Efficacy and strategy of pneumatic dilatation in achalasia

We read with interest the article by Eckardt et al. regarding the long term results of pneumatic dilatation in achalasia (Gut 2004;53:629–33). Fifty four patients were followed up for a median of 14 years after a single pneumatic dilatation using the Browne-McHardy dilator. Five and 10 year remission rates were 40% and 36%, respectively, and repeated dilatations only mildly improved the clinical response. Most of the relapses occurred within one year of dilatation. Patients with post-dilatation lower oesophageal sphincter pressures of <10 mm Hg had a significantly better outcome. The authors suggest that failure to respond to the first dilatation should lead to consideration of alternative therapy.

We disagree with this conclusion and we would like to bring to your attention a recent prospective study on the long term effects of pneumatic dilatation in 11 patients with achalasia.1 A different approach was chosen—that is, treatment consisted of one or more pneumatic dilatations under conscious sedation in order to achieve stable clinical remission, defined as persisting one year after the last dilatation. To this end, closer follow-up was performed in the first year after dilatation (scheduled assessments at three and 12 months). Thereafter, clinical and manometric assessments were performed yearly for six years. The clinical score was according to Eckardt et al. Five patients needed one (30 mm diameter Rigiflex dilator) and six needed two (30 and 35 mm diameter) dilatations. No complications occurred. All patients remained in clinical remission and their lower oesophageal sphincter pressure decreased to <10 mm Hg and remained unchanged over time.

There are similarities in the results of the two studies. However, the outcome of our 11 patients was comparable with that of the eight patients of Eckardt et al with a lower oesophageal sphincter pressure of <10 mm Hg who had a remission rate of 75% at 5 years; and (2) the observation that the six patients in our series who needed a second dilatation all relapsed within one year of the first dilatation agrees with the data by Eckardt et al, showing that most relapses occur in the first 12 months. However, our dilatations were more successful and, importantly, a second dilatation led to a sustained remission in all patients. We do not know the reasons for this difference but we believe it may be at least partly related to our use of the non-compliant Rigiflex dilator, which is currently considered the best choice, although there are no adequately powered comparisons with the Browne-McHardy dilator in the literature.2 Similarly to our result, a recent paper has shown very good efficacy of a second dilatation with the Rigiflex dilator in patients who had relapsed.3 Another possible reason is the use of conscious sedation during the procedure which allowed us to complete all dilatations; Eckardt et al, who used topical anaesthesia only, had to prematurely terminate 17% of the procedures.

In conclusion, our published experience and our current clinical practice, involving treatment and follow up of 10–15 new achalasia patients each year, suggest that performance of one or two dilatations until stable clinical results such as remission is a valuable strategy, and that pneumatic dilatation under conscious sedation with the Rigiflex dilator is an effective long term treatment in most patients with achalasia.

R Penagini, P Cantu
Cattedra di Gastroenterologia, Dipartimento di Scienze Mediche, University of Milan, IRCCS Ospedale Maggiore, Milan, Italy

Correspondence to: Professor R Penagini, Cattedra di Gastroenterologia, Dipartimento di Scienze Mediche, University of Milan, IRCCS Ospedale Maggiore, Milan, Italy; roberto.penagini@unimi.it

Conflict of interest: None declared.

References

Authors’ reply
Penagini and Cantu should be congratulated for the remarkable results they were able to obtain in 11 patients with achalasia treated by pneumatic dilatation. To my knowledge, not a single study has so far produced similar results. A review of prospective studies in patients undergoing pneumatic dilatation with the Rigiflex dilator4 indicated that approximately 80% will have a good or excellent short term response. However, if such patients are observed for prolonged periods, the results obtained do not differ significantly from those observed following treatment with the older balloons. In a recent study, in which 56 patients were treated with the Rigiflex dilator and observed for more than 10 years, the long term success rate was 55%.5 Thus it is my impression that differences in treatment results are not so much related to differences in technique and operator experience but rather to the number of patients investigated, duration of follow up, and finally the quality of the study design. It is hoped that carefully designed randomised studies, which are now in process, will tell us whether we should continue to offer pneumatic dilatation to the great majority of patients with achalasia or whether we should advise them to undergo surgery instead.

