INFLAMMATORY BOWEL DISEASE

Trichuris suis therapy in Crohn’s disease

R W Summers, D E Elliott, J F Urban Jr, R Thompson, J V Weinstock

See end of article for authors’ affiliations

Correspondence to: Dr R W Summers, James A Clifton Center for Digestive Diseases, Department of Internal Medicine, University of Iowa Roy J and Lucille A Carver College of Medicine, 200 Hawkins Drive, Iowa City, IA 52242, USA; robert-summers@uiowa.edu

Methods: All patients ingested 2500 live T suis ova every three weeks for 24 weeks, and disease activity was monitored by CDAI. Remission was defined as a decrease in CDAI to less than 150 while a response was defined as a decrease in CDAI of greater than 100.

Results: At week 24, 23 patients (79.3%) responded (decrease in CDAI >100 points or CDAI <150) and 21/29 (72.4%) remitted (CDAI <150). Mean CDAI of responders decreased 177.1 points below baseline. Analysis at week 12 yielded similar results. There were no adverse events.

Conclusions: This new therapy may offer a unique, safe, and efficacious alternative for Crohn’s disease management. These findings also support the premise that natural exposure to helminths such as T suis affords protection from immunological diseases like Crohn’s disease.

Crohn’s disease is a chronic relapsing inflammatory reaction that may affect any part of the gastrointestinal tract. It is common in parts of the world where helminthic colonisation is rare and uncommon in those areas where most people carry worms.1 It appears to result from an inappropriate immune response to normal gut flora. Helminths down-modulate the host immune response to unrelated antigens,2,4 a property that could be beneficial in Crohn’s disease. Helminths reduce inflammation in experimental murine colitis.1,3,5 Trichuris suis, the porcine whipworm, is similar to human whipworm T trichiura. Ingestion of T suis ova results in short term self limited colonisation of humans.6 We therefore conducted a 24 week clinical trial to evaluate the safety and possible efficacy of live T suis therapy in Crohn’s disease.

METHODS

Patients were enrolled in a 24 week open label study after giving informed consent. The University of Iowa Institutional Review Board approved the protocol. Subjects with Crohn’s disease, as defined by standard clinical, radiological, and histological criteria, were recruited and followed at the University of Iowa and clinical practices in the State of Iowa. Patients 18–72 years old were eligible if they had a Crohn’s disease activity index (CDAI) between 220 and 450.7 A small bowel series and colonoscopy were required within the year before enrolment. Patients continued their Crohn’s disease medications if they met the following enrolment criteria: (1) mesalamine or derivatives if they had been receiving it for >8 weeks and the same dose for >4 weeks; (2) oral prednisone up to 25 mg/day if patients had been receiving it for >8 weeks and the same dose for >4 weeks; and (3) azathioprine or 6-mercaptopurine (6-MP) if patients had been receiving it for >6 months and the same dose for >8 weeks. Before enrolment, patients had to have a haemoglobin concentration of >10.0 g/dl, white blood count of 5000–15 000/mm³, platelet count >150 000/mm³, no iron or vitamin B₁₂ deficiency, total bilirubin <1.5 mg/dl, aspartate aminotransferase and alanine aminotransferase <100 U/dl, alkaline phosphatase <250 U/dl, blood urea nitrogen <40 mg/dl, serum creatinine <2.0 mg/dl, and stool examination negative for pathogens or Clostridium difficile toxin. Women had a negative pregnancy test and practised birth control. Patients with ileostomy, colostomy, resection >50 cm, obstructive symptoms, or anticipated need for surgery were excluded. They were not enrolled if (1) treatment in the last 12 weeks included cyclosporine, methotrexate, infliximab, or other immunomodulatory agents, (2) treatment in the last two weeks included antibiotics, antifungal, or antiparasitic medications, and (3) they had other diseases that could interfere with compliance or interpretation of the results.

Specific pathogen free pigs were given T suis ova by gastric gavage. After allowing time for worm maturation, adult worms were isolated from the colon and cultured in vitro. Ova produced in vitro were collected and allowed to embryonate for 5–6 weeks in phosphate buffered saline containing penicillin/streptomycin/amphotericin B at 22°C. The embryonated ova were then made bacteria free using 0.2% K₂Cr₂O₇, washed with sterile saline, and stored at 5°C in phosphate buffered saline. Standard viral and bacterial cultures were performed on aliquots of ova to assure that they contained no pathogens. Pigs were inoculated with stored ova at regular time intervals to assure that the ova remained infective. This analysis demonstrated that stored ova retained viability for at least nine months. Eggs were divided into individual aliquots of 2500. This number of ova was the same as that used in our earlier pilot study.9 Subjects returned every three weeks to drink the ova suspended in a commercial drink. The study coordinator witnessed that all of the subjects consumed the drink.

