Bacterial DNA activates cell mediated immune response and nitric oxide overproduction in peritoneal macrophages from patients with cirrhosis and ascites

R Francés, C Muñoz, P Zapater, F Uceda, I Gascón, S Pascual, M Pérez-Mateo, J Such

Background and aims: Translocation of intestinal bacteria to ascitic fluid is probably the first step in the development of episodes of spontaneous bacterial peritonitis in patients with cirrhosis. We have recently reported the detection of bacterial DNA in blood and ascitic fluid from patients with advanced cirrhosis, what we consider as molecular evidence of bacterial translocation. Several studies have shown the immunogenic role of bacterial DNA in vitro, and we hypothesised that the presence of bacterial DNA could activate the type 1 immune response in peritoneal macrophages from these patients, leading to greater cytokine synthesis (interleukin (IL)-2 and IL-12, tumour necrosis factor α, and interferon γ) and effector molecules such as nitric oxide.

Methods: Peritoneal macrophages obtained from patients with cirrhosis and culture negative non-neutrocytic ascitic fluid were collected and characterised by flow cytometry. Inducible nitric oxide synthase, nitric oxide levels, and cytokine production were measured by immunoenzymometric assays in basal and harvested conditions according to the presence/absence of bacterial DNA.

Results: The ability of peritoneal macrophages to synthesise nitric oxide and levels of all cytokines were significantly increased in patients with bacterial DNA. There was a positive correlation between inducible nitric oxide synthase and nitric oxide levels.

Conclusions: The presence of bacterial DNA in patients with compensated cirrhosis is associated with marked activation of peritoneal macrophages, as evidenced by nitric oxide synthesising ability, together with enhanced cytokine production.

Bacterial infections are frequently observed complications arising in patients with cirrhosis, and among them, spontaneous bacterial peritonitis (SBP) is probably the most relevant.1,2 SBP probably occurs as a consequence of repeated access of bacteria from the intestinal lumen through a haematogenous route reaching the mesenteric lymph nodes4 and, eventually, gaining access to ascitic fluid (AF) in a process that has been termed bacterial translocation (BT).3 Supporting this hypothesis, in a previous work we detected the presence of bacterial DNA (bactDNA) fragments simultaneously in blood and AF in as many as 32% of patients with advanced cirrhosis and sterile non-neutrocytic AF,5 a fact that we interpret as molecular evidence of BT.

BactDNA includes a repeated series of unmethylated CpG motifs that bind to the toll-like receptor 9, thus becoming a potent activator of cells of the innate immune system, namely macrophages, dendritic cells, and natural killer cells,6,7 and leading to increased synthesis of proinflammatory cytokines and effector molecules. Similarly, CpG motifs stimulate natural killer (NK) cells to synthesise interferon γ (IFN-γ),8 which in turn enhances the toxicity of other agents such as lipopolysaccharide (LPS)9 and prime nitric oxide (NO) synthesis through expression of the inducible form of NO synthase (iNOS)10 that has been reported to play an important role in the macrophage mediated response to infectious agents.11,12

As we detected the presence of bactDNA in a subgroup of patients with decompensated cirrhosis, we hypothesised that peritoneal macrophages obtained from these patients should be primed for higher NO and cytokine release. Thus the aims of this study were to evaluate the NO synthesising ability, together with the cytokine cascade probably involved in the process, in peritoneal macrophages from our series of patients, according to the presence of bactDNA.

PATIENTS AND METHODS

Patients

Since April 2000, all patients with cirrhosis and culture negative non-neutrocytic AF have been consecutively included in a prospective study in our Liver Unit to detect and identify the presence of bactDNA in blood and/or AF, according to the methodology previously described.9 A series of 10 consecutively admitted patients with or without bactDNA in blood and AF were included in the study protocol.

Cirrhosis was diagnosed by histology or by clinical, laboratory, and/or ultrasonographic findings. Exclusion criteria were the presence of culture positive blood or AF, neutrocytic AF (>250 polymorphonuclear leucocytes (PMN)/μl), signs or symptoms of systemic inflammatory response syndrome according to previously published criteria,13 upper gastrointestinal bleeding or intake of antibiotics in the preceding two weeks, including selective intestinal decontamination with norfloxacin, hepatocellular carcinoma and/or portal thrombosis, alcoholic hepatitis, and refusal to participate in the study. The ethics committee of Hospital General Universitario approved the study protocol and all patients gave informed consent for inclusion in the study.

Abbreviations: SBP, spontaneous bacterial peritonitis; AF, ascitic fluid; BT, bacterial translocation; bactDNA, bacterial DNA; NK, natural killer; IFN-γ, interferon γ; NO, nitric oxide; iNOS, inducible NO synthase; PMN, polymorphonuclear leucocytes; LPS, lipopolysaccharide; MoAbs, monoclonal antibodies; TNF-α, tumour necrosis factor α; IL, interleukin
Blood was obtained for routine haematological, biochemistry, and coagulation studies. Simultaneously, large volume paracentesis was performed in all patients on admission under aseptic conditions, following the usual procedures, and samples for routine biochemical study and PMN count were obtained. Total protein, albumin, leucocyte count, and PMN count were performed on all AF specimens. Both blood and AF were inoculated at the bedside in aerobic and anaerobic blood culture bottles, 10 ml each. Samples of blood and AF were inoculated in rubber sealed pyrogen free tubes (Endo Tube ET; Chromogenix AB, Vienna, Austria).

