression level of this isotype in non-malignant human colonic mucosa. Although PPARα ligands appear to promote expression of COX-2 in animals, human studies suggest that PPARα may act conversely and inhibit COX-2 expression. PPARα is activated by the omega-3 fatty acid constituents of fish oil diet which have been demonstrated both to reduce colorectal cancer progression in various animal models and to reduce cellular proliferation rates in colorectal mucosa of patients with familial adenomatous polyposis. PPARα activation may thus be potentially beneficial in preventing colon cancer. This hypothesis is supported by the more recent study of Tanaka et al which demonstrated that bezafibrate, a PPARα ligand, inhibited azoxymethane induced aberrant crypt foci formation in rats.

In order to understand further the biology of PPARα in human colorectal function and its possible role in malignant pathology, we compared expression of PPARα in non-malignant and malignant colonic mucosa, activation by ligands, and the potential value of these ligands in preventing colorectal cancer in the APC51/+ mouse model of familial adenomatous polyposis.

Materials and Methods

Chemicals

Methylclofenapate (synthesised by Lancaster Synthesis Ltd, Lancashire, UK) was a kind gift from Dr CR Elcombe. We purchased Wy 14643 from Biomol (Affinity Research Products)

Abbreviations:
NSAIDs, non-steroidal anti-inflammatory drugs; COX, cyclooxygenase; PPAR, peroxisome proliferator activated receptor; IQR, interquartile range.
Lid, Mamhead, Exeter, UK). We obtained radiolabelled chemicals from Amersham International, UK. Unless otherwise stated, we obtained other compounds from Sigma (UK).

Plasmids

The reporter plasmid PPRE-tk-Luc, a kind gift from Dr R Evans (Salk Institute), has previously been described, and contains three copies of the acyl-coA oxidase PPRE upstream of the herpes virus thymidine promoter. We obtained human PPARα in pBK-CMV (1731 bp), used for RNAse protection assays, from the Image Consortium Library. pSG5-xPPARβ and pSG5-xPPARγ expression plasmids constructed by insertion of the entire xPPARβ and xPPARγ DNAs as EcoRI fragments into pSG5α have previously been described and were used for transfection studies, as was pSG5-MPPARα expression plasmid, a kind gift from Dr S Green.²⁹ pSG5 empty vector and pRL-CMV were purchased from Promega (Southampton, UK).

Comparison of PPAR expression in non-malignant and neoplastic mucosa

Tissue sampling

We obtained mucosal biopsies samples from tumour, and from macroscopically non-malignant mucosa >3 cm from the tumour, in 26 randomly selected patients undergoing resection. Biopsy samples were immediately frozen in liquid nitrogen and stored at −70°C until RNA preparation and/or protein extraction. We confirmed the benign or malignant status of all samples histologically.

RNA quantification

We extracted RNA from frozen tissue samples using standard techniques and quantification was performed using a ribonuclease (RNAse) protection assay. Using this technique, labelled RNA probe complementary to target RNA is mixed with sample RNA, and the complementary transcripts hybridise with unhybridised probe with RNAse A/T1, as described in the manufacturer’s instructions, and resolved the protected fragments on a 6% urea/acrylamide/TBE gel. Bands were imaged using a Fujix Bas 2000 phosphoimager (Fuji, Japan), and quantification was performed using the Dual-Luciferase Reporter Assay System (Promega). We determined normalised luciferase activity which we plotted as fold activation relative to untreated cells. We performed all points in triplicate in at least two independent experiments.

Construction of PPARα probe for RNAse protection assay

Human PPARα 263 corresponding to nucleotides 721–983 of the cDNA sequence was excised using restriction enzymes EcoRI and PstI, inserted into pBluescriptII KS (Stratagene, La Jolla, California, USA) with the 5‘ end adjacent to the T3 promoter, and sequenced to confirm identity.

