Plexiform neurofibroma mimicking a pancreatic cystic tumour

Pancreatic neurogenic tumours are extremely rare. Among benign neurogenic tumours, schwannoma is more frequently encountered. We report here the case of a plexiform neurofibroma, a type of neurogenic tumour in the pancreas, to our knowledge previously unreported.

History

A 44 year old Caucasian female patient was hospitalised for epigastric and right abdominal pain lasting for seven months. Abdominal ultrasound and computed tomography showed a cystic lesion located in the superior and anterior part of the pancreatic isthmus, with a maximal diameter of 3.5 cm (fig 1A, B). T2 magnetic resonance imaging demonstrated a trilobar cystic lesion with strong hyperintensity (fig 1B); no communication with the main pancreatic duct was noted at magnetic resonance cholangiopancreatography (fig 1C). Endoscopic ultrasonography (EUS) showed a cystic lesion containing heterogeneous fluid (fig 1D). EUS guided fine needle aspiration provided mucoid fluid with no epithelial cells. Fluid pancreatic enzyme concentrations were 423 and 1204 U/l for amylase and lipase, respectively, while CEA, CA 19.9, and CA 72.4 were 17 ng/ml, 9 U/ml, and 140 U/ml, respectively. Despite the low CA 19.9 concentration and lack of mucinous cells in cystic fluid, other findings were consistent with a diagnosis of mucinous cystadenoma. Surgical exploration confirmed a cystic lesion of the superior part of the pancreatic isthmus, distant from the main pancreatic duct (fig 1A, B). Tumour enucleation was performed. On macroscopy there was a well delineated, trilobated, translucent mass, measuring 3.5 cm (fig 1E). The tumour consisted of aggregates of benign spindle cells embedded in a fibrillar matrix (fig 1F). These aggregates formed a thin rim around a large central low cellular zone of oedema and myxoid degeneration. The tumour cells expressed neurofilaments and S100 protein on immunohistochemistry. P53 immunostaining was negative and sparse nuclei were Ki67 positive. These features were consistent with a benign plexiform neurofibroma (PNF). No neurofibromatosis related lesions were found and no mutation of the **NF1** (neurofibromatosis 1) gene was identified on analysis of DNA both from blood lymphocytes and tumour tissue. At follow up, two years after surgical resection, the patient did not present with any complaints and there was no evidence of pancreatic lesions.

Discussion

The presence of PNF in the pancreas has several clinical implications, as indicated by the present case. Firstly, PNF may mimic a pancreatic cyst, as was hypothesised in this case before surgery. The cystic appearance of neurogenic tumours is frequently encountered, with intratumoral oedematous and myxoid changes probably being the underlying lesions. A bright appearance on T2 weighted magnetic resonance images is a characteristic of PNF. Secondly, surgical...
resection was necessary to exclude malignancy which is more frequently encountered in PNF compared with classical neurofibromas. In addition to classical benign features, similar to published data on benign PNF, a high cell proliferation and p53 protein expression were absent in our case. Thirdly, PNF is a morphological variant of neurofibroma, generally considered pathognomonic for an NFI syndrome. When diagnosed in adult patients, it is frequently a solitary tumour and is considered a mosaic located form of NFI syndrome. The absence of detectable genetic abnormalities and other clinical NFI syndrome-associated lesions in the present case could be explained by such a mechanism. For these patients, there is a low risk of developing other diseases associated with NFI syndrome.

In conclusion, we have reported an uncommon case of PNF, unique in its pancreatic location. Intratumoral myxoid and oedematous changes that develop in this type of neurofibroma give a cystic appearance which may lead to a misdiagnosis of a pancreatic cyst. Such lesions should be added to the list of pancreatic tumours with a cystic appearance.

A Handra-Luca
Department of Pathology, Jean Verdier and Beaujon Hospitals, Assistance Publique-Hôpitaux de Paris, France

D Vidaud
Department of Biochemistry, Beaujon Hospital, Assistance Publique-Hôpitaux de Paris, France

M-P Vollierme
Department of Radiology, Beaujon Hospital, Assistance Publique-Hôpitaux de Paris, France

N Colnot
Department of Pathology, Beaujon Hospital, Assistance Publique-Hôpitaux de Paris, France

D Henin
Department of Pathology, Bichat-Claude Bernard Hospital, Assistance Publique-Hôpitaux de Paris, France

P Ruszniewski
Department of Gastroenterology, Beaujon Hospital, Assistance Publique-Hôpitaux de Paris, France

P Bedossa, A Couvelard
Department of Pathology, Beaujon Hospital, Assistance Publique-Hôpitaux de Paris, France

Correspondence to: Dr A Handra-Luca, MD PhD, Service d’Anatomie Pathologique, Assistance Publique-Hôpitaux Paris, Hôpital Jean Verdier, Avenue du 14 Juillet, 93143 Bondy, France; adriana.handra-luca@vr-ap-hop-paris.fr
doi: 10.1136/gut.2005.074609
Conflict of interest: None declared.