Peritoneal macrophages culture

A volume of 800–1500 ml of AF, collected after therapeutic paracentesis, was centrifuged at 1500 g for 10 minutes to obtain the cellular pellet. After washing with phosphate buffer saline (PBS) three times, more than 80% of the macrophage population was counted from a total number of 10–16 million cells, in all cases using Testisimlets prestained slides (Roche Diagnostics Ltd, Sussex, UK). Cell viability was also evaluated by trypan blue (Sigma, Madrid, Spain) and resulted in more than 95% viability. Cells (4 x 10⁶) were separated for macrophage characterisation by flow cytometry; 1 x 10⁶ cells were prepared to obtain the cell lysates for iNOS quantification according to the manufacturer's instructions and 5 x 10⁶ macrophages were resuspended in 5 ml of phenol red free RPMI 1640 medium (Gibco BRL, Life Technologies, Paisley, UK) supplemented with 10% human serum AB (BioWhittaker, Walkersville, Maryland, USA), 100 IU/ml penicillin/streptomycin, and 2.5 µg/ml amphotericin B (Gibco BRL). Macrophages (2 x 10⁶) were incubated as controls, and 2 x 10⁶ macrophages were cultured adding 0.2 µg of LPS from *E coli* serotype 0111:B4 (Sigma) in a 24 well plate for 24 hours at 37°C in a humidified atmosphere with 5% CO₂. Supernatants were obtained by centrifugation at 2500 g for five minutes and stored at -80°C until assay. The maximum period of time between being frozen and thawing was three months and in the current study none of the specimens was thawed and refrozen prior to analysis.

Immunostaining of cell surface and characterisation of the monocyte/macrophage population

At the indicated time of culture, cells were harvested and washed once in ice cold PBS, suspended in 500 µl of PBS, and distributed (50 µl per tube) to polystyrene round bottom tubes (Becton Dickenson, San Diego, California, USA) for immunolabelling. Surface determinant immunostaining was performed with unfixed cells using fluorochrome conjugated monoclonal antibodies (MoAbs) against the surface determinants. The combinations CD45 PerCP/CD3 FITC, CD45 PerCP/CD33 PE, CD45 PerCP/CD14 FITC, and CD14 FITC/CD33 PE were added for better discrimination between monocytes and lymphocytes in AF mononuclear cells during flow cytometry analysis. Cells were incubated in the dark for 15 minutes, washed in cold PBS, fixed, and permeabilised with IntraPrep permeabilisation reagent (Immunotube Beckton Coulter, Marseille, France). Then, cells were washed in PBS and stained (30 minutes in the dark) for intracellular cytokines using FITC conjugated MoAbs against tumour necrosis factor α (TNF-α) and interleukin (IL)-6, and PE conjugated MoAbs against IL-8 and IL-1-β. FITC and PE conjugated isotype controls were used in parallel. After cells were washed in PBS they were suspended with paraformaldehyde 1% in PBS for flow cytometry analysis. Samples were analysed in a FACScan flow cytometer (Becton Dickinson, Immunocytometry Systems, Palo Alto, California, USA) using CellQuest (version 3.2) software. Typically, list mode data for 20 000 events for CD45⁺ cells in a “live gate” mode were acquired.

Measurement of NO production and human iNOS levels

The sum of the NO metabolites nitrite (NO₂⁻) and nitrate (NO₃⁻) is widely used as an index of NO generation and expressed as NOx levels per ml, which corresponds to 10⁶ cells in this study. NOx levels in basal AF, and in supernatants from cultured macrophages, were calculated by measuring conversion of NO₃⁻ to NO₂⁻ by the enzyme nitrate reductase using an ELISA assay (R&D Systems, Minneapolis, USA) based on the Griess reaction that absorbs visible light at 540 nm. All samples were tested in duplicate and values were corrected by running samples with culture media without macrophages to assess background NOx levels. Quantitative determination of iNOS concentrations was performed through the Quantikine Human iNOS Immunoassay (R&D Systems) in cell lysates, obtained according to the manufacturer’s instructions and expressed as U/ml.

Measurement of IFN-γ, TNF-α, IL-2, and IL-12

Immunoenzymometric assays for quantitative measurement of human IFN-γ, TNF-α, IL-12, and IL-2 in AF samples were performed by handling Biosource IFN-γ EASIA kit (Biosource Europe SA, Nivelles, Belgium), human TNF-α HS Quantikine, and IL-12 and IL-2 Quantikine (R&D Systems) according to the manufacturer's instructions. All samples were tested in duplicate and read at 450 nm and 490 nm in a ThermoMax microplate reader (Molecular Devices, Sunnyvale, California, USA).

Statistical analysis of experimental data

All observations are reported as mean (SD). Statistical differences in basal characteristics between groups were analysed using the χ² test for categorical data applying Yates' correction when required, the Mann-Whitney U test for quantitative data without a normal distribution according to the Komolgorov-Smirnov test, and the Student's t test for variables with a normal distribution. The ANOVA test with the post hoc Tukey test was used for multiple comparisons. Bivariate correlations were evaluated using the Pearson test. All p values were two tailed. A p value <0.05 indicated statistical significance. Analyses were performed with the SPSS statistical package (SPSS Inc. version 11.0, Chicago, Illinois, USA).