Measurement of linear cell growth and DNA synthesis

We added methylclofenapate in DMSO, or DMSO alone, to colorectal cell lines from 24 hours of exposure to methylclofenapate 25 mg/kg/day (made up in safflower oil) (n=13) or safflower oil alone (n=14), which was administered by oral gavage. Animal experiments were performed according to EU regulations. C57BL/6J APC Min/+ mice were group housed, tap water was available ad libitum, and they were fed standard chow (BeeKay, Humberside, UK) throughout the study. We determined time of sacrifice (14.3±0.4 weeks for treated and 13.3±0.3 weeks for control mice; NS) by onset of clinically detected anemia or >20% body weight. At time of sacrifice, we flushed the entire intestine with saline and opened it lengthways. After fixing the tissue in formal calcium, we immersed it in thiazine dye (Baxter, UK) for five minutes before returning it to 70% C2H5OH for 24 hours. Using this methodology, normal mucosa is stained blue allowing good differentiation from polyps (which remain unstained). We scanned each full length intestine on a mm grid and, with specimens for comparison, highlighted the polyps manually and calculated their number. Finally, using the image analysis programme Qwinstandard (Leica, Milton Keynes, UK), we calculated the individual area of the large and small intestinal polyps, and the total area of abnormal and normal intestinal mucosa in each mouse.

In vitro effects of PPARα ligands

Cell culture

We cultured human colon adenocarcinoma (HCA7) cells (a kind gift from Dr S Kirkland, London) in Dulbecco’s modified Eagle’s medium (Sigma) supplemented with 10% fetal calf serum, glutamine (2 mmol/l), penicillin (100 U/ml), streptomycin (100 µg/ml), and gentamicin (0.05 mg/ml) in a 5% CO₂ atmosphere at 37°C.

Transfection studies

Using the cationic lipid transfection reagent Transfast (Promega) in a charge ratio of 1:2, we transfected HCA7 cells, which were 70–80% confluent, in serum free medium with a mix containing PPRE-tk-luc (1.1 µg), pRL-CMV (0.33 µg, as internal transfection control) and PPAR expression vector or empty pSG5 (2 µg), where indicated. After a 60 minute incubation period, we supplemented the medium with 0.1% fetal calf serum and added pharmacological ligands for individual PPARs four hours later if appropriate. We calculated luciferase activity and renilla activity 40 hours after transfection using the Dual-Luciferase Reporter Assay System (Promega). We determined normalised luciferase activity which we plotted as fold activation relative to untreated cells. We performed all points in triplicate in at least two independent experiments.

Western blot analysis of PPARα

We extracted protein from non-malignant or malignant mucosa, as previously described.²⁹ We separated 90 µg of protein by sodium dodecyl sulphate-polyacrylamide gel electrophoresis and transferred it to a Hybond ECL nitrocellulose membrane (Amersham, UK). We incubated the membrane with polyclonal rabbit anti-PPARα/A/B domain IgG (diluted 1:500) using horseradish peroxidase conjugated goat anti-rabbit IgG (1:400) secondary antibody (Sigma) and visualised antigen/antibody complexes using the enhanced chemiluminescence detection system (ECL; Amersham). The membrane was blotted with β-actin to confirm consistent loading and sample quality.

