Real time high resolution magnetic resonance imaging for the assessment of gastric motility disorders

W Ajaj, S C Goehde, N Papanikolaou, G Holtmann, S G Ruehm, J F Debatin, T C Lauenstein

Background: The aim of this study was to evaluate whether patients with increased or decreased gastric motility can be differentiated from healthy volunteers by means of real time magnetic resonance imaging (MRI).

Patients and methods: Ten healthy volunteers, 10 patients with gastroparesis, and 10 patients with functional pylorospasm/peptic pyloric stenosis underwent real time MRI. All patients were examined on two separate days; once prior to therapy and once after adequate therapy. Antral motility was quantified by calculating the gastric motility index.

Results: Patients with gastroparesis showed a lower motility index compared with the reference volunteer group while the mean motility index of the patient group with pylorospasm was more than three times higher than that of the reference value of the volunteer group. However, the gastric motility index in the patient group with gastroparesis increased, and in the group with functional pylorospasm/peptic pyloric stenosis it decreased significantly after therapy.

Conclusion: Real time MRI is a reliable tool for assessment of gastric motion. Furthermore, differences in gastric motility index in patients with increased or decreased gastric motility could be evaluated and quantified. Due to the non-invasive character of MRI, this imaging modality may be an attractive alternative to conventional invasive diagnostic tools for gastric motility disorders and therapeutic monitoring.

Abbreviations: MRI, magnetic resonance imaging; TrueFISP, fast imaging with steady state precession sequence; GMI, gastric motility index
subjects were asked to ingest the pudding without haste over 7–10 minutes. Patients were examined once before therapy and then again after therapy (in group B, time between measurements was mean 5 (2) weeks; therapy comprised the motilin agonist erythromycin; in group C, time between measurements was mean 7 (2) weeks; therapy comprised pylorotomy or endoscopic pyloric dilatation). Thus the two examinations took place on two different days.

MR examinations were performed on a 1.5 T scanner equipped with high performance gradients characterised by an amplitude of 40 mT/m and a slew rate of 200 mT/m/ms (Magnetom Sonata; Siemens Medical Systems, Germany). For signal reception, a standard phased array body coil was used. Immediately following ingestion of the pudding, subjects were examined in the supine position. Subsequently, we scanned the first series after subjects were positioned on the table (mean 3 (1) minutes) at times 0, 5, 10, 15, 20, 25, and 30 minutes. For assessment of gastric motion, dark parallel tagging lines were applied in a craniocaudal direction in a similar manner to that described for cardiac MR imaging.16

All images were transferred to a post-processing workstation (Leonardo; Siemens Medical Systems, Erlangen, Germany) for subsequent qualitative and quantitative analysis.

For each real time data set a motility index was calculated. The frequency and propagation speed of gastric contraction were calculated. The travel distance ΔX was determined as the total distance the wave would propagate during a 20 second period. For this purpose, a free hand line was drawn along the gastric wall between the position of the wave at 0 s and at 20 s. The software returns the curved distance. Gastric peristaltic wave velocity (V) was defined as follows:

$$V\left[\frac{\text{mm}}{s}\right] = \frac{\Delta X}{\Delta t}$$

Subsequently, the gastric motility index (GMI) was determined. To this end, the respective deepness Δd of the wave was determined by the difference in positions between the deepest point of the wave and the extrapolated gastric wall. Vertical tagging lines were not chosen for measuring the respective travel distance but as an indicator over potential movements of the stomach as a whole organ. If this were not controlled, false results with too large values for the distance of the single contraction would be obtained. No visible movement of the stomach was seen thus making the distance measurements more easy. To determine GMI, velocity (ΔV) was multiplied by the deepness of the contraction wave as it reaches the antrum (Δd) (fig 1A–C):

$$\text{GMI} \left[\frac{\text{mm}^2}{s}\right] = \Delta V \times \Delta d$$

To determine all of these parameters, the coronal image was magnified by a factor of three. No additional software was used for these calculations; rather they were performed by the multiplanar reformation software which is a routine part of the workstation. Time needed for analysis of one patient's image data set, containing seven (at times 0, 5, 10, 15, 20, 25, and 30 minutes after the beginning of the examination) × 20 images (one image per second) amounted to approximately 30 minutes.