V F Eckardt
Correspondence to: Dr V F Eckardt, Deutsche Klinik fur Diagnostik, Aukammallee 33 Wiesbaden 65191, Germany; eckardt.gastro@dkl-wiesbaden.de

Conflict of interest: None declared.

References

Probiotics in IBD: mucosal and systemic routes of administration may promote similar effects

We read with considerable interest the paper by Sheil et al (Gut 2004;53:694–700) who reported the successful application of the subcutaneous route for probiotic attenuation of colitis.

We agree with the corresponding commentary by Ghosh et al (Gut 2004;53:620–2) regarding the need to study mechanisms underlying probiotic interactions. Recently, we further standardised a method to compare the anti-inflammatory potential of orally administered lactic acid bacteria (LAB) in a murine model of acute 2,4,6, trinitrobenzene sulphonic acid (TNBS) induced colitis.6 This model allowed us to discriminate “protective” strains, showing between 30% and 70% reduction of inflammatory score, from strains which did not significantly attenuate experimental colitis. We could select highly performing strains of Lactobacillus salivarius and Lactobacillus rhamnosus that consistently lowered colitis. In comparison, a strain of Lactobacillus acidophilus, Lactococcus lactis, and Streptococcus gordonii never showed any improvement. For all five strains, we investigated the protective effect of a single intraperitoneal injection of 3 x 1010 live microorganisms, 24 hours prior to induction of colitis. Surprisingly, protection by the LAB strains via this systemic route closely matched the efficiency of the oral route (fig 1).

When evaluating both routes simultaneously, the anti-inflammatory effect was of comparable magnitude. Moreover, the prophylactic impact of the intraperitoneal Lactobacillus salivarius strain was established up to two hours before TNBS administration. It is noteworthy that two delayed injections could lead to protection but caused marked weight loss (25% (p<0.05) v 15% and 11%, respectively, for control and oral route groups) with alleged fever.

Our findings clearly confirm those of Sheil et al (Gut 2004;53:694–700) showing strain specificity in vivo probiotic effects on both the target tissue, suggesting a relationship between the type of LAB (or LAB components) and peritoneal immunocompetent cells. Pereyra and colleagues7 reported transient dose dependent induction of IFN-γ in serum of intraperitoneal injected Lactobacillus bulgaricus while Streptococcus thermophilus did not. Recent
...injected live LAB was 5 that the maximal non-lethal quantity of...therapeutic molecules...with other well known anti-inflammatory or immune cells, showing effects comparable with strain and viability status. Both pro- and hypothesised that toxicity may also differ...glycans of killed bacteria cannot be consid-...be necessary to explain at least some part of...Consequently, cellular integrity appears to...abolished the colitis protection in a DSS......Lactic acid bacteria (LAB) protection on macroscopic damages induced by 2,4,6...Figure 1 Lactic acid bacteria (LAB) protection on macroscopic damages induced by 2,4,6...Figure 1 Lactic acid bacteria (LAB) protection on macroscopic damages induced by 2,4,6...Figure 1 Lactic acid bacteria (LAB) protection on macroscopic damages induced by 2,4,6...Figure 1 Lactic acid bacteria (LAB) protection on macroscopic damages induced by 2,4,6...Figure 1 Lactic acid bacteria (LAB) protection on macroscopic damages induced by 2,4,6...Figure 1 Lactic acid bacteria (LAB) protection on macroscopic damages induced by 2,4,6...Figure 1 Lactic acid bacteria (LAB) protection on macroscopic damages induced by 2,4,6...Figure 1 Lactic acid bacteria (LAB) protection on macroscopic damages induced by 2,4,6...Figure 1 Lactic acid bacteria (LAB) protection on macroscopic damages induced by 2,4,6...Figure 1 Lactic acid bacteria (LAB) protection on macroscopic damages induced by 2,4,6...
and homozygous states with a mutant allele frequency of 0.58 (9 AA, 20 GG, and 39 AG) and was comparable with 0.61 in 50 controls (7 AA, 18 GG and 25 AG) analysed. Our results thus exclude any association of mutations in the anionic trypsinogen gene in tropical calcific pancreatitis and suggest a role for other genetic or non-genetic factors in the pathogenesis of the disease. Screening of genes such as CPT1B may explain the disease in the remaining patients. It also affirms the importance of the N345 mutation in SPINK1 as the major genetic factor for this type of pancreatitis.

