Hepatitis

Prognostic determinants for chronic hepatitis B in Asians: therapeutic implications

Background: Identifying risk factors for the development of complications of chronic hepatitis B (CHB) is important for setting up treatment criteria.

Aim: To determine risk factors for the development of complications in Asian CHB patients.

Patients and methods: A total of 3233 Chinese CHB patients (mean follow up 46.8 months) were monitored for liver biochemistry, viral serology, hepatitis B virus (HBV) DNA levels, acute exacerbation, hepatitis B e antigen (HBeAg) seroconversion, and development of cirrhotic complications and hepatocellular carcinoma.

Results: Median age for HBeAg seroconversion and development of complications was 35 years and 57.2 years, respectively. Patients with serum alanine aminotransferase (ALT) levels of 0.5–1 times the upper limit of normal (ULN) and 1–2× ULN had an increased risk for the development of complications compared with patients with ALT levels <0.5× ULN (p<0.0001 for both), HBeAg/antibody to hepatitis B e antigen status, and number of episodes, duration, and peak ALT levels of acute exacerbations were not associated with an increased risk of complications. In patients with complications, 43.6% had HBV DNA levels less than 1.42×10^5 copies/ml. Male sex, stigmata of chronic liver disease, old age, low albumin, and high α fetoprotein levels on presentation were independently associated with increased cumulative risk of complications. Male sex, presence of hepatitis symptoms, old age, low albumin level, and presence of complications on presentation were independently associated with shorter survival.

Conclusion: Prolonged low level viraemia causing insidious and continual liver damage, as reflected by ALT levels of 0.5–2× ULN, is the most likely pathway for the development of complications in Asian CHB patients.

See end of article for authors' affiliations

Correspondence to: Professor C-L Lai, Department of Medicine, The University of Hong Kong, Queen Mary Hospital, Pokfulam Rd, Hong Kong, China; hrmecl@hkucc.hku.hk

Revised version received 13 March 2005
Accepted for publication 19 April 2005
Published online first 4 May 2005

Chronic hepatitis B (CHB) virus infection affects more than 400 million people globally, of whom 75% are Asians. 25–40% of chronic CHB patients will develop complications of cirrhosis and hepatocellular carcinoma (HCC). Although there have been marked advances in the therapeutic options for CHB recently, indications for treatment remain controversial. Guidelines from the American Association for the Study of Liver Diseases, European Association of the Study of Liver, and Asian-Pacific Association of the Study of Liver suggest that treatment should only be given when there is persistent elevated alanine aminotransferase (ALT) levels >2 times normal and hepatitis B virus (HBV) DNA levels of >10^5 copies/ml for both hepatitis B e antigen (HBeAg) positive and negative patients. However, no study has proved that patients with values below these arbitrarily defined cut off levels are at a lower risk for the development of cirrhosis related complications or HCC. In fact, a recent study by Kim et al in the general population of Korea found that there was already an increased risk of mortality from liver disease in patients with ALT levels in the upper range of normal. It is essential that more evidence for establishing treatment criteria should be sought, especially as more potent and safe therapeutic agents will be available in the near future.

The aim of the present large scale study was to examine the factors determining the development of cirrhosis related complications and survival in Asian CHB patients.

PATIENTS AND METHODS

All Chinese CHB patients who were followed up in the Hepatitis Clinic, Department of Medicine, Queen Mary Hospital, Hong Kong, during the period from January 1976 to December 2000 were recruited. A total of 346 patients who already had cirrhosis related complications including ascites, spontaneous bacterial peritonitis (SBP), oesophageal varices, encephalopathy, or HCC (collectively termed as “complications”) on presentation were excluded from the study. Patients with hepatitis C (n = 25) and hepatitis D (n = 10) coinfection, a history of significant alcohol consumption (n = 19), evidence of coexisting autoimmune hepatitis (n = 4), Wilson’s disease (n = 5), or primary biliary cirrhosis (n = 5) were also excluded. In addition, 494 patients who received interferon, lamivudine, or other investigational modalities for the treatment of CHB were excluded because these would not represent the natural history of the disease. The long term outcome of interferon treated patients has been analysed and published separately. All of the studies of interferon included patients with normal as well as elevated ALT levels. Their exclusion should not bias the outcome of our current analysis.