RESULTS

Characteristics of patients and laboratory data

All patients fulfilling the inclusion and exclusion criteria were considered for entry into the study. Ten consecutively admitted patients in whom we did not detect or detected the presence of bactDNA comprised groups I and II, respectively. Clinical and analytical characteristics of the patients in both groups at admission are shown in table 1. No significant differences were observed in any of the parameters between the two groups of patients.

BactDNA was always detected simultaneously in blood and AF. Similarity in sequences between blood and AF was more than 99.5% in all cases, and identification obtained from the NCBI Database by the advanced BLAST search included *E coli* (n = 7), *Klebsiella* (n = 2), and *S aureus* (n = 1).

Upper gastrointestinal endoscopy was performed at the index admission or in the preceding three months in eight patients in group I and in seven patients in group II. No differences were observed in the presence or size of oesophageal varices or in portal hypertensive gastropathy between the two groups of patients.

Patients were followed up during admission from inclusion in this study. Two patients from group II died during admission; one from terminal liver failure and one from
acute pancreatitis. One patient in group I developed culture negative spontaneous bacterial peritonitis and one patient in group II developed a vertebral abscess. Infections developed seven and 12 days, respectively, after the initial paracentesis.

Gating of monocyte population and production of intracellular cytokines

Monocyte populations were defined on the basis of cell granularity and fluorochrome conjugated MoAbs CD14-FITC and CD33-PE (fig 1). No differences between groups were found in an ANOVA test, with the stimuli and MoAbs as factors in the analysis. The average monocyte population activated was 76.1 (SD 14.7)%.

AF NOx and cytokine levels

Basal AF NOx levels in patients from group II were higher than those observed in patients from group I although values did not reach statistical significance, probably due to the reduced number of cases (table 2). NOx levels measured in the supernatant of non-stimulated cultures from patients in group II were significantly higher than those observed in patients in group I. Furthermore, addition of cellular stimulants to the culture media induced a marked increase in NOx levels in both groups of patients but values only reached significance in patients in group I (table 2).

<table>
<thead>
<tr>
<th>Table 1</th>
<th>Basic clinical and analytical characteristics of the cohort distributed according to the absence (group I) or presence (group II) of bacterial DNA in serum and ascitic fluid</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group I (n = 10)</td>
<td>Group II (n = 10)</td>
</tr>
<tr>
<td>Mean age (y)</td>
<td>65 (10)</td>
</tr>
<tr>
<td>Sex (M/F)</td>
<td>9/1</td>
</tr>
<tr>
<td>Aetiology (n)</td>
<td>10</td>
</tr>
<tr>
<td>Alcohol</td>
<td>9</td>
</tr>
<tr>
<td>HCV</td>
<td>0</td>
</tr>
<tr>
<td>Alcohol-HCV</td>
<td>0</td>
</tr>
<tr>
<td>Other</td>
<td>1</td>
</tr>
<tr>
<td>Diuretics (yes/no)</td>
<td>9/1</td>
</tr>
<tr>
<td>Child Pugh (mean score)</td>
<td>8.63 (1.27)</td>
</tr>
<tr>
<td>Bilirubin (mg/dl)</td>
<td>2.6 (1.6)</td>
</tr>
<tr>
<td>Albumin (g/dl)</td>
<td>2.8 (0.8)</td>
</tr>
<tr>
<td>Quick (%)</td>
<td>64.1 (15.9)</td>
</tr>
<tr>
<td>WBC/mm³</td>
<td>6351 (2172)</td>
</tr>
<tr>
<td>AF total protein (g/dl)</td>
<td>1.9 (0.9)</td>
</tr>
<tr>
<td>% AF PMNs</td>
<td>248 (267)</td>
</tr>
</tbody>
</table>

Data are mean (SD). WBC, white blood cell; AF, ascitic fluid; HCV, hepatitis C virus; PMN, polymorphonuclear leucocytes. No significant differences between the two groups.

Human iNOS concentrations in cell lysates

Relative mass values for naturally occurring iNOS under all three experimental conditions are detailed in table 2. Statistically significant differences were observed between values obtained at baseline and in non-stimulated cultures from patients in group II were significantly higher than those observed in patients in group I. Furthermore, addition of cellular stimulants to the culture media induced a marked increase in NOx levels in both groups of patients but values only reached significance in patients in group I (table 2).

Figure 1 Gating of the monocyte population. Monocyte populations were defined on the basis of cell granularity (SSC-H) and the fluorochrome conjugated monoclonal antibodies anti-CD33-PE (FL2-H) and anti-CD14-FITC (FL1-H). Regions R1 and R2 correspond to monocytes and polymorphonuclear leucocytes, respectively.
A direct and significant correlation was found between basal iNOS and NOx levels in the overall group of patients ($r^2 = 0.72$, $p = 0.03$) (fig 2) and also between basal values of iNOS and all cytokines studied, with the exception of TNF-α ($\text{IFN-γ} r^2 = 0.77$, $p = 0.04$; TNF-α $r^2 = 0.65$, $p = 0.09$; IL-12 $r^2 = 0.79$, $p = 0.001$; IL-2 $r^2 = 0.84$, $p = 0.001$).

DISCUSSION

In this study, we have shown that peritoneal macrophages, obtained from patients with cirrhosis and AF, and the presence of bactDNA are primed to synthesise significantly higher amounts of NO than macrophages obtained from patients without bactDNA, and this is associated with marked activation of the cytokines implicated in the type 1 immune response.