Finally, data from all of the examinations were statistically analysed. The Wilcoxon rank test was used to determine the statistical significance of differences between gastric motility indices within each group. Differences between patients in groups A and B were compared with volunteers for each time point using the Mann-Whitney test. A Bonferroni correction

Figure 1 Two dimensional real time fast imaging with steady state precession sequence (TrueFISP) with tagging lines in an oblique plane displaying the antral axis. Images (A) (t=0) and (B) (t= 20 s) show the motion of the peristaltic wave towards the pylorus (arrow). In (C), the lowest amplitude of the according peristaltic wave is shown. Based on the distance that one wave passes within 20 seconds and its lowest amplitude, a motility index could be calculated.
for multiple comparisons was applied. A test value of $p < 0.05$ was considered to be statistically significant.

RESULTS

All subjects tolerated pudding ingestion well, and all MR examinations were completed without complications. Mean examination time, including pudding ingestion, was 40 minutes (range 38–43). The high caloric nutrient spiked with paramagnetic contrast was homogeneously bright on the real time two dimensional TrueFISP data sets. Thus delineation of the gastric lumen proved easy and robust. Results of examinations for volunteers (group A) were as follows: propagation speed of the antral wave increased between 0 and 15 minutes after ingestion of the pudding only slightly from a mean of 1.8 mm/s to a mean of 2.4 mm/s, which remained unchanged from 15 to 30 minutes. Differences in propagation speed between time point 0 and all consecutive time points were statistically significant ($p < 0.05$). GMI, more sensitive to changes in gastric contraction, almost doubled, from a mean of 1.3 to 2.5 mm2/s over the first 15 minutes and continued to increase to 2.9 mm2/s at 25 and 30 minutes. Differences between time point 0 and all consecutive measurements proved to be statistically significant ($p < 0.05$).

Patients with gastroparesis (group B) showed a dramatically reduced antral wave propagation speed as well as GMI over the 30 minutes of examination time compared with volunteers. While antral wave propagation speed increased from 0.6 to 1.0 mm/s between 0 and 30 minutes after pudding ingestion ($p < 0.05$), GMI increased from a very low mean value of 0.9 at 0 minutes to 1.7 mm2/s at 30 minutes ($p < 0.05$). Mean GMI at 15 minutes was 1.5 mm2/s (range 0.9–1.9). However, 5 (2) weeks after therapy, mean GMI increased significantly and was 2.2 mm2/s (range 1.9–2.3) at the acquisition time point 15 minutes.

In contrast, patients with functional pylorospasm and peptic pyloric stenosis (group C) were found to have a mean motility index of 9 mm2/s at the acquisition time point 15 minutes (range 7–16) which decreased significantly after therapy (7 (2) weeks) to 6 mm2/s (range 5–9) at the acquisition time point 15 minutes. Figures 2–4 show an example of each study group. Mean gastric motility indices for the volunteer group as well as for both patient groups are shown in fig 5.

![Figure 2](http://example.com/figure2.png)

Figure 2 Two dimensional real time fast imaging with steady state precession sequence (TrueFISP) in an oblique plane displaying the antral axis. (A–C) Motion of the peristaltic wave towards the pylorus (arrow) in healthy volunteers. Based on the distance that one wave passes within 20 seconds and its lowest diameter, a motility index could be determined and gastric motion quantified.

![Figure 3](http://example.com/figure3.png)

Figure 3 Two dimensional real time fast imaging with steady state precession sequence (TrueFISP) in an oblique plane displaying the antral axis. (A–C) Motion of the peristaltic wave towards the pylorus (arrow) in patients with decreased gastric motion. Based on the distance that one wave passes within 20 seconds and its lowest diameter, a motility index could be determined and gastric motion quantified.

