Microbes, immunoregulation, and the gut

G A W Rook, L R Brunet

Two distinct, but rapidly converging, areas of research (the hygiene hypothesis and the study of probiotic/prebiotic effects) have emphasised the need to understand, and ultimately to manipulate, our physiological interactions with commensal flora, and with other transient but harmless organisms from the environment that affect immunoregulatory circuits. The story began with allergic disorders but now inflammatory bowel disease is increasingly involved.

EARLY FORMULATIONS OF THE HYGIENE HYPOTHESIS

The hygiene hypothesis was first proposed in the late 1980s to explain the rise in allergic conditions (reviewed by Rook and colleagues'). The incidence of these disorders in the USA and Europe increased from the late 19th century, and appears to have doubled in some decades, particularly during the 1960s and 1970s. Epidemiological correlations with the modern way of life prompted the assumption that modern hygiene was reducing contact with pathogens that prime T helper 1 (Th1) responses. At that time it was believed that this would result in a compensatory increase in T helper 2 (Th2) activity that characterises allergic disorders. This concept, requiring Th1 inducing infections to control Th2 mediated allergic conditions, arose because of the remarkable compartmentalisation of medical knowledge. Readers of this journal, aware of the simultaneous increase in several Th1 mediated disorders such as Crohn's disease, type 1 diabetes, and multiple sclerosis, will be sceptical. Indeed, the incidences of these disease types, and of type 1 diabetes, and multiple sclerosis, are at least partly attributable to defective Treg activity.

IMMUNOREGULATORY DISORDERS

The unifying hypothesis that can explain the simultaneous increase in autoimmunity and inflammatory bowel disease (IBD) (Th1 mediated) and allergies (Th2 mediated) is that modern living conditions can lead to defective maturation of regulatory T cells (Treg) and regulatory antigen presenting cells (APCreg). Therefore, rather than Th1/Th2 balance, the crucial factor is likely to be the effector T cells (Teffector)/Treg balance. In the absence of optimal levels of immunoregulation, the individual may develop a Th1 or a Th2 mediated inflammatory disorder, depending on his/her own particular Treg defects in chronic inflammatory disorders

If this reinterpretation of the hygiene hypothesis is correct, the increase in human immunoregulatory disorders is at least partly attributable to defective Treg activity. Evidence to confirm this hypothesis has come from studies of allergic disorders, multiple sclerosis, autoimmune polyglandular syndromes, and cow's milk intolerance. It is likely to be true for IBD too, though more difficult to prove. The intestine is always in a state of controlled inflammation, and T cells of the regulatory phenotype are abundant in the guts of patients with IBD. Nevertheless, data from animal models of IBD suggest that the problem is likely to be an immunoregulatory one, and there is evidence that there is defective induction of oral tolerance in IBD patients. Moreover, they have exaggerated responses to bowel flora which also appear to be the disease triggering antigens in animal models.

MICROBIAL EXPOSURE AND IMMUNOREGULATION

How does this Treg orientated concept relate to the original hygiene hypothesis, and why would microbial exposure affect maturation of regulatory pathways? To answer these questions we must first establish what we mean by hygiene.

One interpretation of the word "hygiene" in this context, mostly promoted by the media, assumes that the critical factor is domestic hygiene (bathing, soaps, detergents, antibacterial kitchen cutting boards, etc). However, a comprehensive recent report has shown that the development of these practices in the home does not correlate with the observed changes in the occurrence of immunoregulatory disorders.

Abbreviations: IBD, inflammatory bowel disease; Th1, Th2; T helper 1, 2; Treg, regulatory T cell; APC, APCreg, antigen presenting cell/regulatory antigen presenting cell; DC, dendritic cell; TLR, toll-like receptor; KO, gene knockout; IL, interleukin; TGF-β, transforming growth factor β
A second view is that the critical change is the decreased frequency of infections due to pathogenic organisms. When the data available from the Centres for Disease Control and Prevention for the incidence of some infections are plotted against time, the graphs suggest that some of the decreases did occur during the critical period 1960–1985 when some chronic inflammatory disorders were doubling every decade. However, more detailed analysis of European data reveals that most of the changes in exposure to pathogens took place long before the crucial period. In addition, there is strong epidemiological evidence to suggest that certain pathogens, such as childhood viruses and respiratory infections, cause an increase rather than a decrease in the incidence of allergic disorders. Interestingly, despite the detrimental effect of infections, this study still identified protective effects of being sent to day care, keeping pets, and living on a farm. The latter has been a consistently robust observation, and the protective effect of exposing children to cowsheds is well documented. If childhood infections do not protect and home hygiene does not correlate, what might be the protective factors associated with pets, farms, and day care centres?