Bacterial infections are common complications in patients with advanced cirrhosis, and SBP is the most frequent and clinically relevant. The classical pathogenic theory of SBP suggests that bacteria of intestinal origin move across the intestinal wall, reaching mesenteric lymph nodes and other organs. Bacteria can then obtain access to AF, and a SBP episode may eventually develop if the local bactericidal mechanisms are insufficient to mount an adequate response.16 17

We have recently described the presence of bactDNA in patients with cirrhosis and culture negative non-neutrocytic AF, a fact that we interpret as molecular evidence of BT. It is likely that bacteria reaching AF may activate the cellular component of the innate immune system, modifying its inflammatory response and NO synthesising ability, a situation similar to what has been described in vitro models. Thus the aim of this study was to assess the macrophage immune response according to the presence or absence of bactDNA in patients with cirrhosis.

BactDNA is characterised by the presence of short repeated sequences of unmethylated Cpg dinucleotides. Different experimental studies have shown the immunomodulatory role of these fragments, capable of inducing a similar immune response to that produced by a complete microorganism in vitro, thus becoming potent activators of cells of the innate immune system (namely, NK, macrophages, and dendritic cells) by binding toll-like receptor 9.7

BactDNA mediated macrophage activation leads to TNF-α, IL-6, and IL-12 synthesis. These last two cytokines activate B and T cells and modulate IFN-γ production by contributing to NK cell activation in vivo and in vitro. As IFN-γ receptors are also expressed on the macrophage surface, the presence of increased levels of IFN-γ further enhances TNF-α production and upregulates the transcription of the iNOS gene, leading to an increase in macrophage NO synthesising capability.

Peritoneal macrophages from cirrhotic patients with ascites and a previous episode of SBP have been shown to be activated, with NO overproduction, a situation similar to that described here, as suggested by the fact that NOx levels were higher in patients with molecular evidence of BT (group II) compared with patients in group I (table 2). Also, the existence of a direct and significant correlation between iNOS and NOx levels strongly suggests that NOx detected in the supernatant of cultures of peritoneal macrophages is iNOS derived. One of the best described functions of iNOS is its role in the macrophage mediated response to infectious agents. Furthermore, iNOS produces physiological concentrations of NO in the nanomolar range. Micromolar concentrations observed in our study are consistent with these data, considering overactivation of macrophages in response to bacterial DNA.

As described previously, the increase in NO synthesis is not an isolated phenomenon but a consequence of a complex sequence of events in which several cytokines play a significant role. In fact, NO has been shown to downregulate cytokine release from macrophages. Supporting this, the reported differences in the ability of macrophages to synthesise NO is associated with a marked inflammatory scenario. We observed significant basal differences in all four cytokines evaluated (table 2) between both groups of patients, which indicates two clearly differentiated populations according to the absence (group I) or presence (group II) of bactDNA.

We observed a positive correlation between IL-2, IL-12, and IFN-γ and iNOS values, and the cytokine dependent

Table 2 NOx, TNF-α, IFN-γ, and IL-12 levels in ascitic fluid in patients in groups I and II

<table>
<thead>
<tr>
<th>Group</th>
<th>NOx (nmol/10^6 cells)</th>
<th>iNOS (U/10^6 cells)</th>
<th>TNF-α (pg/10^6 cells)</th>
<th>IFN-γ (nmol/10^6 cells)</th>
<th>IL-2 (pg/10^6 cells)</th>
<th>IL-12 (pg/10^6 cells)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Basal</td>
<td>24 h-LPS</td>
<td>24 h-LPS</td>
<td>Basal</td>
<td>24 h-LPS</td>
<td>24 h-LPS</td>
</tr>
<tr>
<td>Group I</td>
<td>Basal</td>
<td>21.2 (13.0)</td>
<td>4.5 (3.1)</td>
<td>15.6 (4.4)</td>
<td>26.9 (5.8)</td>
<td>22.1 (6.0)</td>
</tr>
<tr>
<td></td>
<td>24 h</td>
<td>57.5 (22.4)</td>
<td>7.5 (3.9)</td>
<td>21.9 (9.3)</td>
<td>31.0 (6.1)</td>
<td>29.3 (7.1)</td>
</tr>
<tr>
<td></td>
<td>24 h-LPS</td>
<td>85.6 (26.9)</td>
<td>24.2 (10.3)</td>
<td>57.6 (5.4)</td>
<td>52.7 (5.7)</td>
<td>61.0 (10.3)</td>
</tr>
<tr>
<td>Group II</td>
<td>Basal</td>
<td>35.6 (20.8)</td>
<td>13.2 (4.5)</td>
<td>35.3 (17.7)</td>
<td>40.2 (8.0)</td>
<td>62.1 (10.3)</td>
</tr>
<tr>
<td></td>
<td>24 h</td>
<td>93.2 (35.6)</td>
<td>17.1 (5.1)</td>
<td>46.0 (9.0)</td>
<td>46.1 (8.8)</td>
<td>68.0 (10.3)</td>
</tr>
<tr>
<td></td>
<td>24 h-LPS</td>
<td>122.3 (44.5)</td>
<td>28.6 (7.7)</td>
<td>63.2 (10.2)</td>
<td>55.4 (8.2)</td>
<td>74.1 (9.0)</td>
</tr>
</tbody>
</table>

Data are mean (SD).