![Figure 4](http://example.com/figure4.png)

Figure 4 Two dimensional real time fast imaging with steady state precession sequence (TrueFISP) in an oblique plane displaying the antral axis. (A–C) Motion of the peristaltic wave towards the pylorus (arrow) in patients with increased gastric motility. Based on the distance that one wave passes within 20 seconds and its lowest diameter, a motility index could be determined and gastric motion quantified.
Real time MR imaging for assessment of gastric disorders

At all time points, GMI values of patients differed significantly from those of volunteers; this held true for patients in groups B and C.

DISCUSSION

Gastric motility can be assessed by real time MRI. The acquired two dimensional real time TrueFISP data are robust. Patients with decreased gastric motion can be reliably distinguished from those with increased gastric motility. Due to the non-invasive nature of MRI, this imaging modality may be an attractive alternative to conventional invasive diagnostic tools for diagnosis of gastric motility disorders and consecutive therapeutic monitoring.

Despite the high prevalence of functional gastrointestinal pathologies, no single diagnostic test has emerged as generally recommended in a clinical environment. This observation reflects different drawbacks affecting each of the many tests in clinical practice. Thus gastric barostat studies assessing proximal motor function with an intragastric balloon provide accurate results but are hampered by their intrinsic invasiveness which translates into poor patient acceptance. On the other hand, electrogastrography, based on recording of gastric electrical activity from the body surface, is well accepted but fails to provide an acceptable correlation with gastric contractions. Finally, nuclear medicine studies are capable of quantifying gastric emptying but lack the spatial and temporal resolution to provide detailed data on gastric contraction and peristalsis. Furthermore, the test is associated with considerable exposure to ionising radiation.

Lacking a technique with sufficient diagnostic accuracy and patient acceptance, these conditions frequently remain undiagnosed. In view of the increasing availability of affordable and effective therapeutic strategies, it is high time to overcome this diagnostic void. Respiratory motion artefacts in conjunction with susceptibility effects had for a long time prohibited the MR based analysis of the gastrointestinal tract. Reflecting recent hardware and software developments, MR imaging of the abdomen and consequently of the stomach has become possible by allowing acquisition of multislice or three dimensional data sets within a single breathhold. Advances in MRI have also led to increasing use of this technique in the evaluation of the gastrointestinal tract.

This initial technical report suggests that real time TrueFISP MR imaging can provide a non-invasive alternative to the present multimodality work up characterised by both sufficient diagnostic accuracy and high patient acceptance. Real time TrueFISP MR imaging is capable of depicting gastric motility with sufficient temporal and spatial resolution for a qualitative as well as quantitative assessment. The sequence permits excellent delineation of the stomach wall from surrounding fat as well as the bright stomach lumen. It is possible to use a solid meal for evaluation of gastric motility but the choice of a semisolid meal in our view seemed the most natural, and a semisolid meal can be homogenised better with gadolinium than a solid meal. Also, the total volume of the meal is the main factor for a prokinetic effect rather than the total caloric content; this was another reason for choosing the semiliquid meal. This approach has been shown to be reliable and reproducible.

The high signal within the stomach in this sequence depends on paramagnetic contrast agent within the food ingested. In this study, we chose a pudding as the high caloric base for the oral contrast agent; in vitro experiments had revealed the pudding to be brightest following addition of a paramagnetic contrast in a concentration of 1:200.