References

No genetic association between EPHX1 and Crohn’s disease
In a case control study on the associations between functional genetic polymorphisms in biotransformation enzymes and Crohn’s disease, we found a strong association between the Tyr113His (348T>C) polymorphism in exon 3 of the microsomal epoxide hydrolase (EPHX1) gene and Crohn’s disease. The three referees all agreed that the study was interesting and should be published so that other groups can attempt to replicate the results in independent study cohorts. This was done recently by Cuthbert and colleagues (Gut 2004;53:1136) who investigated 348 controls and 307 patients with Crohn’s disease, and who were unable to reproduce our results. In addition, they reported that our data for the EPHX1 exon 3 polymorphism in the control group were not in Hardy-Weinberg equilibrium (HWE), as also noticed previously by Györy and colleagues. Our data on EPHX1 exon 3 genotyping were obtained by restricted fragment length polymorphism (RFLP) analyses by applying the method described by Lancaster and colleagues.

However, recently it was reported that a silent substitution polymorphism (G to A) at codon 119 of the EPHX1 gene may exist, which may disturb the polymerase chain reaction (PCR) RFLP method applied by us, as the presence of this polymorphism may disturb proper binding of the reverse primer, covering the 119 G>A area, and disturb our over-classification of His113 alleles. Therefore, we developed a dual colour allele specific discrimination assay for genotyping the polymorphism at codon 113 of the EPHX1 gene. EPHX1 genotyping was determined with the iCycler iQ Multicolour Real Time Detection System (Bio-Rad Laboratories, Veenendaal, the Netherlands) using molecular beacons. PCR was performed with the forward primer 5'-CAG CTC CAA CTA CCT GGA G-3' and the reverse primer 5'-TGA CAT ACA TCG TCT G-3' in the presence of the FAM labelled wild-type probe (5'-GCC GAT GAT TCA CAG ATG CCA CGT-3') and the HEX labelled mutant probe (5'-GCC GAT ATT CAC AGA CAG CAC CCA CCT GAC G-3').

The iCycler IQ master reaction mixture contained 200 ng of genomic DNA, 10 mM Tris/HEC (pH 9.0), 50 mM KCl, 0.1% Triton X-100, 4 mM MgCl₂, 0.25 mM dNTPs, 50 ng of each primer, 200 nM of each beacon, and 2.5 U Taq-DNAPolymerase. The PCR conditions were three minutes at 95°C, then 40 cycles of 30 seconds at 95°C, 30 seconds at 59°C, and 30 seconds at 72°C. Fluorescent signals were measured at the end of each cycle. Genotypes were assigned using the iCycler iQ Optical System, software version 3.1. At each PCR run (in 96 well plates) sterile H₂O instead of genomic DNA was added in several wells as a negative control for amplification.

The PCR-RFLP analyses were performed in the first half of 1999, only some of the samples were still available (125 of 149 controls and 149 of 151 cases) and these were re-evaluated by the iCycler method.

Genotype distribution of the EPHX1 Tyr113His polymorphism in patients with Crohn’s disease and controls was now in HWE (χ² = 2.47, p = 0.12 and χ² = 0.82, p = 0.37, respectively) and genotype distribution was not significantly different between cases and controls (χ² = 3.5, p = 0.17). The Tyr allele frequencies of 0.70 and 0.68 obtained for cases and controls, respectively, were very similar to the corresponding values of 0.71 and 0.70, as reported by Cuthbert et al. Thus in answer to the question as posed by Cuthbert et al.: “Genetic association between EPHX1 and Crohn’s disease: population stratification, genotyping error, and random chance?”, we can conclude that a genotyping error was responsible for our earlier published association between the EPHX1 Tyr113His polymorphism and Crohn’s disease. Similar genotyping errors may also be present in several other studies on the EPHX1 exon 3 polymorphism in association with a variety of diseases, as many studies were based on methods using a reverse primer covering the “119 silent mutation area” of the EPHX1 gene.” This may also have consequences for interpretation of results in the cited papers. However, a rapid literature search by Pubmed revealed more than 100 papers on EPHX1 polymorphisms over the past 10 years, suggesting that many more papers may deal with genotyping problems, as outlined above.

In addition, Cuthbert et al. also reported that another polymorphism tested in our study, the CYP1A1 exon 7 Ile/Val polymorphism, was not in HWE in the control group. This is correct but this deviation from HWE may be attributed to random chance, due to the rarity of the Val allele in our population, which makes the χ² test inappropriate under such conditions. For instance, genotype distribution is in accordance with HWE when only two individuals less would have been classified as Val/Val homozygotes.