All patients were positive for hepatitis B surface antigen by micro-particle enzyme immunoassay (MEIA; Abbott Laboratories, Chicago, Illinois, USA) for at least six months. HBeAg and antibodies to HBeAg (anti-HBe) (ELISA; Abbott Laboratories), liver biochemistry, and α fetoprotein (AFP) were checked every 3–6 months. Continual clinical assessments, including the development of ascites, were carried out

Abbreviations: CHB, chronic hepatitis B; HBV, hepatitis B virus; ALT, alanine aminotransferase; ULN, upper limit of normal; HCC, hepatocellular carcinoma; HBeAg, hepatitis B e antigen; SBP, spontaneous bacterial peritonitis; anti-HBe, antibody to hepatitis B e antigen; AFP, α fetoprotein; PCR, polymerase chain reaction.

www.gutjnl.com
Variables with skewed distribution and the test. The Mann-Whitney U test was used for continuous variables was tested by the Komolgorov-Smirnov Program for Social Sciences (SPSS 10.0 for Windows; SPSS All statistical analyses were performed using the Statistical Program for Social Sciences (SPSS 10.0 for Windows; SPSS All statistical analyses were performed using the Statistical Program for Social Sciences (SPSS 10.0 for Windows; SPSS All statistical analyses were performed using the Statistical Program for Social Sciences (SPSS 10.0 for Windows; SPSS

All statistical analyses were performed using the Statistical Program for Social Sciences (SPSS 10.0 for Windows; SPSS Inc., Chicago, Illinois, USA). Normality of the distribution of continuous variables was tested by the Komolgorov-Smirnov test. The Mann-Whitney U test was used for continuous variables with skewed distribution and the χ^2 test with Yates’ correction factor or Fisher’s exact test was applied for categorical variables. Differences in paired parameters were tested by the Wilcoxon signed ranks test. The Kaplan-Meier method using the log rank test was applied for calculation of the cumulative risk of development of complications and survival. The Cox hazard proportional model was used to test the associations between different variables and the development of complications and survival.

RESULTS

Demographics

A total of 3233 HBV patients were recruited. Demographic data on presentation are shown in Table 1. Median and mean duration of follow up were 29 (range 6–291) months and 46.9 (SD 46.6) months, respectively.

HBeAg seroconversion

Among 1274 patients positive for HBeAg on presentation, 512 patients (40.2%) had HBeAg seroconversion at subsequent follow up. Median age at HBeAg seroconversion was 35 years (range 3.6–77.4).

Development of complications

A total of 170 patients (5.3%) developed at least one complication. The number of patients developing each complication was as follows: ascites 96 (3.0%) with 30 patients (0.9%) also having SBP, oesophageal varices 59 (1.8%), encephalopathy 40 (1.2%), and HCC 95 (2.9%). Of the 59 patients with oesophageal varices, 15 had clinical bleeding; the rest were detected by endoscopy. The cumulative risk for the development of complications is shown in Figure 1. By the end of 10 years and 15 years of follow up, 5% and 8% of patients, respectively, had developed complications.