NOx, sum of nitric oxide metabolites, nitrite and nitrate; TNF-α, tumour necrosis factor α; IFN-γ, interferon γ; IL-2 and IL-12, interleukin 2 and 12, respectively; iNOS, inducible form of nitric oxide synthase.

Figure 2 Correlation between basal inducible NO synthase (iNOS) and NOx (sum of nitric oxide metabolites, nitrite and nitrate) levels in peritoneal macrophages obtained from ascitic fluid in patients with decompensated cirrhosis.
induction of iNOS has been reported previously. Elevated production of IFN-γ by CpG DNA activated NK cells is mediated by IL-12 and, in fact, we observed a significant correlation between basal levels of these two cytokines, which clearly suggests activation of a type I immune response in these patients. Supporting this assumption, TNF-α, which is directly synthesised by macrophages and also enhanced by IFN-γ, was significantly higher in patients in group II compared with group I.

In summary, peritoneal macrophages from patients with cirrhosis and ascites and the presence of bactDNA are primed for higher cytokine and NO synthesis. Our data suggest identification of a new subset of patients, with a marked pre-activation of the cellular component of the immune system, probably in response to the immunogenicity of CpG motifs present in bactDNA.

ACKNOWLEDGMENTS
Parts of this work were supported by an unrestricted grant from Schering Plough, and grants GV00-070-12 from Conselleria de Cultura, Generalitat Valenciana, PI 021291 from Fondo de Investigaciones Sanitarias, and Instituto de Salud Carlos III (CO3/02), Spain.

Authors’ affiliations
R Francés, C Muñoz, Department of Immunology, Hospital General Universitario, Pintor Baeza s/n, Alicante, Spain
P Zapater, Department of Clinical Pharmacology, Hospital General Universitario, Pintor Baeza s/n, Alicante, Spain
F Uceda, I Gascón, S Pascual, M Pérez-Mateo, J Such, Liver Unit, Hospital General Universitario, Pinto Baeza s/n, Alicante, Spain

REFERENCES
Bacterial DNA activates cell mediated immune response and nitric oxide overproduction in peritoneal macrophages from patients with cirrhosis and ascites

R Francés, C Muñoz, P Zapater, F Uceda, I Gascón, S Pascual, M Pérez-Mateo and J Such

Gut 2004 53: 860-864
doi: 10.1136/gut.2003.027425

Updated information and services can be found at:
http://gut.bmj.com/content/53/6/860

References

These include:

- This article cites 37 articles, 11 of which you can access for free at:
 http://gut.bmj.com/content/53/6/860#BIBL

Email alerting service

Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Errata

An erratum has been published regarding this article. Please see next page or:
/content/53/9/1390.3.full.pdf

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/
LETTERS

Genetic association between EPHX1 and Crohn’s disease: population stratification, genotyping error, or random chance?

We read with interest the article by de Jong and colleagues (Gut 2003;52:547–51) reporting study of seven polymorphisms (SNPs) from xenobiotic metabolising genes and Crohn’s disease (CD). The authors employed a case control study design to test seven polymorphisms in five candidate genes: EPHX1, SULT1A1, NQO1, GSTM1, and EPHX2.

One of the most commonly cited explanations for non-replication of genetic associations is stratification, through population admixture, and variability in disease frequencies between and within component subgroups. However, relatively few instances of this have been clearly established. Stratification may be identified and controlled for by incorporating anonymous genetic markers into the study design. It is possible that this may have generated a type I error in their analysis. A degree of population admixture in their control cohort could account for the deviation from HWE and give rise to the observed association between the normal common T allele and Crohn’s disease. Alternative explanations are genotyping error and random chance. We examined the genotype distribution for the seven SNPs tested by de Jong et al and found that in addition to Tyrl113His, the Ille62Val (1506A/G) SNP in CYP1A1 was not in HWE ($\chi^2 = 7.87$, p = 0.005). A recent review of published association studies by Xu et al. found that 12% of SNPs tested were inconsistent with HWE in control subjects.

Our findings highlight the value of testing genetic association data for normal genotype distribution, and for rigorous replication of genetic associations with adequate statistical power.

A P Cuthbert, S A Fisher, C M Lewis, C G Mathew
Division of Genetics and Development, Guy’s, King’s, and St Thomas’ School of Medicine, King’s College London, Guy’s Hospital, London SE1 9RT, UK

J Sanderson
Department of Gastroenterology, St Thomas’ Hospital, London SE1 7EH, UK

A Forbes
St Mark’s Hospital, Northwick Park, Watford Rd, Harrow, Middlesex HA1 3UJ

Correspondence to: Professor C G Mathew, Department of Medical and Molecular Genetics, GKT School of Medicine, 8th floor Guy’s Tower, London SE1 9RT, UK, christopher.mathew@kcl.ac.uk

References

Use of cyclosporin in pregnancy

Cyclosporin has been established in the management of steroid resistant severe ulcerative colitis. We read the letter by Dor and Blanshard (Gut 2003;52:1070) regarding the severe side effects of cyclosporin used in a patient with steroid resistant severe ulcerative colitis after undergoing emergency Caesarean section. We would like to report our experience of a pregnant patient with steroid resistant severe distal ulcerative colitis in whom remission was induced with cyclosporin. She delivered a healthy baby at 34 weeks.