We thank Cuthbert et al and Györy and colleagues for their interest in our work. In addition, we conclude that (interpretation of) data in many other published studies on the EPHX1 Tyr113His (exon 3) polymorphism should be critically re-evaluated.
Transcriptional downregulation of the lactase (LCT) gene during childhood

Adult-type hypolactasia, characterised by bloating, gas formation, and diarrhoea after ingestion of lactose containing food, affects half of the world’s population.1 The molecular background of lactase non-persistence/persistency trait has been shown to associate with a single nucleotide polymorphism (SNP) C/T−13910 residing 13910 base pairs upstream from the 5’ end of the lactase (LCT) gene in an intron of the minichromosome maintenance 6 (MCM6) gene.2-4 We have demonstrated a tridimensional distribution of lactase activity in the intestinal mucosa in adults, with low lactase activity (4–9 U/g protein) in those with the C−13910 allele compared with that of the T−13910 allele. In children younger than five years of age, lactase activity, ranging from 21 to 113 U/g protein (mean activity 47 U/g protein; sample not available n = 2) except for one child presenting with low lactase activity (6 U/g protein). In this case the indication for lactase downregulation in Finns and in intestinal mucosa occurs in parallel with the time period of the decline in lactase enzyme activity, indicating a causative role for the intronic region containing the C−13910 allele. Characterisation of the transcriptional regulators at the C−13910 enhancer element, and the exact mechanism underlying C−13910 allele specific downregulation of lactase activity awaits elucidation.

Acknowledgements

We are grateful to the children and their families for their participation. Ms Sari Näsman and Mervi Manninen at the Day Surgery Unit, Hospital for Children and Adolescents, are acknowledged for coordinating and managing the sample collection. Funding was provided by the Sigrid Juselius Foundation, Helsinki, Finland, the Helsinki University Hospital Research Funding, Helsinki, Finland, the Finnish Cultural Foundation, the Maud Kuistila Foundation, and The Research Foundation of Orion Pharma, Espoo, Finland.

H Rasinperä
Department of Medical Genetics, University of Helsinki, Finland

M Kuokkanen
Department of Medical Genetics, University of Helsinki, Finland, and National Public Health Institute, Department of Molecular Medicine, Helsinki, Finland

K-L Kolho, H Lindahl
Hospital for Children and Adolescents, University of Helsinki, Finland

N S Ennolah
Department of Medical Genetics, University of Helsinki, Finland, and National Public Health Institute, Department of Molecular Medicine, Helsinki, Finland

E Savilahti
Hospital for Children and Adolescents, University of Helsinki, Finland

Table 1 Lactase activity, L/S ratio, and allelic ratio of the study subjects

<table>
<thead>
<tr>
<th>Age (y)</th>
<th>C/T−13910 genotype</th>
<th>Lactase activity (U/g protein)</th>
<th>L/S ratio</th>
<th>Allele ratio (%) C/T−13910</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.8</td>
<td>CT</td>
<td>85</td>
<td>1.11</td>
<td>48/52</td>
</tr>
<tr>
<td>1.1</td>
<td>CT</td>
<td>113</td>
<td>1.02</td>
<td>52/48</td>
</tr>
<tr>
<td>4.0</td>
<td>CT</td>
<td>31</td>
<td>0.49</td>
<td>48/52</td>
</tr>
<tr>
<td>4.3</td>
<td>CT</td>
<td>53</td>
<td>0.48</td>
<td>42/58</td>
</tr>
<tr>
<td>4.7</td>
<td>CT</td>
<td>40</td>
<td>0.62</td>
<td>40/60</td>
</tr>
<tr>
<td>4.9</td>
<td>CT</td>
<td>39</td>
<td>0.62</td>
<td>40/60</td>
</tr>
<tr>
<td>5.1</td>
<td>CT</td>
<td>6</td>
<td>0.08</td>
<td>48/52</td>
</tr>
<tr>
<td>6.7</td>
<td>CT</td>
<td>22</td>
<td>0.28</td>
<td>18/82</td>
</tr>
<tr>
<td>7.1</td>
<td>CT</td>
<td>84</td>
<td>0.54</td>
<td>13/87</td>
</tr>
<tr>
<td>11.1</td>
<td>CT</td>
<td>29</td>
<td>0.54</td>
<td>13/87</td>
</tr>
<tr>
<td>14.9</td>
<td>CT</td>
<td>21</td>
<td>0.54</td>
<td>13/87</td>
</tr>
<tr>
<td>17.0</td>
<td>CT</td>
<td>29</td>
<td>0.54</td>
<td>13/87</td>
</tr>
<tr>
<td>1.1</td>
<td>CC</td>
<td>24</td>
<td>0.28</td>
<td>51/49</td>
</tr>
<tr>
<td>5.0</td>
<td>CC</td>
<td>6</td>
<td>0.08</td>
<td>49/51</td>
</tr>
</tbody>
</table>

*Defined by assessing cSNP G/A−593 in exon 1 of the lactase LCT gene.
†Carrier of a CLD mutation (unpublished data).
Conflict of interest: None declared.

Cystic fibrosis transmembrane regulator gene carrier status is a risk factor for young onset pancreatic adenocarcinoma

Pancreatic adenocarcinoma is the fourth leading cause of cancer death in the USA. Although predominantly a cancer of the elderly, approximately 20% of patients are diagnosed under the age of 60 years. Younger patients are likely the best candidates for early surgical intervention, and patients at risk for young onset cancer comprise a logical focus for screening or prevention.