Table 1

Demographic data of the 3233 patients on presentation

<table>
<thead>
<tr>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>No of patients</td>
<td>3233</td>
</tr>
<tr>
<td>Sex ratio (M:F)</td>
<td>2121:1112 (1.9:1)</td>
</tr>
<tr>
<td>Age (y) (median [range])</td>
<td>38 (1–85)</td>
</tr>
<tr>
<td>HBeAg anti-HBe</td>
<td>1274:1959 (1:1.5)</td>
</tr>
<tr>
<td>Albumin (g/l) (median [range])</td>
<td>45 (1.5–58)</td>
</tr>
<tr>
<td>Bilirubin (umol/l) (median [range])</td>
<td>11.8 (5.3–55.3)</td>
</tr>
<tr>
<td>ALT (U/l) (median [range])</td>
<td>42 (4–4620)</td>
</tr>
<tr>
<td>No of patients with ALT<0.5xULN</td>
<td>714 (22.1%)</td>
</tr>
<tr>
<td>ALT>0.5–1xULN</td>
<td>1006 (31.1%)</td>
</tr>
<tr>
<td>ALT1–2xULN</td>
<td>737 (22.8%)</td>
</tr>
<tr>
<td>ALT>2–6xULN</td>
<td>479 (14.8%)</td>
</tr>
<tr>
<td>ALT>6xULN</td>
<td>297 (9.2%)</td>
</tr>
<tr>
<td>No of patients with AFP<20ng/ml</td>
<td>2861 (88.5%)</td>
</tr>
<tr>
<td>AFP>20–100ng/ml</td>
<td>243 (7.5%)</td>
</tr>
<tr>
<td>AFP>100–500ng/ml</td>
<td>97 (3%)</td>
</tr>
<tr>
<td>AFP>500ng/ml</td>
<td>32 (1%)</td>
</tr>
<tr>
<td>Duration of follow up (months)</td>
<td>29 (6–291)</td>
</tr>
<tr>
<td>Median (range)</td>
<td>29 (6–291)</td>
</tr>
<tr>
<td>Mean (SD)</td>
<td>46.9 (46.6)</td>
</tr>
</tbody>
</table>

HBeAg, hepatitis B e antigen; anti-HBe, antibody to hepatitis B e antigen; ALT, alanine aminotransferase; ULN, upper limit of normal; AFP, α fetoprotein.

Table 2

Median age and hepatitis B e antigen/antibody to hepatitis B e antigen (HBeAg/anti-HBe) status at the time of development of complications of cirrhosis and hepatocellular carcinoma

<table>
<thead>
<tr>
<th>Description</th>
<th>Age (y) at the time of complications (median [range])</th>
<th>HBeAg/anti-HBe (% anti-HBe +ve)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ascites (n=96)</td>
<td>57.7 (29–78.1)</td>
<td>30/66 (68.8%)</td>
</tr>
<tr>
<td>SBP (n=30)</td>
<td>60.0 (32.2–78.0)</td>
<td>7/23 (76.7%)</td>
</tr>
<tr>
<td>Oesophageal varices (n=59)</td>
<td>54.3 (25.4–82.3)</td>
<td>14/45 (76.3%)</td>
</tr>
<tr>
<td>Encephalopathy (n=40)</td>
<td>58.5 (27.6–83.1)</td>
<td>14/26 (66.5%)</td>
</tr>
<tr>
<td>HCC (n=95)</td>
<td>59 (24.8–82)</td>
<td>18/77 (81.1%)</td>
</tr>
<tr>
<td>All complications (n=170)</td>
<td>57.2 (24.8–83.1)</td>
<td>45/125 (73.5%)</td>
</tr>
</tbody>
</table>

SBP, spontaneous bacterial peritonitis; HCC, hepatocellular carcinoma.
Median age and HBeAg/anti-HBe status at the time of development of each complication are shown in table 2; 73.5% of patients were positive for anti-HBe when complications developed. As this might be related to the higher prevalence of anti-HBe positivity in the age groups when complications occurred, patients were stratified according to age. For patients under 50 years of age, the prevalence of anti-HBe positivity for patients who developed complications was significantly higher compared with that of patients with no complications (73.1% (38/52) v 56.4% (1463/2596), respectively; p = 0.016). For patients over 50 years of age, there was no significant difference in anti-HBe positivity between patients who developed complications and patients with no complications (73.7% (87/118) v 80.1% (374/467), respectively; NS).

Factors associated with the development of complications

Demographics on presentation

Males had a higher cumulative risk for the development of complications than females (p<0.0001). Patients who developed complications, compared with patients without complications, were older (median age 55 years (range 19–82) v 38 years (range 1–85); p<0.0001), had a higher chance of the presence of stigmata of chronic liver disease (p<0.0001), and were more likely to present with hepatic symptoms (p<0.0001).