<table>
<thead>
<tr>
<th>Table 1</th>
<th>Allele and genotype frequencies between cases and controls</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phenotype</td>
<td>n</td>
</tr>
<tr>
<td>Controls</td>
<td></td>
</tr>
<tr>
<td>CD</td>
<td>344</td>
</tr>
<tr>
<td>CD ALL</td>
<td>307</td>
</tr>
<tr>
<td>CD</td>
<td>0 CARD15 DSAs</td>
</tr>
<tr>
<td>CD</td>
<td>1 CARD15 DSA</td>
</tr>
<tr>
<td>CD</td>
<td>2 CARD15 DSA</td>
</tr>
</tbody>
</table>

DSAs, disease susceptibility alleles; CD, Crohn’s disease.
A 36 year old woman presented for the first time with a five week history of bloody diarrhoea and mucus discharge in the 12th week of her first pregnancy. Ulcerative colitis was confirmed on flexible sigmoidoscopy and histology. She was started on mesalazine (Pentasa) 1 g twice daily orally and Pentasa enema was added subsequently. She failed to respond well to oral mesalazine (40–60 mg daily) for five weeks or to subsequent intravenous mesalazine given for a further two and a half weeks. Azathioprine (oral 150 mg daily) was also added. Repeat sigmoidoscopy confirmed severe distal colitis with ulceration. At the 23rd week of pregnancy, she was started on intravenous cyclosporin (2 mg/kg) with careful monitoring of serum levels. Significant improvement was noted in two weeks, after which cyclosporin was changed to the oral route. Steroids were gradually tapered to 2.5 mg daily. At 34 weeks she underwent an emergency Caesarean section because of antepartum haemorrhage and a healthy baby girl (birth weight 2.07 kg) was delivered. Two weeks later, cyclosporin was weaned off after minimal rise of serum creatinine that coincided with high serum cyclosporin levels. Her serum creatinine normalised four weeks later. She and baby remained well on azathioprine and mesalazine 14 weeks after delivery.

Intravenous cyclosporin induced remission in our pregnant patient who had failed to respond to high dose oral and intravenous mesalazine. Colectomy and the associated potential complications in pregnancy were avoided. There is only one other case report in the literature where cyclosporin was used in similar circumstances. While we would agree that cyclosporin should be used cautiously in similar circumstances, we would suggest that cyclosporin may induce remission and avoid colectomy during pregnancy.

A Jayaprakash, S Gould, A G Lim
Department of Gastroenterology, Epsom General Hospital, Epsom, Surrey, UK

H A Shehata
Department of Obstetric Medicine, Epsom General Hospital, Epsom, Surrey, UK

Correspondence to: Dr A Jayaprakash, 130 Farriers Road, Epsom KT17 1NS, UK; jaypy@hotmail.com

Reference

Is symptom control the correct end point for proton pump inhibitor treatment in Barrett’s oesophagus?

We have recently reported that abnormal acid reflux persists in up to 50% of patients with long segment Barrett’s oesophagus, despite good control of symptoms of gastro-oesophageal reflux disease (GORD) with proton pump inhibitor (PPI) therapy.1 The critical question is whether such persistence of abnormal acid reflux alters the risk of progression to adenocarcinoma. We investigated this issue by studying cellular proliferation and expression of cyclin D1, which is an important marker of neoplastic progression,2 in patients with Barrett’s oesophagus on PPI therapy.

A prospective cross-sectional survey of 20 patients with long segment Barrett’s oesophagus (defined as a length >3 cm and presence of specialised intestinal epithelium containing alician blue staining goblet cell) was conducted. In all cases, GORD symptoms had been well controlled with PPI therapy (omeprazole n = 13 patients, median dose 20 mg (range 10–40); lansoprazole n = 5, 30 mg; or rabeprazole n = 2, 20 mg). Patients had received PPI therapy for a median duration of 30 months (12–66). Oesophageal manometry, 24 hour ambulatory pHmetry, and Bilitec 2000 monitoring were conducted on all patients, without interruption of their usual PPI therapy. Representative endoscopic biopsy specimens of Barrett’s oesophagus from each patient were studied for expression of cyclin D1 protein (primary antibody 1:50 dilution; Novocastra Lab) and Ki-67 protein (primary antibody 1:75; Dako Lab), by standard immunohistochemistry. The histopathologist was blinded to clinical information. A proliferative index was computed for each patient by scoring the percentage of Ki-67 labelled specialised columnar epithelial cells, as previously described.3 Cyclin D1 expression was semi quantitatively assessed. The mean percentage of positive cells in areas of intestinal-type specialised columnar epithelium was assigned to one of three categories: 0, <5%; 1, 5–50%; or 2, >50%. The intensity of cyclin D1 immunostaining was scored as: week = 1, moderate = 2, or intense = 3. The percentage category of positive cells and staining intensity were multiplied to produce a weighted score for each patient. All cases with weighted scores >1 were designated positive.