M M Idris, S Bhaskar
Centre for Cellular and Molecular Biology, Hyderabad, India

D N Reddy
Asian Institute of Gastroenterology, Hyderabad, India

K R Mani
Centre for Cellular and Molecular Biology, Hyderabad, India

G V Rao
Asian Institute of Gastroenterology, Hyderabad, India

L Singh, G R Chandak
Centre for Cellular and Molecular Biology, Hyderabad, India

Correspondence to: Dr G R Chandak, Centre for Cellular and Molecular Biology, Uppal Rd, Hyderabad, AP 500 007, India; chandalgcr@ccmb.res.in
doi: 10.1136/gut.2004.055335

*M M Idris and S Bhaskar contributed equally to this work.

Conflict of interest: None declared.

References

Elevated plasma protein C levels correlate with the presence of fatty liver (NASH and NAFLD)

The clinical implications of non-alcoholic fatty liver disease (NAFLD) are derived mostly from its common occurrence in the general population and the potential of the condition to progress to fibrosis and cirrhosis. Markers that help in making an early diagnosis and treatment warranted. Protein C is a vitamin K dependent glycoprotein that functions as a circulating anticoagulant through proteolytic cleavage and inactivation of the coagulation factors Va and VIIIa. Whether protein C levels increase in patients with NAFLDs has not been assessed.

We measured protein C levels in 44 patients (28 men and 16 women; mean ages 45 (11) and 49 (12) years, respectively; 15 patients with fatty liver (FL), 15 with non-alcoholic steatohepatitis (NASH), and 14 with chronic viral hepatitis B+C (CH). All were diagnosed by histology and liver technetium scan or ultrasound. Ten healthy subjects were used as controls. Obesity, hyperlipidaemia, and diabetes were present in 60%, 73%, and 23% of cases, respectively; 64% of patients had elevated liver enzyme tests (alanine aminotransferase 45 (21) IU/l in FL and 43 (18) IU/l in NASH). Mean protein C levels were significantly increased in patients with NAFLDs (n = 30) compared with those with chronic viral hepatitis (140 (36) vs 101 (24); p < 0.0009) and healthy individuals (140 (36) vs 120 (12); p < 0.04).

No significant difference in protein C levels was noted between simple fatty liver and NASH. (149 (34%) and 130 (37%), respectively; p = 0.97). A significant correlation was found between protein C and extent of fatty infiltration (r = 0.63; p < 0.001) (fig 1), insulin resistance index (r = 0.3; p < 0.001), and triglyceride levels (r = 0.45, p < 0.001). Protein C could discriminate correctly between NAFLDs and chronic viral hepatitis in 82% of cases. No significant association was found between protein C and aminotransferase levels.

In conclusion, protein C was elevated in patients with NAFLD. The underlying mechanism remains unknown. Age et al suggested an increase in hepatic synthesis of protein C due to increased hepatic insulin resistance. Increased levels have been reported in patients with diabetes, hypertriglyceridaemia, and nephrotic syndrome, with the use of anabolic steroids, oral contraceptives, and alcohol, and with increasing age. Diabetes and hypertriglyceridaemia are predisposing conditions to fatty liver and were present in 23% and 73% of cases, respectively. The remaining conditions were excluded by clinical and biochemical findings. Although more studies are needed, these preliminary findings suggest that elevated protein C levels together with elevated liver enzymes may be used as markers for NAFLD and may obviate the need for liver biopsy.