Chemoprevention of polyps in APC Min/+ mice

We commenced C57BL/6J APC Min/+ male and female mice, once weaned, on methylclofenapate 25 mg/kg/day (made up in safflower oil) (n=13) or safflower oil alone (n=14), which was administered by oral gavage. Animal experiments were performed according to EU regulations. C57BL/6J APC Min/+ mice were group housed, tap water was available ad libitum, and they were fed standard chow (BeeKay, Humberside, UK) throughout the study. We determined time of sacrifice (14.3±0.4 weeks for treated and 13.3±0.3 weeks for control mice; NS) by onset of clinically detected anemia or >20% body weight. At time of sacrifice, we flushed the entire intestine with saline and opened it lengthways. After fixing the tissue in formal calcium, we immersed it in thiazine dye (Baxter, UK) for five minutes before returning it to 70% C2H5OH for 24 hours. Using this methodology, normal mucosa is stained blue allowing good differentiation from polyps (which remain unstained). We scanned each full length intestine on a mm grid and, with specimens for comparison, highlighted the polyps manually and calculated their number. Finally, using the image analysis programme Qwinstandard (Leica, Milton Keynes, UK), we calculated the individual area of the large and small intestinal polyps, and the total area of abnormal and normal intestinal mucosa in each mouse.
performed before lysing the cells with 1 ml of 1 M NaOH. Lysate (900 µl) was then added to 10 ml of scintillation fluid (Packard, Meriden, Connecticut, USA) and disintegrations per minute counted by liquid scintillation spectrometry (Wallace, Milton Keynes, UK).

Measurement of apoptosis and necrosis using flow cytometry: annexin V and propidium iodide staining
We assessed rates of apoptosis and necrosis of HCA7 cells using flow cytometry, as described previously. After 12 hours of incubation with methylclofenapate, we treated cells with trypsin/EDTA, washed the resultant cell pellet in ice cold phosphate buffered saline, and resuspended cells in ice cold diluted binding buffer to concentrations of 10^5/10^6 cells/ml. We next added 25 ng/ml of FITC conjugated annexin V and 10 µg/ml of propidium iodide to cell suspension and, after 10 minutes of incubation in the dark, analysed cell staining using a fluorescence activated cell sorter (Becton Dickinson, USA).

Cell cycle analysis
We determined the proportion of nuclei in each phase of the cell cycle after exposure to methylclofenapate (100 µM) using flow cytometry. Treated and control HCA7 cells were stained with propidium iodide (0.5 µg/ml) and fixed in 70% ethanol. We measured the relative DNA content of nuclei using a fluorescence activated cell sorter (Becton Dickinson). The proportion of nuclei in each phase of the cell cycle was determined using Cylchred analysis software.

Statistics employed
Expression levels of RNA and protein in tumour and normal mucosa were not normally distributed and therefore the Mann-Whitney U test was used. ANOVA and t testing were used for other parameters.

RESULTS
PPAR expression in non-malignant and neoplastic mucosa
RNA expression
Using quantitative RNase protection assays, we measured levels of PPARα mRNA in non-malignant human colonic mucosal biopsy samples as 1.38 (0.30) attamoles/µg total RNA. Comparable values for PPARγ were 15.6 (10.4) attamoles/µg. When mRNA levels in neoplastic colonic tissues were compared with matched non-malignant mucosa, PPARα was significantly decreased by 38.8% (median (interquartile range) 11.7–62.1%); p = 0.05) (fig 1A).

Protein expression
Using western blot analysis, we showed expression of both PPARα and PPARγ in non-malignant human colonic mucosa. In malignant tissue there was a highly significant reduction in PPARα protein levels (median reduction of 67.0% (IQR 55.2, 80.3%); p = 0.001) (fig 1B). There were no differences in β-actin levels between normal and malignant tissues.

Activation of colonic epithelial PPARs
In order to identify ligands capable of selectively activating PPARα in colonocytes, PPRE- tk-luc (reporter gene) and individual PPARs were cotransfected into the human colon adenocarcinoma cell line HCA7 (fig 2A). Over expression of PPARα in HCA7 cells increased PPRE-tk-luc activation significantly compared with the reporter gene activity of empty pSG5 vector (p<0.001). Over expression of PPARγ or PPARβ alone did not result in significant PPRE-tk-luc activation in the absence of ligand (fig 2A).