Despite PPI therapy and absence of GORD symptoms, pHmetry detected abnormal acid reflux in nine (45%) patients (pH <4 for (median) 19.2% (range 4.6–32.1) of 24 hours; DeMeester score 49.5 (20.2–109.8)). The remaining 11 patients had acid reflux within the normal range (pH >4 for <4.5% of 24 hours). Proliferative indices (mean (SD)) for patients with abnormal acid reflux and those with normal acid reflux were similar (56.5 (8.7) vs 37.4 (5.5), respectively; p = 0.3). Cyclin D1 expression was positive in seven (78%) patients with abnormal acid reflux and in seven (64%) patients with normal acid reflux (p = 0.4) (fig 1). The weighted score of cyclin D1 expression was identical (median 2 (range 2–6)) for patients with abnormal acid reflux and those with normal acid reflux.

These data imply that the risk of neoplastic progression was independent of the status of control of acid reflux by PPI therapy. We also examined the association between acid reflux and bile reflux. Absorbance >0.14 for <1.8% of the 24 hour monitoring period was considered the normal range for bile reflux in this study. Despite PPI therapy, abnormal bile reflux was detected in 12 (60%) patients, including six (55%) with normal acid reflux (absorbance >0.14 for 13.0% (2.5–46.5)) and six (66%) with abnormal acid reflux (absorbance >0.14 for 17.4% (3.5–63.7)). Such persistent bile reflux may explain the similarity in expression of Ki-67 or cyclin D1 in the two groups with different control of acid reflux.

In contrast with PPI therapy, antireflux surgery that is successful in controlling acid reflux also controls bile reflux. Following successful antireflux surgery, proliferative indices in surface epithelial cells and crypts of Barrett’s oesophagus are significantly lower compared with a failed procedure.7 In the light of the present data, we propose the need for a novel clinical trial of PPI therapy versus antireflux surgery. Patients who are randomised to PPI therapy should undergo

Figure 1 [A] Ki-67 immunoreactive cells are localised at the base of the crypts and glandular zones in specialised intestinal-type columnar epithelium. Arrowheads indicate some goblet cells (original magnification 200×). (B) Specialised intestinal-type columnar epithelium exhibits moderate nuclear cyclin D1 staining in the majority of epithelial cells lining the crypts (weighted score 4). Arrowheads indicate some goblet cells (original magnification 200×).
In all, 60 seven year old children were randomly selected from Southwestern Finland, representing caesarean and vaginal deliveries. The children were invited to attend a clinical examination, including skin prick test and determination of serum total and antigen specific IgE antibodies. Perinatal data were derived from hospital medical records. Questionnaires were completed by the parents to verify a history of allergic symptoms.

Faecal samples were produced at clinical examination and frozen at −70°C for microbiota assessment. Faecal microbiota profiles were determined using the culture independent fluorescent in situ hybridisation method. Probes specific for bifidobacteria, lactobacilli/enterococci, bacteroides, clostridia, and total bacterial numbers were applied. Written informed consent was obtained from parents and the study was approved by the ethics committee of the university.

Of the study population, 31 children had been delivered by caesarean section and 29 by vaginal delivery. At seven years of age, significantly higher numbers of clostridia were found in children delivered vaginally compared with caesarean born children (p = 0.0055) (table 1). No differences were observed in other faecal bacteria or total numbers of bacteria (table 1).

Children with asthma diagnosed by a physician (n = 6) had lower numbers of clostridia in their faecal specimens while healthy children (n = 34) had higher clostridial numbers.

Early colonisation guides subsequent microbiota development which may later impact on health, to the extent of predisposing some infants towards specific diseases. Bifidobacteria are considered useful for health promotion. Reported effects are related to the individual “balance” of the gut microbiota and prevention of aberrances within the gastrointestinal tract. Clostridia are generally considered harmful toxin producing species causing diarrhoea and food poisoning.

Our results show that bifidobacterial levels in the faeces of cohort children were comparable at seven years of age, independent of the mode of delivery at birth, while numbers of clostridia were significantly higher in normally born children seven years after birth.

Differences in neonatal gut microbiota in particular the balance between Bifidobacterium species and Clostridium species, have been reported to precede heightened production of antigen specific IgE antibodies, a hallmark of the atopic responder type. Such differences may be related to external environmental influences.

<table>
<thead>
<tr>
<th>Parameter (concn of specific microbe in total IgE)</th>
<th>Normally delivered</th>
<th>Caesarean born</th>
<th>p Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clostridia</td>
<td>9.29 (9.09–9.51)</td>
<td>8.83 (8.6–9.06)</td>
<td>0.0055</td>
</tr>
<tr>
<td>Bifidobacteria</td>
<td>10.32 (10.13–10.5)</td>
<td>10.29 (9.99–10.59)</td>
<td>0.87</td>
</tr>
<tr>
<td>Total bacteria</td>
<td>11.56 (11.46–11.68)</td>
<td>11.59 (11.5–11.68)</td>
<td>0.61</td>
</tr>
<tr>
<td>Lactobacilli/enterococci</td>
<td>9.07 (8.85–9.3)</td>
<td>9.05 (8.86–9.2)</td>
<td>0.85</td>
</tr>
<tr>
<td>Bacteroides</td>
<td>9.95 (9.67–10.24)</td>
<td>9.84 (9.52–10.17)</td>
<td>0.63</td>
</tr>
<tr>
<td>Total IgE</td>
<td>79 (16–255)</td>
<td>65 (25–160)</td>
<td>0.85</td>
</tr>
</tbody>
</table>

Values are median (interquartile range).
factors (for example, mode of delivery and early feeding practices). The results of this study, showing that clostridial numbers in normally born children seven years after delivery are significantly higher than in caesarean born children, demonstrate that abnormal development of the intestinal microbiota reported following caesarean section delivery may continue even beyond infancy. These findings call for further assessment of microbiota composition throughout childhood when dietary interventions may still offer a rational means of health improvement. It is of importance to characterise the optimal clostridial numbers and species composition at different ages following normal and caesarean delivery.