Younger pancreatic cancer patients seen at the Mayo Clinic were ultra rapidly recruited to our study, with more than 75% of all such patients seen at the Mayo Clinic enrolled in the registry. This represents a substantial improvement over population based pancreatic cancer epidemiological studies, with participation rates ranging from 34.6% to 45.6%. Informed written consent and institutional review board approval were obtained.

As a pilot study, 33 patients were selected in whom a pathological diagnosis of pancreaticitis was also noted at the time of pancreatic cancer surgery. The patients ranged in age from 41 to 81 years (median 65), and seven of the 33 had a diagnosis of pancreaticitis made at least one year prior to cancer diagnosis. These patients were screened for variants in CFTR using the Tag-It Mutation Detection Kit, a clinically available kit testing for 40 mutations.

The results were compared with the Mayo Clinic clinical database of young onset pancreatic cancer cases (n = 5349). As shown in table 1, 14 of the 166 (8.4%) CFTR mutation carriers were included in the control group of young onset pancreatic cancer cases. There was no significant difference in age of onset, pancreaticitis, family history of pancreatic cancer, or smoking in carriers versus non-carriers of CFTR mutations.

Several cases of patients with cystic fibrosis (CF) and pancreatic adenocarcinoma have been reported, and two cohort studies have shown an increased risk for pancreatic cancer among CF homozygotes. Two studies have investigated CFTR mutation frequencies in pancreatic cancer patients, with negative results. However, both series only investigated one mutation (AF508), and neither focused on young onset patients.

Our study represents the first positive association of pancreatic cancer risk with CFTR carrier status, with mutations conferring a twofold risk for cancer before the age of 60 years. The finding that only one of the CFTR carriers had an antecedent history of pancreaticitis is intriguing, as either pancreaticitis is subclinical or the presence of one mutant CFTR allele may increase the risk for pancreatic cancer through a mechanism independent of chronic pancreatitis. A larger study to confirm these results is ongoing.

Acknowledgements

We thank the patients in this study and the contributions of Tammy Dahl, RN, Kathy Liffrig, Cynthia Nixa, Diane Batzel, Que Lui, Suresh Chari, MD, and Thomas Smyrk, MD. Funding for this research was provided by the Mayo Clinic SPORE in Pancreatic Cancer (P50 CA 102701), R25 CA 92049, Lustgarten Foundation for Pancreatic Cancer Research, NCI GRANT (R01 CA97075).

R McWilliams

Department of Oncology and Department of Medicine, Mayo Clinic, Rochester, Minnesota, USA

W E Highsmith

Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA

K G Rabe, M de Andrade, L A Torsden

Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota, USA

A Orpana

Department of Medical Genetics, University of Helsinki, Finland, Helsinki University Central Hospital, Laboratory of Molecular Genetics, Helsinki, Finland, and Department of Chemical Medicine, University of Helsinki, Finland

I Järvelä

Department of Medical Genetics, University of Helsinki, Finland, and Helsinki University Central Hospital, Laboratory of Molecular Genetics, Helsinki, Finland

Correspondence to: Dr I Järvelä, Helsinki University Central Hospital, Laboratory of Molecular Genetics, Haartmaninkatu 2, PO Box 140, FIN-00290 Helsinki, Finland; irmi.jarvela@hus.fi
doi: 10.1136/gut.2005.077404

Table 1 Comparison of CFTR mutation frequencies detected in the young onset pancreatic cancer cohort versus the clinical database

<table>
<thead>
<tr>
<th>CFTR mutation carriers</th>
<th>No.</th>
<th>%</th>
<th>CFTR mutation non-carriers</th>
<th>No.</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>AF508</td>
<td>12</td>
<td>8.75</td>
<td>14</td>
<td>8.4</td>
<td>512.0</td>
</tr>
<tr>
<td>R177H</td>
<td>1</td>
<td>0.71</td>
<td>1</td>
<td>0.5</td>
<td>28.0</td>
</tr>
<tr>
<td>G551D</td>
<td>6</td>
<td>4.28</td>
<td>6</td>
<td>2.8</td>
<td>6.0</td>
</tr>
<tr>
<td>G542X</td>
<td>4</td>
<td>2.80</td>
<td>4</td>
<td>1.8</td>
<td>3.0</td>
</tr>
<tr>
<td>N1303K</td>
<td>1</td>
<td>0.63</td>
<td>1</td>
<td>0.5</td>
<td>3.0</td>
</tr>
<tr>
<td>1717t-G12-T</td>
<td>2</td>
<td>1.33</td>
<td>2</td>
<td>0.9</td>
<td>2.0</td>
</tr>
<tr>
<td>3849t-10kbC>T</td>
<td>2</td>
<td>1.33</td>
<td>2</td>
<td>0.9</td>
<td>2.0</td>
</tr>
<tr>
<td>A455E</td>
<td>2</td>
<td>1.33</td>
<td>2</td>
<td>0.9</td>
<td>2.0</td>
</tr>
<tr>
<td>R162X</td>
<td>2</td>
<td>1.33</td>
<td>2</td>
<td>0.9</td>
<td>2.0</td>
</tr>
<tr>
<td>R347H</td>
<td>1</td>
<td>0.63</td>
<td>1</td>
<td>0.5</td>
<td>2.0</td>
</tr>
<tr>
<td>R553X</td>
<td>1</td>
<td>0.63</td>
<td>1</td>
<td>0.5</td>
<td>2.0</td>
</tr>
<tr>
<td>3905T</td>
<td>1</td>
<td>0.63</td>
<td>1</td>
<td>0.5</td>
<td>2.0</td>
</tr>
<tr>
<td>621t-G1-T</td>
<td>1</td>
<td>0.63</td>
<td>1</td>
<td>0.5</td>
<td>2.0</td>
</tr>
<tr>
<td>1282X</td>
<td>1</td>
<td>0.63</td>
<td>1</td>
<td>0.5</td>
<td>2.0</td>
</tr>
<tr>
<td>1898t-G12-A</td>
<td>1</td>
<td>0.63</td>
<td>1</td>
<td>0.5</td>
<td>2.0</td>
</tr>
<tr>
<td>R560T</td>
<td>1</td>
<td>0.63</td>
<td>1</td>
<td>0.5</td>
<td>2.0</td>
</tr>
</tbody>
</table>