"Contact with "old friends" is greatly diminished in rich countries but increased on farms, in cowsheds, and through contact with pets"

The answer might lie in certain relatively harmless microorganisms (including helminths, saprophytic mycobacteria, and lactobacilli) that have been present throughout mammalian evolution. We have called this the "old friends" hypothesis. Contact with "old friends" is greatly diminished in rich countries but increased on farms, in cowsheds, and through contact with pets. A number of reports have provided evidence for this interpretation. Allergic disorders are less frequent in individuals with helminth infections, and atopic sensitisation increases after treatment of intestinal helminths. Similarly, there are less lactobacilli in the guts of children with allergies, and a preliminary clinical study suggests that high doses of lactobacilli may inhibit development of atopic eczema in genetically high risk children.

Finally, the saprophytic mycobacterium *M vaccae*, originally isolated, as its name suggests, from a cow shed, potently primes immunoregulation. They do it by inducing an unusual pattern of maturation of dendritic cells (DC) such that CD4+ T cells and is likely to have been mediated by Treg. Moreover, some strains of lactobacillus mature DC so that they release little TNF-α or IL-12 but maintain their ability to release IL-10. This might facilitate induction of Treg in IL-10 gene knockout (KO) mice, probiotics that attenuate the colitis to which these animals are susceptible downregulate Th1 cytokines while maintaining TGF-β. Both oral and subcutaneous administration promote this effect. This activity of lactobacilli via the subcutaneous route protects

Bystander and Specific Immunoregulation

The increased DC_{reg} and T_{reg} induced by "old friends" then lead to two immunoregulatory mechanisms mediated in part by release of interleukin (IL)-10 and transforming growth factor β (TGF-β). Firstly, continuing exposure to "old friends" will cause continuous backgound activation of T_{reg} specific for the "old friends" themselves, resulting in a constant background of bystander suppression.

"Continuing exposure to "old friends" will cause continuous background activation of T_{reg} specific for the "old friends" themselves, resulting in a constant background of bystander suppression"

This mechanism has been elegantly demonstrated in a model of colitis. Secondly, DC_{reg} in vitro. For example, Weinstock et al have reviewed evidence that diminished exposure to helminths is a critical factor in the increase in IBD. They have also have encouraging clinical results using oral delivery of the ova of *Trichuris suis*, which transiently colonises the human intestine. Similarly, there have been several preliminary studies of the efficacy of bacterial probiotics, usually derived from lactobacillus strains, for inducing or maintaining remission in IBD (reviewed by Sartor). This issue was discussed at a recent meeting of the International Scientific Association for Probiotics and Prebiotics (ISAPP; http://www.isapp.net/).

"We hypothesise that in the context of IBD, the property that matters most is the ability to drive T_{reg}"

Some of the effects of probiotics are beginning to be understood at a molecular level and involve striking mechanisms, including competition for ecological niches within the gut, inhibition of signalling via nuclear factor kB, direct antimicrobial effects of secreted components, modulation of apoptosis, and activation of macrophages that take part in driving epithelial repair (partly reviewed by Ghosh and colleagues). However, we hypothesise that in the context of IBD, the property that matters most is the ability to drive T_{reg}.

Probiotics and T_{reg}

There is evidence that some probiotics can induce T_{reg}. Orally administered *Lactobacillus casei* reduced skin inflammation due to contact sensitivity in animals sensitised to dinitrofluorobenzene. This finding cannot be attributed to the local gut specific effects of *L casei* but rather appears to require CD4+ T cells and is likely to have been mediated by T_{reg}. Moreover, some strains of lactobacillus mature DC so that they release little TNF-α or IL-12 but maintain their ability to release IL-10. This might facilitate induction of T_{reg} in IL-10 gene knockout (KO) mice, probiotics that attenuate the colitis to which these animals are susceptible downregulate Th1 cytokines while maintaining TGF-β. Both oral and subcutaneous administration promote this effect. This activity of lactobacilli via the subcutaneous route protects

"Old Friends", the Gut, and Probiotics

"Old friends" provide a conceptual link between the increase in allergic disorders, which triggered the formulation of the hygiene hypothesis, and the simultaneous increase in IBD, as similar organisms may be involved. For example, Weinstock et al have reviewed evidence that diminished exposure to helminths is a critical factor in the increase in IBD. They also have encouraging clinical results using oral delivery of the ova of *Trichuris suis*, which transiently colonises the human intestine. Similarly, there have been several preliminary studies of the efficacy of bacterial probiotics, usually derived from lactobacillus strains, for inducing or maintaining remission in IBD (reviewed by Sartor). This issue was discussed at a recent meeting of the International Scientific Association for Probiotics and Prebiotics (ISAPP; http://www.isapp.net/).
not only against colitis in IL-10 KO mice but also against collagen arthritis, a mainly Th1 mediated model of autoimmune.26