Motivated by inherent non-invasiveness, operator independence, and lack of ionising radiation, MRI has in the past been proposed for evaluation of the stomach. Despite initial enthusiasm, the clinical utility of MRI for the detection and staging of gastric malignancies has remained rather limited. This reflects the lack of sufficient spatial resolution to depict the gastric mucosal surfaces. MR based analysis of functional gastric disorders on the other hand seems to have considerably more potential. First approaches proposed by Schwizer and colleagues were handicapped by long acquisition times rendering breathheld data acquisitions impossible. As a result, image quality was poor, translating into an imperfect correlation with nuclear scintigraphy. Despite consistent advances in MR technology, examination protocols remained cumbersome for some time. Thus Kunz
emptying rates in comparison with the mean determined in healthy volunteers. The real time imaging technique proposed in this study compliments the aforementioned efforts by providing a real time analysis of gastric motion. The peristaltic wave itself can be resolved with both sufficient temporal and spatial resolution to permit both a qualitative and quantitative assessment. As the time needed for calculation of the respective values is approximately 30 minutes, this can be performed in a routine clinical setting but would only be used in dedicated cases. Accordingly, both peristaltic wave velocity as well as GMI could be readily determined. However, real time sequences are not appropriate for assessment of gastric emptying. For this, the protocol could be amplified with three dimensional sequences which have been shown to sufficiently display gastric volumes and enable the calculation of gastric emptying rates. MR has the advantage over conventional radiography that volumetric measurements can be performed; thus morphological and functional information can be gained with a single method. In the future, additional information on the gastric wall might be gained by high resolution images (for example, if parallel acquisition techniques are used).

Based on tagging techniques, gastric peristaltic motion can be objectively quantified and hence characterised. Three easily measurable parameters permit determination of both peristaltic wave velocity as well as GMI. Based on these parameters, the GMI of the stomach, the pharmacological effect of the motility-modifying substance erythromycin, the effect of surgery (pylorotomy), and the effect of endoscopic pyloric dilatation on gastric peristalsis were successfully illustrated. Furthermore, the clinical impact of the techniques is characterised by its non-invasive nature and lack of exposure to ionising radiation. Based on these observations, oral therapy with the motilin agonist erythromycin was shown to cause significant acceleration of antral peristaltic waves and an increase in GMI (fig 6A, B) whereas surgery and pyloric dilatation caused a significant decrease in GMI (fig 7A–C).

We conclude that real time TrueFISP imaging is feasible for assessment of gastric motility and has the potential to diagnose gastric functional disease on the basis of GMI measurements. The acquired two dimensional real time TrueFISP data are robust and characterised by sufficient temporal and spatial resolution.

Authors’ affiliations
W Ajaj, S C Goehde, N Papanikolaou, G Holtmann, S G Ruehm, J F Debatin, T C Lauenstein, Department for Diagnostic and Interventional Radiology, University Hospital Essen, Essen, Germany

REFERENCES

Question

What conclusions can you draw from this CT scan?

Clinical presentation

A female, aged 22 years, with alopecia presented with acute onset left upper quadrant abdominal pain and hypotension (blood pressure 80/40). There was no history of trauma. Abdominal examination demonstrated guarding in the left upper quadrant and urgent blood investigations revealed neutrophil leucocytosis with a normal serum amylase. There was no free air under the diaphragm on an erect chest x ray and an abdominal radiograph was unremarkable. In view of the unexplained localised peritonitis, an abdominal computed tomography (CT) scan was requested.

Question

What conclusions can you draw from this CT scan?

This case is submitted by:

W H Chan, I Zerizer
Emergency Department, St Thomas Hospital, London, UK

N Shergill, I Shergill, S Dougan
Department of General Surgery, Watford General Hospital, Watford, UK

Correspondence to: Dr W H Chan, Emergency Department, St Thomas' Hospital, Lambeth Palace Rd, London SE1 7EP, UK; waibruceleechan@hotmail.com
doi: 10.1136/gut.2003.033589

Figure 1 Abdominal computed tomography.
Real time high resolution magnetic resonance imaging for the assessment of gastric motility disorders

W Ajaj, S C Goehde, N Papanikolaou, G Holtmann, S G Ruehm, J F Debatin and T C Lauenstein

Gut 2004 53: 1256-1261
doi: 10.1136/gut.2003.038588