Abbreviations: CDAI, Crohn’s disease activity index; 6-MP, 6-mercaptopurine; DNBS, dinitrobenzene sulphanic acid; TNBS, trinitrobenzene sulphanic acid.
Patients kept daily diaries of clinical symptoms. Dosing of all other inflammatory bowel disease medications was held constant. The following were obtained at entry and every six weeks: medical history and physical examination, pregnancy test, complete blood count, liver profile, and stool examination for ova, pathogens, and C difficile toxin. Means (SD) are given. Medians are presented with interquartile range. The two tailed Fisher’s exact test was used to examine patient characteristics that might predict response or remission.

RESULTS
A total of 29 patients were enrolled and their baseline characteristics are shown in table 1. Most patients had longstanding disease (median 3.9 (1.5–6.8) years) and were refractory to standard inflammatory bowel disease therapy before enrolment. Fourteen patients were on corticosteroids and/or azathioprine/6-MP. Only 5/29 (17%) were on no medications; of these, 10 previously had tried corticosteroids and/or other immunosuppressants (azathioprine, 6-MP, infliximab). Mean CDAI was 294, indicating that patients were moderately ill. The cohort included patients with anatomical disease distribution similar to that of the Crohn’s disease population at large.

We chose T suis as the helminth to colonise subjects in this study. T suis, the porcine whipworm, is genetically related to T trichiura, the human whipworm. T suis is not a natural human parasite but it has been shown experimentally to colonise humans briefly without causing disease. The ova can be produced using pathogen free pigs, and processed to assure absence of biological contaminants. They are ingested by the host. Ova hatch in the duodenum, releasing larvae that ultimately grow in 6–8 weeks into adult worms. They migrate to the terminal ileum and colon but do not invade the host. Worms can remain viable for 1–2 years in the natural host. Adult worms release ova that are shed into the stool. These ova are immature and are not capable of colonising another host until they incubate in the soil for several weeks to allow embryonation.

We chose T suis as the helminth to colonise subjects in this study. T suis, the porcine whipworm, is genetically related to T trichiura, the human whipworm. T suis is not a natural human parasite but it has been shown experimentally to colonise humans briefly without causing disease. The ova can be produced using pathogen free pigs, and processed to assure absence of biological contaminants.

Table 1. Baseline characteristics of the patients*

<table>
<thead>
<tr>
<th>Variable</th>
<th>No of patients (n = 29)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sex (M/F)</td>
<td>13/16 (44.8% M)</td>
</tr>
<tr>
<td>Mean age (y)</td>
<td>34.0 (10.8)</td>
</tr>
<tr>
<td>Smoking status (yes/total)</td>
<td>9/29 (31%)</td>
</tr>
<tr>
<td>Initial CDAI</td>
<td>296.7 (46.9)</td>
</tr>
<tr>
<td>Median duration of disease (y)</td>
<td>4 (1.5–8)</td>
</tr>
<tr>
<td>Site of disease</td>
<td></td>
</tr>
<tr>
<td>Small bowel only</td>
<td>10/29 (34.5%)</td>
</tr>
<tr>
<td>Colon only</td>
<td>5/29 (17.2%)</td>
</tr>
<tr>
<td>Small bowel and colon</td>
<td>14/29 (48.3%)</td>
</tr>
<tr>
<td>Ileal resection</td>
<td>5/29 (17.2%)</td>
</tr>
<tr>
<td>Medications at entry</td>
<td></td>
</tr>
<tr>
<td>No medications</td>
<td>5/29 (17.2%)</td>
</tr>
<tr>
<td>Mesalamine</td>
<td>10/29 (34.5%)</td>
</tr>
<tr>
<td>Corticosteroid</td>
<td>3/29 (10.3%)</td>
</tr>
<tr>
<td>Azathioprine</td>
<td>3/29 (10.3%)</td>
</tr>
<tr>
<td>Mesalamine+corticosteroid</td>
<td>1/29 (3.4%)</td>
</tr>
<tr>
<td>Mesalamine+azathioprine/6-MP</td>
<td>1/29 (3.4%)</td>
</tr>
<tr>
<td>Corticosteroid+azathioprine/6-MP</td>
<td>3/29 (10.3%)</td>
</tr>
<tr>
<td>Mesalamine+corticosteroid+azathioprine/6-MP</td>
<td>3/29 (10.3%)</td>
</tr>
</tbody>
</table>

CDAI, Crohn’s disease activity index; 6-MP, 6-mercaptopurine.

DISCUSSION
Human helminthic parasites were considered as a therapeutic option. Many could not be used because there are no available sources other than a human carrier. Eggs from such a source would risk inadvertent transmission of pathogenic microbial agents. Also, some human helminths have disease potential or raise public health concerns. Trichuris species are helminths with favourable characteristics for therapeutic use. Their life cycle minimises the risk of inadvertent colonisation. Trichuris ova mature in the soil and are ingested by the host. Ova hatch in the duodenum, releasing larvae that ultimately grow in 6–8 weeks into adult worms. They migrate to the terminal ileum and colon but do not invade the host. Worms can remain viable for 1–2 years in the natural host. Adult worms release ova that are shed into the stool. These ova are immature and are not capable of colonising another host until they incubate in the soil for several weeks to allow embryonation.