"The gut may be the major site for Treg induction even when the probiotic is given subcutaneously."27

The fact that probiotics work in models of colitis and arthritis, whether given orally or subcutaneously, is evidence that the important function in this context is not a gut specific one. Once generated, Tregs can travel to other tissues. It is interesting however that the gut may be the major site for Treg induction even when the probiotic is given subcutaneously. Antigens containing bacterial polysaccharides28 or whole organisms,29 even when given parenterally, may evoke a pattern of response, detected as IgA secreting cells in peripheral blood, that mimics the response to mucosal immunisation. It seems likely that this is due to cross reactivity with antigens already experienced by the gut associated lymphoid tissue. Moreover, induction of IgA in peripheral blood, that mimics the response to mucosal immunisation may evoke a pattern of response, detected as IgA secreting cells in peripheral blood, that mimics the response to mucosal immunisation. It seems likely that this is due to cross reactivity with antigens already experienced by the gut associated lymphoid tissue. Moreover, induction of IgA in peripheral blood, that mimics the response to mucosal immunisation.

CONCLUSIONS
The “old friends” hypothesis has evolved into a concept similar to that which lies behind attempts to modulate disease by altering the bowel flora. The strong parallels point to the following conclusions. Firstly, we suggest that the strains (whether “old friends” or probiotics; whether bacteria or helminths) used for clinical trials in disorders of immunoregulation (allergies, IBD, autoimmunity) ought to be those which can be shown to drive Treg. Secondly, the particular organism used might need to be tailored to the individual patient. The “old friends” mechanism implies that, in rich countries, we live in an environment that does not only against colitis in IL-10 KO mice but also against collagen arthritis, a mainly Th1 mediated model of autoimmune.26

"The gut may be the major site for Treg induction even when the probiotic is given subcutaneously."27

The fact that probiotics work in models of colitis and arthritis, whether given orally or subcutaneously, is evidence that the important function in this context is not a gut specific one. Once generated, Tregs can travel to other tissues. It is interesting however that the gut may be the major site for Treg induction even when the probiotic is given subcutaneously. Antigens containing bacterial polysaccharides28 or whole organisms,29 even when given parenterally, may evoke a pattern of response, detected as IgA secreting cells in peripheral blood, that mimics the response to mucosal immunisation. It seems likely that this is due to cross reactivity with antigens already experienced by the gut associated lymphoid tissue. Moreover, induction of IgA in peripheral blood, that mimics the response to mucosal immunisation may evoke a pattern of response, detected as IgA secreting cells in peripheral blood, that mimics the response to mucosal immunisation.
EDITOR’S QUIZ: GI SNAPSHOT

A rare case of hypalbuminaemic oedema

Clinical presentation
A 35 year old male patient presented massive anasarca, eyelid oedema, and dyspnoea. He also complained of mild diarrhoea and pain in the right calf. Further examination revealed the presence of ascites, bilateral pleural, as well as pericardial effusion. Serum electrophoresis revealed severe hypo- and dysproteinaemia with dramatically reduced albumin and an effusion. Serum electrophoresis revealed severe hypo- and dysproteinaemia.

Question
What is the diagnosis? How should the condition be treated?

This case is submitted by:

M Merger, T Andus1*, K Schlottmann, A Timmer, J Schölmerich, H Messmann*
Department of Internal Medicine I, University of Regensburg, Germany

J Marienhagen
Department of Nuclear Medicine, University of Regensburg, Germany

P Rümmele
Department of Pathology, University of Regensburg, Germany

Robin Spiller, Editor

C Krolak
Department of Radiology, University of Munich, Klinikum Innenstadt, Munich, Germany

Correspondence to: Dr M Merger, Department of Internal Medicine, Medizinische Poliklinik, University of Würzburg, Klinikstraße 6-8, 97070 Würzburg, Germany; merger-m@onlinehome.de

Current addresses: *Klinik für Allgemeine Innere Medizin, Gastroenterologie, Hepatologie und Onkologie, Prießnitzerweg 24, 70374 Stuttgart, Germany; †Medizinische Klinik, Klinikum Augsburg, 86009 Augsburg, Germany

doi: 10.1136/gut.2003.036640

Figure 1 Histology of the duodenal mucosa obtained by endoscopy.

Microbes, immunoregulation, and the gut

G A W Rook and L R Brunet

Gut 2005 54: 317-320
doi: 10.1136/gut.2004.053785

Updated information and services can be found at:
http://gut.bmj.com/content/54/3/317.1

These include:

References
This article cites 38 articles, 17 of which you can access for free at:
http://gut.bmj.com/content/54/3/317.1#BIBL

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/