Effect of ligands
The known PPARα ligand methylclofenapate further enhanced PPRE-tk-luc activation in cells cotransfected with PPARα, over the concentration range 1–100 µM. Methylclofenapate 10 µM stimulated 2.50 (0.22)-fold activation relative to no ligand (fig 2A). The better known PPARα ligand Wy14643 was less effective: Wy14643 10 µM increased PPRE-tk-luc activation 1.4 (0.12)-fold when PPARα was transfected (fig 2B). Although significant activation of PPARβ and PPARγ was achieved with PPARβ and PPARγ ligands, as appropriate (data not shown), methylclofenapate 10 µM had no significant effect on PPARβ or PPARγ activity (activation of 0.92 (0.07) and 0.91 (0.12) relative to no ligand) (fig 2A), confirming the potency and selectivity for PPARα at this concentration.

Functional responsiveness of endogenous PPARs in HCA7 cells
We confirmed the functional responsiveness of endogenous PPARs in HCA7 cells by observing the ability of PPAR pharmacological ligands to activate a PPRE driven reporter gene (PPRE-tk-luc) transfected into these cells. Methylclofenapate significantly induced reporter gene activity at concentrations ≥10 µM, indicating the presence of functionally active endogenous PPARα in these cells (fig 3).

Effect of methylclofenapate treatment on small and large intestinal polyp formation in APC^+/− mice
We used methylclofenapate as the most potent and specific PPARα activator from our transfection experiments to evaluate its effects on polyp formation in APC^+/− mice. Fifteen mice (eight males, seven females) received methylclofenapate 25 mg/kg daily in safflower oil, and 14 (eight males, six females) received safflower oil alone. At sacrifice, there was a highly significant reduction in the total polyp burden in both the small intestine (median 18.67 (IQR 11.13, 26.84) mm² to 9.9 (IQR 4.88,13.21) mm²; p = 0.003) and the large intestine (9.15 (IQR 6.31,10.51) mm² to 3.71 (IQR 2.71,5.99) mm²; p = 0.009) (fig 4). These differences were seen in both male and female mice. Tumour burden/time also revealed significant differences for both the small and large intestine (p = 0.006 small intestine, p = 0.008 large intestine).
clofenapate caused a time and concentration dependent incorporation in a dose dependent manner (fig 5A). Methylclofenapate inhibited this serum stimulated thymidine vector PSG5, PPREγ, expression vector or empty expression vector but not exposed to ligand. Methylclofenapate activated PPREγ expression vector and normalised luciferase activity compared with reporter gene activation by pSG5 vector (p=0.001). Methylclofenapate caused a further significant dose dependent increase in reporter gene activity at concentrations >10 mM, indicating the presence of functionally active endogenous PPARα. (**p<0.001).

Figure 2 Selective activation of peroxisome proliferator activated receptor α (PPARα) by methylclofenapate. [A] Differential effects on transfected PPARα, PPARβ, and PPARγ. HCA7 cells were transfected with 2 µg of PPARα, PPARγ, or PPARβ expression vector or empty vector pSG5, PPRE-τk-luc (1.1 µg), and pRl-CMV (0.33 µg, as internal control), and exposed to the PPARγ ligand methylclofenapate (MCP) for 36 hours. Normalised luciferase activity is plotted as SEM fold activation relative to untreated cells transfected with empty vector pSG5. Over expression of PPARα, in HCA7 cells, in the absence of ligand, increased PPRE-τk-luc activation (3.9 fold) compared with reporter gene activation by pSG5 vector (p=0.001). Methylclofenapate caused a further significant dose dependent increase in reporter gene activity. Over expression of PPARγ or PPARβ alone did not result in significant PPRE-τk-luc activation. Methylclofenapate had no significant effect in the presence of transfected PPARβ at all concentrations tested. It had no significant effect in the presence of transfected PPARγ at ≤10 µM, but caused a small increase in activity at 100 µM. (B) Comparative potency of PPARγ ligands as activators of PPARγ. HCA7 cells were transfected with PPARγ expression vector (2 µg), PPRE-τk-luc (1.1 µg), and pRl-CMV (0.33 µg, as internal control), and exposed to the PPARγ ligands methylclofenapate and Wy14643 (1–100 µM) for 36 hours. In contrast with (A), normalised luciferase activity is plotted as mean (SEM) fold activation relative to cells that were transfected with PPARγ expression vector but not exposed to ligand. Methylclofenapate activated PPRE-τk-luc more effectively than Wy14643 at all concentrations used.