Coexistent chronic idiopathic intestinal pseudo obstruction and inflammatory bowel disease

Chronic idiopathic intestinal pseudoobstruction (CIP) is a severe condition presenting with abdominal pain and dysmotility. Inflammatory or degenerative changes of the autonomic nervous system or of the muscles of the bowel have been observed in CIP. As patients with inflammatory bowel disease (IBD) may show clinical and histological signs of autonomic neuropathy and dysmotility, the aim of this study was to examine whether there is an association between CIP and IBD.

Six patients at our hospital presenting with signs and symptoms of intestinal dysmotility were diagnosed with CIP based on clinical and diagnostic features, antroduodenal manometry, and full thickness biopsies (table 1). Patient No 1 had an acute erosive colitis some years previously with bloody diarrhoea and an enhanced sedimentation rate, which was treated with steroids, and patient No 2 had relapsing proctitis treated with 5-amino-salicylic acid (5-ASA). Patient No 3 was
within the myenteric ganglia (haematoxylin)

Patient No 3. (A) Capsule

capsule enteroscopy showed aphthous ulcers
typical of Crohn’s disease throughout the
distal jejunum and ileum (fig 1A). Ileocolonoscopy
showed the same picture in the ileum and ileorectal
anatomosis.

Histopathological examination of the full
thickness biopsies from patient Nos 1 and 2 showed
visceral degenerative neuropathy, combined with
vasculitis of the intersitial

cells of Cajal (ICCs). In patient Nos 3 and 6,
lymphocytic ganglioneuromatosis was found
in both neural plexa of the resected colon and
ileum (fig 1B), with signs of neurone
degeneration, and 30% and 80% reduction
of ICCs in the perimyenteric ICC-plexus and
deep muscular plexus of the circular muscle
layer, respectively. Patient No 4 had a normal
biopsy, and patient No 5 was not biopsied.

Examination of mucosal biopsies from
patient No 1 revealed focal active inflamma-
tion in the duodenum and caecum, and
chronic inflammation in the rectum; patient
No 5 had multifocal mild antral cryptitis, and
both patients were diagnosed with suspected
Crohn’s disease. Colon biopsies from patient
No 6 revealed epithelioid cell granulomas and
multinucleated giant cells, as well as multi-
focal transmural lymphoid hyperplasia con-
sistent with Crohn’s disease.

In three patients (Nos 1, 3, and 4),
dysmotility preceded the mucosal changes.
In patient Nos 2 and 5, these two entities
occurred simultaneously, while in patient No
6, dysmotility developed after proctoco-
tomy. Ganglionitis in patient No 3 could
have been caused by Crohn’s disease before
other symptoms of the disease developed.

Treatment with 5-ASA has reduced her
other symptoms of the disease developed.

Totally and patient No 4 partially colecto-
mised because of slow transit constipation.
Patient No 6 was proctocolectomised due to
refractory colitis. The patients were further
investigated with magnetic resonance (MR)
enterography and video capsule enteroscopy
to establish whether there were any signs of
IBD. If these examinations showed any
pathology, push enteroscopy and ileocolon-
scopy were also performed. All biopsies
collected over the years were re-evaluated.

MR enterography did not reveal any
pathological changes in any of the subjects.

In three patients (Nos 1, 3, 4, and 5), video
capsule enteroscopy revealed Crohn-like
ulcerations/erosions in the stomach and small
intestine. Further examination of
patient No 1 by push enteroscopy confirmed
the erosions in the stomach and one third of
the proximal small intestine. In patient No 3,