Young onset pancreatic cancer cases were more frequent carriers of the CFTR mutations compared with patients in the control database (odds ratio 2.18 (95% confidence interval 1.24–3.29); p = 0.006).

References

www.gutjnl.com
Distal intestinal obstruction syndrome in the early postoperative period after lung transplantation in a patient with cystic fibrosis: morphological findings on computed tomography

Distal intestinal obstruction syndrome (DIOS) occurs in 19.9% of adults with cystic fibrosis (CF). Usually the diagnosis is based on history, physical examination, and plain abdominal roentgenogram. The increased risk of gastrointestinal complications such as DIOS is well known after lung transplantation and the generally good response to conservative treatment, it is necessary to distinguish DIOS from other gastrointestinal complications. Nevertheless, descriptions of computed tomographical patterns of DIOS in the international literature are rare. We present the case of a 34 year old male suffering from end stage CF. Because of gastrointestinal manifestations of CF, the patient had exocrine pancreas insufficiency. As a consequence of deterioration in respiratory function, lung transplantation was performed. Despite enzymatic and propulsive medical treatment the patient developed an acute abdomen during the postoperative period. To determine the cause of his symptoms abdominal radiographs and computed tomography were performed. Abdominal plain films showed remarkably little abdominal gas and poor delineation of the abdominal organs. Markedly distended small bowel loops and right hemicolon (white arrow) completely filled with a homogenous mass. Swelling of the intestinal wall with increased contrast medium enhancement. Thin transverse and descending colon with only few faeces (black arrows).
Association of a new cationic trypsinogen gene mutation (V39A) with chronic pancreatitis in an Italian family

Predisposition to hereditary pancreatitis has been associated with mutations in three genes: protease, serine, 1 (PRSS1), which codes for cationic trypsinogen,\(^1\) cystic fibrosis transmembrane conductance regulator (CFTR),\(^2\) and serine protease inhibitor Kazal type 1 (SPINK1).\(^3\)

We have identified a novel PRSS1 mutation in seven subjects with chronic pancreatitis (CP) from three generations of an Italian family. The index patient was a 57 year old man with CP referred to our hospital for ductal adenocarcinoma of the pancreatic head. Eleven relatives were examined, and an uncle, also with CP, had died in an accident.

Congenital malformations and alcoholic, biliary, obstructive, and autoimmune pancreatitis were ruled out. Eleven subjects gave their written consent to the study.

The cystic fibrosis assay (CF-OLA; Applied Biosystems, California, USA) was used to look for 31 frequent CFTR mutations in all subjects. The five exons of the PRSS1 gene were sequenced with the oligonucleotides described by Nishimori and colleagues.\(^2\) The four SPINK1 exons were investigated by denaturant gradient gel electrophoresis (DGGE). No CFTR or SPINK1 mutations were found although subject III-8 (with CP) carried the N1303K mutation in heterozygosis in the cystic fibrosis gene.

The PRSS1 exon 2 sequence of the index patient revealed a T>C change at nucleotide 116 (c.116 T>C) causing a valine to alanine substitution at codon 39 (V39A). This mutation was present in another six subjects with CP, diagnosed from exocrine insufficiency and computer tomography and magnetic resonance imaging demonstrations of typical ductal alterations and parenchymal calcifications. Two of these patients were also diabetic. In a further two patients, the genetic analysis was not performed, but CP was confirmed by clinical and morphological findings. The remaining four subjects had a normal pancreas and did not carry the V39A mutation (fig 1).

The lod score calculated for the association between V39A and CP was \(\phi = 3.0 \at \theta = 0.0\). This mutation was not found in a DGGE investigation of 130 patients with sporadic CP.