The reduction in tumour burden appeared mainly to be attributable to a reduction in individual polyp size in the large intestine (table 1) and to a reduction in polyp number in the small intestine (table 1).

Effect of PPARα on proliferation, apoptosis, and necrosis

Fetal calf serum stimulated HCA7 cell proliferation, measured by [3H]thymidine incorporation, by approximately threefold. Methylclofenapate inhibited this serum stimulated thymidine incorporation in a dose dependent manner (fig 5A). Methylclofenapate caused a time and concentration dependent reduction in cell number (fig 5B), amounting to 39.7 (4.1)% with 100 µM by day 5 (p<0.001). The proportion of cells in the G1 phase of the cell cycle (62.2 (2.6)% control; 63.5 (1.6)% with methylclofenapate 100 µM) and in G2 (11.8 (0.4)% control; 13.8 (3.0)% with methylclofenapate 100 µM) did not differ with treatment. Methylclofenapate had no significant effect on annexin V (31.6 (3.1)% control values with methylclofenapate 100 µM) or propidium iodide (32.3 (3.2)% staining).

DISCUSSION

In this study, we have shown a reduction in PPARα expression in 89% of 26 colorectal cancers (two of 12 in which mRNA was studied and one of 14 in which protein was studied). Methylclofenapate had a potent and relatively selective effect on epithelial PPARα activity and reduced the polyp burden in both the small and large intestine of APC^{Min}/+ mice by treatment with the PPARα activator methylclofenapate (MCP 25 mg/kg/day). (A) large intestine; (B) small intestine. Each point represents polyp area in an individual mouse. Median values are also shown. N, normal; T, tumour.

Figure 3 HCA7 cells were transfected with reporter plasmid PPRE-τk-luc (1.1 µg) and pRL-CMV (0.33 µg, as internal control) and exposed to the peroxisome proliferator activated receptor α (PPARα) ligand methylclofenapate or Wy14643 for 48 hours. Normalised luciferase activity is plotted as mean (SEM) fold activation relative to untreated cells. Methylclofenapate and Wy14643 significantly induced reporter gene activity at concentrations >10 µM, indicating the presence of functionally active endogenous PPARα. (**p<0.001).
was similar to that previously reported with PPARγ ligands in colon cancer cell lines. The substantial stimulation of PPRE containing reporter gene expression achieved when PPARγ expression vector was transfected in the absence of ligand suggests the presence of endogenous ligand(s), as has been determined previously for other cell lines. Against this substantial background of endogenous activation, which has previously been reported, methylclofenapate further increased transactivation by PPARα in a dose dependent fashion, confirming the potency of this isoform.

Although methylclofenapate may have pleiotropic antitumour effects, this compound is a potent and selective PPARα agonist, and it is likely that the polyp reduction demonstrated in APCmin/+ mice occurred, at least in part, due to PPARα activation. Methylclofenapate is clearly an efficacious activator of PPARα, although some loss of selectivity occurs at high concentrations. As PPARγ selective ligands have been shown in the APCmin/+ mouse model to have an opposite effect on colorectal carcinogenesis, the effects seen in our study are more likely to be PPARα specific. This is supported by the earlier observation that bezafibrate (a less specific PPARα ligand) inhibits the formation of aberrant crypt foci, which are cited as precursor lesions for colon carcinoma, in rats. Downstream effects of PPARα activation and their subsequent influence on tumour progression remain to be determined.