Patient No: Debut age/CIIP

<table>
<thead>
<tr>
<th>Patient No</th>
<th>Debut age/CIIP</th>
<th>Main symptoms</th>
<th>Clinical diagnosis</th>
<th>Endoscopic pathology</th>
<th>Histopathology</th>
<th>Antroduodenal manometry</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 23/F</td>
<td>16/22</td>
<td>Pain, bloody diarrhoea</td>
<td>Crohn’s disease, CIIP</td>
<td>Small and large bowel</td>
<td>Degenerative neuropathy</td>
<td>Suspected Crohn’s disease</td>
</tr>
<tr>
<td>2 26/F</td>
<td>15/25</td>
<td>Pain, vomiting</td>
<td>Proctitis, CIIP</td>
<td>Rectum</td>
<td>Degenerative neuropathy</td>
<td>Abnormal</td>
</tr>
<tr>
<td>3 35/F</td>
<td>Teenage/29</td>
<td>Constipation, dyspepsia</td>
<td>Crohn’s disease, CIIP</td>
<td>Small and large bowel</td>
<td>Ganglionitis</td>
<td>Normal</td>
</tr>
<tr>
<td>4 44/F</td>
<td>35/39</td>
<td>Constipation, pain</td>
<td>Suspected Crohn’s disease, CIIP</td>
<td>Small bowel</td>
<td>Normal</td>
<td>Abnormal</td>
</tr>
<tr>
<td>5 55/M</td>
<td>39/41</td>
<td>GORD, later pain and diarrhoea</td>
<td>Suspected Crohn’s disease, CIIP</td>
<td>Large bowel</td>
<td>Ganglionitis</td>
<td>Crohn’s disease</td>
</tr>
<tr>
<td>6 67/M</td>
<td>61/64</td>
<td>Pain, weight loss</td>
<td>Crohn’s disease, CIIP</td>
<td>Normal</td>
<td>Suspected Crohn’s disease</td>
<td>Abnormal</td>
</tr>
</tbody>
</table>

Table 1 Summary of the findings in our patients

CIIP, Chronic idiopathic intestinal pseudo-obstruction; GORD, gastro-oesophageal reflux disease.

References

Cannabinoid hyperemesis: not just a problem in Adelaide Hills

We read the article by Allen and colleagues (Gut 2004;53:1566–70) with interest and would like to report a case of probable cannabinoid hyperemesis seen in a district general hospital in the UK.

A 21 year old chef was admitted to our hospital on seven occasions over a two year period (April 2001 to December 2002) with profuse vomiting. Apart from a history of migraine as a child, he was fit and well. He smoked cannabis. Physical examination was unremarkable. The observation that the patient wanted to take regular baths because he had found that bathing eased the sickness was documented in the nursing notes but its significance was not appreciated. Investigations during attacks disclosed neutrophilia but blood urea, electrolytes, liver biochemistry, and serum amylase were normal. Abdominal x ray was also normal. Upper gastrointestinal endoscopy showed grade I oesophagitis and gastritis. Gastric biopsies were histologically normal. An abdominal ultrasound scan and small bowel barium follow through examination were normal. Additional normal or negative investigations included: autoantibodies and immunoglobulins, C reactive protein, and urinary porphyrin screen. Computed tomography scan of the brain was also normal.

Following his last admission, the patient's girlfriend showed us an article published in a British medical journal which she had obtained via the internet, in which Dr JH Allen had raised the possibility of a link between recurrent vomiting and cannabis abuse. With the aid of the internet we traced Allen had raised the possibility of a link between recurrent vomiting and cannabis abuse. With the aid of the internet we traced Allen and colleagues' (Gut 2004;53:1566–70) article and contacted Dr Allen who shared his experience of this condition with us.

Reviewing the patient's history, he freely admitted to smoking cannabis and experiencing the compulsive desire to bathe during bouts of vomiting. Following his last admission in December 2002, our patient stopped smoking cannabis and has remained free of symptoms. This clinical presentation is almost identical to the cases described by Allen et al, together with the response to cessation of smoking cannabis, supports the view that our patient was suffering from cannabinoid hyperemesis and that this condition is international.

E Roche, P N Foster
Macclesfield District General Hospital, Macclesfield, Cheshire, UK

Correspondence to: Dr E Roche, Macclesfield District General Hospital, Victoria Rd, Macclesfield, Cheshire SK10 3BL, UK; enrico.roche@ntlworld.com

Conflict of interest: None declared.