Mean age of the patients was 47.22 (± 13.64) years (median 54 (range 25–60)). Mean age at onset was 30.0 (± 7.35) years (median 32 (range 19–40)) whereas in patients displaying other PRSS1 mutations, onset was typically during childhood or adolescence.\(^4\)

An acute attack requiring hospitalisation formed the clinical overture in six of the nine CP patients. The other three (III-4, III-5 and IV-2) presented morphological and functional evidence of CP at the time of the study but were asymptomatic. It is clear therefore that damage to the pancreas may occur prior to the clinical onset of CP.

In hereditary CP, the mechanism of the R122H mutation has been elucidated.\(^5\) This substitution removes a hydrolysis start site and makes both trypsin and trypsinogen autolysis resistant. A similar mechanism has been proposed for the N29I mutation which alters protein conformation and masks the R122 site.\(^6\)

Valine 39 is evolutionarily conserved in the trypsinogen gene of all terrestrial vertebrates\(^6\) and would thus seem of importance in the protein’s structure and function. As V39 is only 10 amino acids distant from N29, its replacement by alanine may result in abnormal conformation of the peptide and mask arginine 122 against enzymatic degradation. Further work is needed to define the mechanism and confirm this interpretation.

In conclusion, the presence of the V39A mutation in seven of the CP patients, its absence in their healthy relatives, the 3.0 lod score, and the strong evolutionary conservation of V39, all indicate that the novel mutation is the cause of CP in this family.

Acknowledgements
We would like to thank Professors JP Neoptolemos and DC Whitcomb for their valuable assistance and Mr J Iliffe. This work was supported by Compagnia di San Paolo and Regione Piemonte.

C Arduino
SC Genetica Medica, ASOS Giovanni Battista, Torino, Italy

P Salcone
SC Gastroenterologia, ASO San Luigi Gonzaga, Orbassano (TO), Italy

B Passini, A Brusco
Università di Torino, Dipartimento di Genetica, Biologia e Biochimica, Torino, Italy

![Figure 1](http://gut.bmj.com/)

Figure 1 Pedigree showing the age of subjects, and for those with pancreatitis (black symbols) their age at onset (where known). WT, wild-type (that is, subjects without pancreatitis and without the V39A mutation); black triangle, index patient; ?, no clinical or genetic data available.
ITPA genotyping is not predictive of the development of side effects in AZA treated inflammatory bowel disease patients

We read with interest the letter by Colombel et al on the non-predictive value of ITPA genotyping for the development of myelo-suppression after azathioprine (AZA) treatment (Gut 2005;54:565).

The level of thiopurine methyltransferase (TPMT) activity is determined by a common genetic polymorphism. It was shown that low TPMT activity is linked to a higher relative risk of development of myelosuppression after AZA treatment. Testing for TPMT genotype before the start of AZA treatment is of limited clinical value as myelosuppression resulting from TPMT mutations occurs in less then one third of patients with myelosuppression.

Polymorphisms in genes encoding inosine triphosphate pyrophosphohydrolase (ITPase), another enzyme involved in metabolism of AZA, have also been suggested to be associated with the development of side effects in AZA treatment. Colombel et al. show that there was no difference in the frequency of ITPA polymorphisms in 41 patients who developed AZA related myelosuppression in comparison with a previously published control population. Unfortunately, this leaves the question of other side effects such as flu-like symptoms, rash, and pancreatitis unanswered. In addition to the TPMT genotype, we determined the 94C>A ITPA polymorphism. All (109) patients with inflammatory bowel disease who started AZA treatment from January 2003 onwards were included, and side effects were determined. There was a mean follow up time of 13 months (range 4–24). The frequency of side effects was compared with the frequency of side effects in AZA treated patients without any ITPA or TPMT polymorphism.

In a patient group of a total of 109 patients, we found 10 who had a TPMT polymorphism and 12 who had a 94C>A ITPA polymorphism. Eighty eight patients had none of the studied polymorphisms in TPMT or ITPA genes. Of the 12 patients who had an ITPA heterozygous polymorphism only two had side effects (17%). One had a rash and the other had complaints of arthralgia. In patients without any of the investigated polymorphisms, 34 of 88 (39%) had side effects (summarised in table 1). There was one patient, receiving a normal dose of AZA, who had both a TPMT*3A and an ITPA 94C>A heterozygous polymorphism. Interestingly, this patient did not develop any side effects.

Our data confirms the results of Colombel’s research by showing that an ITPA heterozygous polymorphism is not associated with an increased risk for the development of leucopenia. Additionally, we also found that there was no increased risk for the development of other side effects.

No conclusions can be drawn for patients who are homozygous for the ITPA 94C>A polymorphism as none was included either in our study or in Colombel’s. Marinaki et al. included three patients with a homozygous 94C>A polymorphism for ITPA and all three had side effects. Therefore, further research on the risk of developing side effects in homozygous 94C>A ITPA patients is desirable.