Our data suggest that PPARα activation by methylclofenapate significantly reduces serum stimulated mitogenesis, as measured by tritiated thymidine incorporation and linear cell growth. Preclinical toxicity studies suggest that the concentrations of methylclofenapate achieved in the animal study were equivalent to the higher concentrations employed in our in vitro work. Methylclofenapate had no effect on cell death, as assessed by annexin V or propidium iodide staining or trypan blue exclusion. While annexin V staining may indicate processes other than apoptosis, the absence of any induction in annexin V or propidium iodide staining means that PPARα activation had no effect on any of the processes, including apoptosis, that are associated with such staining. One inference is that, while NSAIDs have been shown to compete with PPAR ligands, it is likely that they increase apoptosis via effects on PPARα. How PPARα activation inhibits cellular proliferation is not clear. One possibility is that it occurs through effects on β oxidation as PPARα is a key transcription factor in the regulation of both peroxisomal and mitochondrial β oxidation. The fact that MCP treatment results in a reduction in polyp size rather than number in the colon is intriguing, particularly as it contrasts with effects seen in the small intestine (where polyp number is reduced). It suggests that in the colon, MCP reduces polyp cell proliferation whereas in the small intestine it may affect actual tumour initiation. These apparent tissue specific effects of MCP may be attributable to differences in PPARα expression, as demonstrated in the small and large intestine.

Although toxicity studies have led to termination of the development of methylclofenapate, our studies suggest that

Table 1

Differences in individual polyp area and polyp number in treated and control APCmin/+ mice at the time of sacrifice

<table>
<thead>
<tr>
<th></th>
<th>Large intestine</th>
<th>Small intestine</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Control</td>
<td>Treated</td>
</tr>
<tr>
<td>Individual polyp area (mm²)</td>
<td>1.123 (0.490, 1.786)</td>
<td>0.848 (0.570, 1.265)**</td>
</tr>
<tr>
<td>Individual polyp area (mm²)</td>
<td>0.085 (0.046, 0.121)</td>
<td>0.065 (0.042, 0.089)*</td>
</tr>
<tr>
<td>Polyps No.</td>
<td>6.5 (4.1, 10.0)</td>
<td>4.0 (1.0, 7.0)*</td>
</tr>
<tr>
<td>Polyps No. (corrected for time of death)†</td>
<td>0.425 (0.308, 0.630)</td>
<td>0.308 (0.077, 0.540)</td>
</tr>
</tbody>
</table>

* *p<0.05, ** p<0.01.
† Values at the time of death were divided by the weeks of life.
identification and investigation of other PPARα ligands as possible anticancer agents would be justified. Moreover, in view of the importance of dietary fat in the development of colorectal cancer and the key role of PPARs in fat metabolism, our data may assist in both understanding the process of malignant transformation and highlighting potential therapeutic strategies.

ACKNOWLEDGEMENTS

The authors acknowledge the financial support of the Medical Research Council, UK.

Authors’ affiliations

L Jackson, A Watson, T Morris, J A Smith, C J Hawkey Wollon Digestive Diseases Centre, University of Nottingham, UK

W Wahli, L Michalik, Institut de Biologie Animale, Universite de Lausanne, Batiment de Biologie, Lausanne, Switzerland

K Anderson, A Bennett School of Biomedical Sciences, Queen’s Medical Centre, Nottingham, UK

D R Bell School of Life Sciences, University of Nottingham, UK

REFERENCES

Potential role for peroxisome proliferator activated receptor (PPAR) in preventing colon cancer

L Jackson, W Wahl, L Michalik, S A Watson, T Morris, K Anderton, D R Bell, J A Smith, C J Hawkey and A J Bennett

Gut 2003 52: 1317-1322
doi: 10.1136/gut.52.9.1317

Updated information and services can be found at:
http://gut.bmj.com/content/52/9/1317

These include:

References
This article cites 28 articles, 10 of which you can access for free at:
http://gut.bmj.com/content/52/9/1317#BIBL

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Topic Collections
Articles on similar topics can be found in the following collections

Colon cancer (1547)
Cancer: small intestine (189)

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/