Inflammatory bowel disease stimulates formation of carcinogenic N-nitroso compounds

In patients with inflammatory bowel disease (IBD), increased incidence of colorectal cancer is observed.1 Although severe inflammatory conditions per se represent a risk factor for neoplasia, we would like to draw attention to the possible role of increased activity of inducible nitric oxide synthase (iNOS), as found in IBD patients, in the endogenous formation of carcinogenic N-nitroso compounds (NOC). In healthy individuals, relatively small amounts of NOC are formed by the interaction between NOC precursors (NOCP), present in dietary items such as meat and fish, and nitrosating agents derived from dietary nitrate. It has been proposed that endogenous formation of NOC may explain the link between meat consumption and colon cancer risk found in epidemiological studies.2 We hypothesised that as a result of chronic inflammatory conditions in the large intestine, increased colonic iNOS activity may produce an excess of NO, nitrogen oxides, and nitrite, which in turn react with NOCP present in the colon to produce relatively high levels of NOC. Increased formation of NOC in IBD patients may thus contribute to the relatively high incidence of colorectal cancer associated with this disease.

A recent population based case control study showed that in cases with a history of IBD, increased exposure to drinking water nitrate was associated with an increased risk of colon cancer whereas no such association was found in the overall population.3 This clearly indicates that the risk of colon cancer in IBD patients is not only determined by the disease itself but dietary factors known to influence the endogenous formation of NOC are also associated with an increased risk in these patients. Although both the increased formation of NOC found in mice with chemically induced colitis4 and increased levels of NO and nitrite found in the colonic lumen of patients with ulcerative colitis5 support this hypothesis, NOCP levels of NOC have never been investigated in IBD patients.

Therefore, we collected faecal samples from 17 patients diagnosed with ulcerative colitis and 17 healthy controls, and determined levels of N-nitrosodimethylamine (NDMA), a predominant carcinogenic NOC, using gas chromatography-mass spectrometry, as previously described.6 The study was approved by the medical ethics committee of the Maasland Hospital, Sittard, the Netherlands, and all patients gave their consent. In 41% of patients, we found levels of NDMA above the detection limit of 1 ng/g faeces, compared with 35% of controls. Comparison of concentrations in NDMA positive samples showed that the average concentration in patients was significantly higher than that in the control group (table 1). When IBD patients were subdivided into hospitalised and non-hospitalised cases, the difference between the non-hospitalised group and controls was even more pronounced, whereas NDMA concentrations in hospitalised patients and controls were similar. Of all hospitalised patients received only liquid nutrition (Nutrisor; Nutricia, UK) without additional intake of NOCP rich dietary foods, these results confirm that the combination of high dietary NOCP intake and inflammation may present a risk factor.

Most research on endogenous NOC exposure has focused predominantly on the intragastric formation of these compounds in relation to the gastric cancer risk. However, we now report that faecal NDMA levels in IBD patients are considerably higher than those we reported previously in gastric juice (0.25 (0.3) ng/g), which indicates that NOC exposure may be even more relevant in colon carcinogenesis.

Based on these results, we conclude that the colon of IBD patients is exposed to relatively high concentrations of this carcinogenic compound, probably as a direct consequence of continuous NO production by the inflammatory process. As this exposure may strongly contribute to the increased colon cancer risk associated with IBD, dietary recommendations for IBD patients, avoiding high NOCP intake, seem warranted.

T M C M de Kok
Department of Health Risk Analysis and Toxicology, University Maastricht, Maastricht, the Netherlands

L G J B Engels
Department of Gastroenterology, Maasland Hospital, Sittard, the Netherlands

E J Moojen, J C S Kleinjans
Department of Health Risk Analysis and Toxicology, University Maastricht, Maastricht, the Netherlands

Correspondence to: Dr T M C M de Kok, Department of Health Risk Analysis and Toxicology, University Maastricht, PO Box 616, 6200 MD, Maastricht, the Netherlands; t.dekok@grat.unimaas.nl
doi: 10.1136/gut.2004.057471

Conflict of interest: None declared.