Trichuris ova therapy may produce substantial and sustained improvement in active Crohn’s disease. However, (fig 1A). Mean initial CDAI of responders was 287.1 (47.8). It decreased to 92.0 (49.2) at week 12 and 99.9 (35.6) at week 24 (fig 1B). Thus the mean improvement in CDAI for these patients was 195.1 and 187.2 at weeks 12 and 24, respectively. There were six patients with a baseline CDAI between 250 and the minimum entry criterion of 220. All six achieved both a response (improvement in CDAI of >100) and remission (CDAI <150).

We performed subset analysis of patient characteristics looking for predictors of outcomes. Sex, patient age, disease duration, smoking status, or disease location did not influence the frequency of response or remission. There was a trend for patients using immunosuppressive drugs to improve to a greater degree than those not using these agents (table 2). Also, patients with a prior history of terminal ileum resection were less responsive.
Colonisation with helminths augments several immuno-regulatory pathways that limit Th1-type inflammation. Helminths induce production of interleukin 4 and interleukin 13, which are Th2 cytokines. This Th2 response inhibits production of Th1 cytokines thereby reducing colitis severity. Helminths also induce regulatory T cells and immune regulatory substances such as transforming growth factor \(\beta \), interleukin 10, and prostaglandin \(E_2 \) that assist in maintaining host mucosal homeostasis.

In summary, \(T \) suis is well tolerated and appears efficacious for Crohn’s disease in this open label trial. Helminths probably inhibit intestinal inflammation by mechanisms different from current medications. Helminths may offer an easy to administer alternative or supplement to currently available therapeutic agents. These results justify a double blind controlled clinical trial. Furthermore, these results support the hypothesis that helminthic exposure provides protection against some immune mediated inflammatory disease like Crohn’s disease.

ACKNOWLEDGEMENTS

The authors gratefully acknowledge the support of Betty Musgrave, clinical research coordinator. Drs Miriam B Zimmerman and William Clarke, Department of Biostatistics provided assistance with study design, statistical methods, and data analysis. Additional participating University of Iowa gastroenterologists included Drs Jeffrey Field, Khurram Qadir, and David Ramkumar. Collaborating gastroenterologists from the State of Iowa included: Drs Dean Abramson, Nile Dusdieker, Joseph Ewing, Jon Gibson, Bernard Leman, Randall Lengeling, Sudhakar Misra, James Piro, Douglas Purdy, Leon Qiao, Surish Reddy, Robert Silber, Joseph Truszkowsky, and Gary Weinman.

The Crohn’s and Colitis Foundation of America provided the primary support for this study. The Broad Medical Research Program of the Eli and Edythe L. Broad Foundation, the Ed and Liliane Schneider Family Foundation, and the Thomas Irwin Memorial Fund also provided partial support. The study sponsors had no involvement in the study design, collection, analysis, and interpretation of the data.
EDITOR’S QUIZ: GI SNAPSHOT

Vomiting in the recently anticoagulated patient

Clinical presentation
A 42 year old previously healthy man presented with an eight hour history of retrosternal tightness. While clinical examination was unremarkable, his cardiac enzymes were raised and his electrocardiogram showed ST segment elevation in leads II, III, and aVF. He was diagnosed with an acute inferior myocardial infarction and received 1.5 million units of streptokinase over the next hour. His pain settled and he was comfortable overnight.

The following morning he developed epigastric pain and tenderness and vomited twice. His haemoglobin level dropped to 12 g/dl (15 g/dl on admission). Although overall he improved over the next 48 hours, he continued to vomit even though fasting. An upper gastrointestinal endoscopy was performed and demonstrated the duodenal abnormality shown in fig 1.

Question
What is the abnormality shown (fig 1) and what is the most appropriate course of subsequent treatment?

See page 102 for answer

This case is submitted by:

R A Cahill, S Siddique, J O’Connor
Department of General Surgery, Waterford Regional Hospital, Waterford, Ireland

Correspondence to: Mr R Cahill, Department of General Surgery, Waterford Regional Hospital, Waterford, Ireland; rcahill@rcsi.ie

doi: 10.1136/gut.2004.040071

Figure 1 Upper gastrointestinal endoscopy.
Trichuris suis therapy in Crohn's disease

R W Summers, D E Elliott, J F Urban, Jr, R Thompson and J V Weinstock

Gut 2005 54: 87-90
doi: 10.1136/gut.2004.041749

Updated information and services can be found at:
http://gut.bmj.com/content/54/1/87

These include:

References
This article cites 15 articles, 5 of which you can access for free at:
http://gut.bmj.com/content/54/1/87#BIBL

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/