References
6 Whitcomb DC. The first international symposium on hereditary pancreatitis. Pancreas 1998;18:11–12

Table 1 Side effects in 109 azathioprine treated inflammatory bowel disease patients related to their thiopurine methyltransferase (TPMT) and inosine triphosphate pyrophosphohydrolase (ITPA) genotypes

<table>
<thead>
<tr>
<th>Side effect</th>
<th>No polymorphisms (88 of 109)</th>
<th>TPMT polymorphisms (10/109)</th>
<th>ITPA polymorphisms (12/109)</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>54</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Leucocytes</td>
<td><2 x 10^9/l</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Leucocytes</td>
<td>2-4 x 10^9/l</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Pancreatitis</td>
<td>5</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Gastrointestinal</td>
<td>7</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Others</td>
<td>8</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>88</td>
<td>7</td>
<td>1</td>
</tr>
</tbody>
</table>

One patient was included in both the TPMT polymorphisms column and in the ITPA polymorphisms column as he was heterozygous for the TPMT*3A polymorphism and heterozygous for the ITPA 94C>A polymorphism. Side effects categorised as “other” included rash, renal function disorders, vertigo, myalgia, and arthralgia.

Conflict of interest: None declared.

References

Conflict of interest: None declared.

References
Lack of serum antibodies to membrane bound carbonic anhydrase IV in patients with primary biliary cirrhosis

Nishimori et al have recently reported the presence of autoantibodies against carbonic anhydrase IV (anti-CA IV) in patients with autoimmune pancreatitis (Gut 2005;54:274–81). Furthermore, serum antibodies to CA II (anti-CA II) were observed in several autoimmune conditions. We have now investigated the presence of anti-CA IV and anti-CA II in a large series of sera from patients with primary biliary cirrhosis (PBC) and controls. CA II is known to be expressed in the cytoplasm of various types of epithelial cells, including those lining bile ducts, renal tubules, and salivary ducts. For this reason, CA II was suggested as a common antigen in conditions characterised by an autoimmune aggression against epithelia. In autoimmune pancreatitis, serum anti-CA II are useful diagnostic tools while in PBC they were first detected by Gordon et al in 5/6 sera from patients with antimitochondrial antibody (AMA) positive CA IV. Subsequent studies however demonstrated prevalence rates as high as 46% in PBC sera but failed to confirm their specificity for AMA negative sera.9 Interestingly, anti-CA II were also shown to inhibit enzyme activity.10

Apart from cytosolic CA II, the CA family also includes a highly active membrane bound enzyme that was coined CA IV.11 Both CA II and CA IV are abundantly expressed in human bile duct epithelial cells. Interestingly, mainly due to the sequence homology between CA II and CA IV and CA IV localisation on cell membranes, Nishimori et al hypothesised that the exposed CA IV may be more immunogenic than cytosolic CA II. Seventy sera from patients with PBC (60 AMA positive; all anti-hepatitis C virus negative; 63 women; mean age 60 (SD 10) years) who attended our tertiary referral centre were consecutively enrolled in the study. Control sera were obtained from 50 healthy subjects matched with patients for sex and age class (<50 v >50 years). All sera were tested by immunoblotting for anti-CA IV and anti-CA II as previously described.12 Briefly, proteins were denaturated and separated (10 μg/lane) on a 1.5 mm sodium dodecyl sulphate-12% polyacrylamide gel. Proteins were then transferred onto nitrocellulose (pore size 0.45 μm) using a semi dry transfer system. The nitrocellulose membrane was cut into 4 mm strips and, after blocking with 5% non-fat milk, all strips were incubated with serum samples diluted 1:100 and 1:1000 for anti-CA II, and 1:100 for anti-CA IV. Rabbit horseradish peroxidase conjugated antibodies against human immunoglobulins G, A, and M (Dako, Glostrup, Denmark) was used as a secondary antibody. Peroxidase development was obtained with 0.05% 4-chloro-1-naphthol in Tris buffered saline containing 20% methanol and 0.05% H2O2. A rabbit polyclonal antihuman ferric saline containing 20% methanol and body. Peroxidase development was obtained with the target organ (that is, pancreatic and bile ducts) but only specific tissue studies can provide these answers. At present, therefore, anti-CA IV should be regarded as specific to autoimmune pancreatitis and research should focus on better defining their possible role in this condition.

P Invernizzi, C Selmi, M Zuin, M Dodd
Department of Internal Medicine, San Paolo School of Medicine, University of Milan, Italy

Correspondence to: Dr P Invernizzi, Division of Internal Medicine, Department of Medicine, Surgery, and Dentistry, University of Milan, Via di Rudini 8, 20142 Milano, Italy; pietro.invernizzi@unimi.it

Conflict of interest: None declared.