References

3 Bingham SA, Pignatelli B, Pollak SB, et al. Does increased endogenous formation of N-nitroso compounds in the human colon explain the association between red meat and colon cancer? Carcinogenesis 1996;17:515–23

5 Minksh SS, Haorah J, Zhou L, et al. N-Nitroso compounds in the gastrointestinal tract of rats and in the feces of mice with induced colon or fed hot dogs or beef. Carcinogenesis 2003;24:595–600

Table 1Faecal N-nitrosodimethylamine (NDMA) concentrations in patients with inflammatory bowel disease (IBD) and in healthy controls

<table>
<thead>
<tr>
<th></th>
<th>Controls (n = 17)</th>
<th>All IBD cases (n = 17)</th>
<th>Non-hospitalised cases (n = 10)</th>
<th>Hospitalised cases (n = 7)</th>
</tr>
</thead>
<tbody>
<tr>
<td>%NDMA positive</td>
<td>35</td>
<td>41</td>
<td>56</td>
<td>25</td>
</tr>
<tr>
<td>NDMA (ng/g)*</td>
<td>1.4</td>
<td>10.9</td>
<td>14.3†</td>
<td>2.4‡</td>
</tr>
</tbody>
</table>

*Average concentration of NDMA positive samples.

tp < 0.05, tpp < 0.01: significantly higher compared with the control group (Mann-Whitney U test)

tp < 0.05: significantly lower compared with non hospitalised cases (Mann-Whitney U test)
Hepatocellular carcinoma occurring after successful treatment of childhood cancer with high dose chemotherapy and radiation

Hepatocellular carcinoma (HCC) is one of the world’s most common malignancies and accounts for more than 90% of all primary liver cancers. A number of different risk factors have been identified for the development of HCC. Hepatoblasts, a nervous state, environmental toxins, chronic hepatitis C virus infection, hereditary haemochromatosis, and liver cirrhosis of almost any cause are well known risk factors for HCC. In addition, environmental toxins such as aflatoxins and contaminated drinking water may contribute to the pathogenesis of HCC, especially in Asia and underdeveloped countries. Finally, a number of HCC cases have occurred after the use of thorotrast for diagnostic procedures, and survivors of the atomic bomb of Hiroshima were also at higher risk for HCC development, indicating that radiation might also induce the development of HCC.

Herein, we describe a rare case of HCC occurring in a patient 17 years after successful treatment of peripheral neuroectodermal tumour (PNET). A 32-year-old female presented with pain in the right upper quadrant of her abdomen. Seventeen years prior to presentation in our hospital, this patient was treated for a PNET with a combination of high dose chemotherapy (vincristine, Adriablastin, ifosfamide, and actinomycin D) and surgical removal of the 10x5 cm tumour from her right chest followed by combined radiation (60 Gy) and chemotherapy. There were no signs of any recurrence of the tumour observed on her last check up 12 months earlier. Physical examination of the patient in our clinic showed typical signs of late radiation damage (erythema of the skin and an underdeveloped right breast) (fig. 1). A firm 3-5 cm mass was palpable at the lower edge of the liver. Laboratory tests showed elevated α-fetoprotein (41881 µg/L). Hepatitis serology was negative and there was no evidence of any other liver disease. Magnetic resonance imaging revealed multiple intrahepatic masses up to 6.5 cm. A biopsy from the hepatic tumour was taken and confirmed the clinical diagnosis of HCC. The patient died three months after the diagnosis was made.

To the best of our knowledge, secondary HCC following high dose chemotherapy has never been described and therefore we searched the German Childhood Cancer Registry, which started to register all cases of malignancies in children (<15 years) in 1980. This database also collects data from secondary malignancies following chemotherapy. In this database, we were able to detect a total of four more cases of secondary HCC, which are summarised in table 1. Interestingly, one patient was hepatoblast surface antigen positive.

Radiotherapy has been shown to be associated with an increased risk of solid tumours 10-15 years after treatment and later. There is one report in the literature of a radiation induced hepatoma in a patient with a non-malignant hepatic haemangiomata, which occurred 20 years after radiation of the liver with 28.5 Gy. To date, the molecular mechanism of hepatocarcinogenesis is not completely understood. The main causative agents—hepatitis B virus, hepatitis C virus, and aflatoxin B1—have been identified, which together are responsible for approximately 80% of all HCC in humans. This series of cases clearly supports the notion that secondary HCC can follow not only radiation therapy of children but also high dose chemotherapy, and may prompt careful follow up examinations of the liver in patients with a possible risk for the development of HCC.