Liver biochemistry on presentation of patients with and without complications of cirrhosis

Table 3: Liver biochemistry on presentation of patients with and without complications of cirrhosis

<table>
<thead>
<tr>
<th>Patients who developed complications of cirrhosis</th>
<th>Patients without complications of cirrhosis</th>
<th>p Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Albumin (g/l) 34 (17–50)</td>
<td>45 (18–58)</td>
<td><0.0001</td>
</tr>
<tr>
<td>ALT (U/l) 59 (11–33/70)</td>
<td>42 (4–48/20)</td>
<td><0.0001</td>
</tr>
<tr>
<td>Bilirubin (μmol/l) 18 (3–323)</td>
<td>11 (1–553)</td>
<td><0.0001</td>
</tr>
<tr>
<td>AFP (ng/ml) 17.2 (1–322/02)</td>
<td>4 (1–49/91)</td>
<td><0.0001</td>
</tr>
</tbody>
</table>

Values are median (range). ALT, alanine aminotransferase; AFP, α-fetoprotein.

Effect of ALT levels during follow up on the cumulative risk for the development of complications

The effect of ALT levels during follow up on the cumulative risk for the development of complications was also calculated for patients with at least three ALT readings. Patients were categorised by median ALT levels according to the same criteria adopted above. As there were only nine patients with median ALT levels more than 6×ULN, they were grouped with patients with ALT levels >6×ULN. Again, patients with ALT levels >1–2×ULN had the highest risk for the development of complications (p<0.0001 and p = 0.0027 compared with patients with ALT <0.5×ULN and patients with ALT levels 0.5–1×ULN, respectively). Patients with ALT levels of 0.5–1×ULN also had a higher risk for the development of complications compared with patients with ALT levels ≤0.5×ULN (p = 0.039).

Figure 2: Cumulative risk of development of complications stratified according to alanine aminotransferase (ALT) levels on presentation. The table depicts p values for comparisons between different groups of patients. ULN, upper limit of normal.
ALT levels <0.5× ULN (p = 0.0071). There were no significant differences in the risk for development of complications when patients with ALT levels >2–6× ULN were compared with patients with ALT levels <0.5× ULN and those with ALT levels 0.5–1× ULN.

HBeAg status on presentation
There was no significant difference in the cumulative risk for the development of complications between HBeAg positive patients and anti-HBe positive patients (p = 0.12). This was also true when each type of complication was analysed separately.

Effect of exacerbation
The effect of exacerbation on the development of complications was analysed with respect to the number of episodes of exacerbation, duration of exacerbation, peak ALT levels, and peak AFP levels. The only significant risk factor was peak AFP levels of 100 ng/ml or more during or after an exacerbation (p = 0.0001 compared with patients with AFP level less than 100 ng/ml) (fig 3).

HBV DNA levels
HBV DNA levels were measured in 2332 patients. Of these, 112 had paired serum samples before and after HBeAg seroconversion. In addition, 525 HBeAg positive patients and 1695 anti-HBe positive patients had samples at the last follow up for HBV DNA assays. Details of HBV DNA levels measured by Digene Hybrid Capture assay are shown in table 4.

Median HBV DNA levels of the 1695 anti-HBe positive patients, as determined by the Cobas Amplitor HBV Monitor test, was 7250 copies/ml (range <200–1.7×10⁴). Only 386 patients (22.8%) had undetectable HBV DNA levels. HBV DNA levels were <10⁴, >10⁴–10⁵, >10⁵–10⁶, and >10⁶ copies/ml in 183 (10.8%), 320 (18.9%), 259 (15.3%), and 547 (32.3%) patients, respectively.

HBV DNA levels were measured in 110 patients with complications: 21 patients before the complications developed (range 0.41–1700 months). Median HBV DNA level was 6 (range 0.41–193.5 months). Median HBV DNA level was 6 (range 0.41–193.5 months).

Effect of exacerbation
The effect of exacerbation on the development of complications was analysed with respect to the number of episodes of exacerbation, duration of exacerbation, peak ALT levels, and peak AFP levels. The only significant risk factor was peak AFP levels of 100 ng/ml or more during or after an exacerbation (p = 0.0001 compared with patients with AFP level less than 100 ng/ml) (fig 3).