References

Association of achalasia and dental erosion

Dental erosion is the dissolution of enamel and dentine caused by acidifying organic acids.1 The source of acid is normally either dietary acids2 or regurgitation of stomach juice3 into the mouth. Enamel and dentine begin dissolution at a pH of approximately 5.5.4 In achalasia, bacterial fermentation of food produces lactic acid, with a minimum pH of approximately 3.55; which has the potential to demineralise teeth if it reaches the mouth. This study investigated whether regurgitated lactic acid fermented from gastric juices (in the achalasic oesophagus) causes dental erosion. The aim of the study was to measure the prevalence of dental erosion in patients referred for management of untreated achalasia and to compare the results with a control group. Patients referred to the oesophageal laboratory from a variety of medical sources for investigation of achalasia were recruited. Manometry was used to diagnose the presence of achalasia in all subjects. Ethics approval was provided from the local hospital and each patient gave informed consent for assessment of erosion. The distribution and severity of dental erosion was determined using the Smith and Knight tooth wear index (TWI).7 All tooth assessments were carried out by the first author under ideal conditions. The index scores were pooled into three ranges at 0 (no erosion), 11 (mild), and 27 (moderate) and used to calculate TWI scores. The TWI scores were classified into three groups: 0 (no erosion), 1–10 (mild), and 11–30 (moderate). The prevalence of dental erosion was obtained in patients with achalasia and controls. Erosion was scored in the maxilla and mandible in buccal, labial, lingual, and occlusal areas.

Dental erosion was present in 61 (87.1%) patients and 31 (51.6%) controls. There were 46 patients (65.7%) with mild and 15 (21.4%) with moderate dental erosion in patients with achalasia; in the control group, there were 14 (23.3%) with mild and 1 (1.6%) with moderate dental erosion. There was no significant difference in the prevalence of dental erosion between patients and controls (p = 0.001).

In summary, we submit that the hypothesis that antibodies against the membrane bound CA IV may play a role in PBC should be rejected, based on this substantial amount of evidence on a large series of sera. Our finding may be secondary to a different cellular expression of CA IV in the target organ (that is, pancreatic and bile ducts) but only specific tissue studies can provide these answers. At present, therefore, anti-CA IV should be regarded as specific to autoimmune pancreatitis and research should focus on better defining their possible role in this condition.

R Moazzez
Department of Prosthodontics, GKT Dental Institute, London, UK

A Anggiansah, A J Botha
St Thomas’s Hospital NHS Trust, London, UK

D Barlett
Department of Prosthodontics, GKT Dental Institute, London, UK

Correspondence to: Dr R Moazzez, Department of Prosthodontics, GKT Dental Institute, 66 GKT Tower, St Thomas’ St, London Bridge, London SE1 9RT, UK; rebecca.moazzez@kcl.ac.uk
BOOK REVIEW

New Techniques in Gastrointestinal Imaging

Many areas of radiology are rapidly developing new techniques to answer clinical problems or devising ways of refining current imaging techniques. Gastrointestinal imaging has been edited and written by experts in the field. The book has been divided into chapters that either concentrate on a particular imaging technique (for example, computed tomography (CT) colonography) or those that cover recent developments in the investigation of a particular area (for example, the rectum). There are very comprehensive chapters covering the new CT and magnetic resonance (MR) techniques available for imaging the colon and small bowel. New CT and MR techniques for hepatic imaging are also included, with special reference to the development of CT angiography. There are excellent chapters on the use of microbubbles in ultrasound (US) and endoscopic US, both of which are good introductions to these techniques for those with limited previous knowledge or experience. Also included is a very useful chapter on positron emission tomography (PET) with a gentle introduction to the physics of the technique and current applications and limitations. New interventional imaging techniques are also covered, with chapters on radiofrequency ablation of liver lesions and on self expanding metallic stents in the colon.

In the Editor’s quiz: GI snapshot on p1272 of the September issue (D Joshi, J Dunga, A James and MM Yaqoob. An unusual case of hepatosplenomegaly. Gut 2005;54:1272; doi:10.1136/gut.2005.064824) the second author’s name should read Dungu not Dunga.

In the Gut Tutorial on p296 of the February issue the author’s name and affiliation was omitted. The details are as follows: Robin Spiller, Professor of Gastroenterology, Wolfson Digestive Diseases Centre, University Hospital, Nottingham NG7 2UH, UK.

In the Gut Tutorial on p555 of the May issue the author names and affiliations were omitted from the original publication. This has been updated on the Gut website. The authors and affiliations are as follows:

S A Khan, A Miras, Liver Unit, Department of Medicine A, Faculty of Medicine, Imperial College London, St Mary’s Hospital Campus, South Wharf Road, London W2 INY, UK; M Pelling, Department of Radiology, Faculty of Medicine, Imperial College London; S D Taylor-Robinson, Liver Unit, Department of Medicine A, Faculty of Medicine, Imperial College London.
Distal intestinal obstruction syndrome in the early postoperative period after lung transplantation in a patient with cystic fibrosis: morphological findings on computed tomography

K Nassenstein, B Schweiger, M Kamler, J Stattaus, T Lauenstein and J Barkhausen

Gut 2005 54: 1662-1663
doi: 10.1136/gut.2005.075994

Updated information and services can be found at: _http://gut.bmj.com/content/54/11/1662_

These include:

References

This article cites 6 articles, 0 of which you can access for free at: _http://gut.bmj.com/content/54/11/1662#BIBL_

Email alerting service

Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to: _http://group.bmj.com/group/rights-licensing/permissions_

To order reprints go to: _http://journals.bmj.com/cgi/reprintform_

To subscribe to BMJ go to: _http://group.bmj.com/subscribe_/