S Salminen
Department of Biochemistry, University of Turku, 20014 Turku, Finland

G R Gibson, A L McCartney
Food Microbial Sciences Unit, School of Food Biosciences, University of Reading, Reading, UK

E Isolauri
Department of Paediatrics, University of Turku, 20014 Turku, Finland

Correspondence to: Professor S Salminen, Functional Foods Forum, University of Turku, 20014 Turku, Finland; seppo.salminen@utu.fi

References

Crohn’s ileitis after liver transplantation from a living related donor with Crohn’s disease

We read with interest the case described by Sonwalkar et al. of a patient who developed fulminant Crohn’s colitis after allogeneic stem cell transplantation (ASCT) (Gut 2003;52:1518–21). Although the donor had no known history of CD, the recipient tested negative for any of the three common CD associated NOD2/CARD15 variants (R702W, G908R, 1007fsinsC) but unfortunately we were unable to screen the liver donor for these polymorphisms. Our case, similar to that described by Sonwalkar et al., raises the intriguing possibility that CD susceptibility may have been transferred to the recipient with liver transplantation as well. Collins et al. have reported complete and stable replacement of recipient haematopoiesis with donor derived cells approximately six weeks following orthotopic liver transplantation for haemochromatosis. T lineage reconstitution also occurred and derived almost exclusively from expansion of mature memory/effector T cells from the transplanted liver. One possibility is that the expanded immune cells have become tolerant to the graft but not to the intestinal luminal antigens leading to the development of CD. Whether liver donor selection should exclude those with a known diagnosis of CD is unclear and is still premature to answer.

K A Papadakis, R Matuk, M T Abreu, E A Vasilisious, P R Fleshner, J Lechago, T Tran, F F Poordad, P Martin, J Vierling, S R Targan
Cedars-Sinai Medical Center, UCLA School of Medicine, Los Angeles, California, USA
Enteric glia

von Boyen et al recently reported a study of glial fibrillary acidic protein (GFAP) expression in enteric glia (Gut 2004;53:222–8). Their new data are very interesting and add to our understanding of the possible role of enteric glia in gastrointestinal pathophysiology. However, we must take issue with some of the data presented that show extensive nuclear labelling with S-100 and with the data presented that show extensive distribution of enteric glia in the colon.

Figure 1 of their paper shows labelling of enteric glia in the rat colon below the epithelial crypts and is thus presumably labelling of cells in the submucosal plexus. In the paper, this layer is described as the “plexus mucosus”. The plexus mucosus, which is also known as the mucosal plexus, has previously been described in humans and rat. As the name implies, the mucosal plexus is located within the mucosa. Given the position of the crypts, as indicated by the ovals in fig 1, it would appear that the labelling shown in panels A and B is in fact localised to the submucosal plexus.

We find extensive colocalisation of GFAP and S-100 in the submucosal plexus. This is illustrated below in fig 1 in a whole mount preparation of the submucosal plexus from the rat colon. This confocal image reveals colocalisation of GFAP and S-100 in enteric glia (17 μm z stack of 1 μm optical sections; scale bar 50 μm) (fig 1). S-100 is also found in the cytoplasm of the glial perikarya; there is virtually no nuclear labelling, which was the most obvious element of the staining demonstrated by von Boyen et al.

In fig 1 of the paper of von Boyen et al, the nature of the GFAP immunoreactivity is not fibrous, but granular, while the predominant labelling of S-100 is nuclear. In our hands this is not the case (see our fig 1) and so we feel this calls into question whether the extensive nuclear labelling observed in both fig 1 and fig 2 is really reflective of the distribution of S-100. Moreover, in the paper cited by the authors in support of nuclear localisation, Ferri et al state that “only cytoplasmic localisation (of S-100) was consistently demonstrated in enteric glia”, contrary to von Boyen et al’s assertion that S-100 labelling is largely nuclear.

Finally, it should also be noted that GFAP expression in culture may reflect an altered state of differentiation as an adaptation to culturing. Hence some of the observed changes in GFAP expression may be explained by processes reflecting changes in the culture conditions rather than a pathophysiological response to cytokines.

The issues of glial heterogeneity and the role of enteric glia in inflammation raised in the paper are very interesting, and of considerable importance in understanding the physiology and pathophysiology of the gastrointestinal tract. By analogy with the brain, it is likely that enteric glia play an important role in the function of the gut. However, we feel that the extensive glial heterogeneity suggested in the paper by von Boyen et al may be overestimated and we urge caution in extrapolation of these data based on the immunohistochemistry presented in this manuscript.

K A Sharkey, Y Nasser
Gastrointestinal Research Group, Department of Physiology and Biophysics, University of Calgary, Calgary, Alberta, Canada

A Ruhl
Department of Human Biology, Technical University Munich, Freising-Weihenstephan, Germany

Correspondence to: Professor K A Sharkey, Gastrointestinal Research Group, Department of Physiology and Biophysics, University of Calgary, 3330 Hospital Drive, NW Calgary, Alberta, Canada T2N 4N1, ksharkey@ucalgary.ca

References