Table 4 Hepatitis B virus (HBV) DNA levels of 2332 patients measured by Digene Hybrid Capture assay

<table>
<thead>
<tr>
<th>HBV DNA level</th>
<th>HBeAg-ve phase (n = 112)</th>
<th>Anti-HBe-ve phase (n = 112)</th>
<th>HBeAg-ve phase (n = 525)</th>
<th>Anti-HBe-ve phase (n = 1695)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Undetectable HBV DNA (%)</td>
<td>27 (24.1)</td>
<td>73 (65.18)</td>
<td>102 (19.4)</td>
<td>1271 (75.0)</td>
</tr>
<tr>
<td>HBV DNA level (copies/ml)</td>
<td>4.15 (<0.142–803.87)*</td>
<td><0.142 (<0.142–434.58)*</td>
<td>12.99 (<0.142–17000)†</td>
<td><0.142 (<0.142–17000)†</td>
</tr>
<tr>
<td><10⁶ copies/ml (median range)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

HBeAg, hepatitis B e antigen; anti-HBe, antibody to hepatitis B e antigen.
*p<0.001; †p<0.001
the patients in this study however was checked only at the time of enrolment whereas the development of HCC was observed during the subsequent 10 years of follow up. HBeAg/anti-HBe status at the time of development of HCC was not assessed. This study therefore can provide no clue as to the HBeAg status of patients at the time of HCC development. Another smaller Taiwanese study found that although HBeAg seroconversion confers a favourable outcome in some patients, active hepatitis can occur after HBeAg seroconversion, leading to cirrhosis and HCC.13,14 McMahon et al, in their study, found that “seroconversion from HBeAg to anti-HBe, and even loss of hepatitis B surface antigen, did not protect patients from development of hepatocellular carcinoma”.15 These latter two studies confirm the findings of the present study, that the majority of cirrhosis related complications and HCC develop after HBeAg seroconversion. The onset of cirrhosis occurs during the prolonged process of HBeAg seroconversion in Asian patients.15 Cirrhosis will continue to worsen or develop after HBeAg seroconversion.16,17

Thus HBeAg seroconversion should only be regarded as a step towards viral suppression, and therapy may need to be continued after HBeAg seroconversion.

Thirdly, progression of cirrhosis is more likely to be related to the low level of viraemia in a large proportion of patients who are anti-HBe positive. In the current study, only 22.8% of anti-HBe patients had undetectable HBV DNA levels by the PCR based assay; 32.3% had more than 10^5 copies/ml. (That the wild-type virus is as likely to cause complications as the precore mutants have been analysed in a separate study19.) Among the 56% of patients with complications in whom HBV DNA levels were undetectable by the Digene Hybrid Capture assay, over 70% had HBV DNA levels detectable by the Amplicor HBV Monitor test. Twenty nine per cent of patients had undetectable HBV DNA (that is, <200 copies/ml). This is evidence against the proposal that disease progression is unlikely once HBV DNA levels become less than 10^5 copies/ml.20 Our findings support the conclusion of Chu and colleagues16 that there is no cut off HBV DNA value for differentiating active from inactive disease in HBeAg negative patients. This implies that prolonged and maximal suppression of HBV DNA levels to below the detection limit of PCR based assays may be necessary to reduce the risk of complications.

In conclusion, prolonged low level viraemia causing insidious and continual liver damage, as reflected by relatively mild elevations in ALT levels, is the most likely pathway leading to the development of complications for Asian patients with CHB. Long term antiviral therapy aiming at maximal suppression of HBV even after HBeAg seroconversion may be required for Asian patients.

Authors’ affiliations

M-F Yuen, H-J Yuan, D K-H Wong, J C-H Yuen, W-M Wong, A O-O Chan, B C-Y Wong, K-C Lai, C-L Lai, Department of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong

Conflict of interest: None declared.

REFERENCES

Prognostic determinants for chronic hepatitis B in Asians: therapeutic implications

Gut 2005 54: 1610-1614 originally published online May 4, 2005
doi: 10.1136/gut.2005.065136

Updated information and services can be found at:
http://gut.bmj.com/content/54/11/1610

These include:

References
This article cites 18 articles, 2 of which you can access for free at:
http://gut.bmj.com/content/54/11/1610#BIBL

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Topic Collections
Articles on similar topics can be found in the following collections

Hepatic cancer (474)
Hepatitis B (88)

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/