Table 1

<table>
<thead>
<tr>
<th>First malignancy</th>
<th>Age (y)</th>
<th>Treatment</th>
<th>Age when HCC was diagnosed (y)</th>
<th>Time from first to second malignancy (y)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALL</td>
<td>4</td>
<td>Ctx*</td>
<td>20</td>
<td>15</td>
</tr>
<tr>
<td>Osteosarcoma</td>
<td>15</td>
<td>Ctx, RTx</td>
<td>18</td>
<td>9</td>
</tr>
<tr>
<td>ALL</td>
<td>4</td>
<td>na</td>
<td>10</td>
<td>5</td>
</tr>
<tr>
<td>PNET</td>
<td>15</td>
<td>Ctx, RTx</td>
<td>33</td>
<td>18</td>
</tr>
<tr>
<td>Teratoma</td>
<td>2</td>
<td>na</td>
<td>19</td>
<td>16</td>
</tr>
<tr>
<td>ALL, acute lymphatic leukaemia; PNET, peripheral neuroectodermal tumour; Ctx, chemotherapy; RTx, radiation therapy.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*This patient was hepatoblast surface antigen positive.

References

Biologics in inflammatory disease: infliximab associated risk of lymphoma development

In their excellent overview of currently available biologic compounds that are in use or under investigation for Crohn’s disease (CD), Sandborn and Faubion (Gut 2004;53:1366-73) reconfirm the unique standing of infliximab. They also note the ongoing discussion concerning the increased risk of lymphoproliferative disorders in patients who received infliximab.

Recently, we followed a 61-year-old patient with a 31-year history of relapsing CD. Initial treatment was with steroids but after 10 years, with ulcerations and multiple recto-rectal fistulas. Non-Hodgkin lymphoma was absent in the histologic material. Because of a poor response to conventional treatment, including azathioprine (100-200 mg/day), infliximab was added 22 months before the current admission. Total infliximab therapy included three doses of 400 mg (5 mg/kg) within two months and resulted in a marked reduction of CD activity (azathioprine was maintained). On admission 10 months after the last infliximab infusion, the patient relapsed again with ulcerations and multiple recto-rectal fistulas. Biopsies showed a polymorphous tumour infiltrate. Tumour cells were positive for CD30 and negative for T and B cell markers as well as the anaplastic large cell lymphoma (ALK) and Epstein-Barr virus (EBV) associated proteins. A multiplex polymerase chain reaction approach revealed a clonal T cell population and an oligoclonal B cell population. Based on these results, the diagnosis was ALK-negative anaplastic large cell lymphoma with null/T cell phenotype. Clinical stage was IAE. CHOP-chemotherapy resulted in complete clinical and histological remission, which was evidenced by computer tomography, positron emission tomography, and negative rectal histology. Polymerase chain reaction analysis of the rectal biopsies revealed no T cell receptor rearrangement.

Three months later, the patient presented with postobstructive pneumonia. Transbronchial biopsies showed a diffuse large B cell lymphoma. In contrast with the preceding rectal biopsies, bronchial tumour cells were positive for CD20, EBER, EBNA2, and LMP-1, indicating EBV infection of latency type III, were detected in tumour cells.

www.gutjnl.com
Table 1 Patients with infliximab therapy and development of lymphoma

<table>
<thead>
<tr>
<th>Case</th>
<th>Age (y), sex, disease</th>
<th>Dose; No of infusions</th>
<th>Lymphoma</th>
<th>EBV</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>77, M, NR</td>
<td>NR</td>
<td>Burkitt lymphoma</td>
<td>NR</td>
</tr>
<tr>
<td>2</td>
<td>77, NR</td>
<td>NR</td>
<td>Hodgkin lymphoma</td>
<td>NR</td>
</tr>
<tr>
<td>3</td>
<td>43, F, NR</td>
<td>NR</td>
<td>Hodgkin lymphoma</td>
<td>NR</td>
</tr>
<tr>
<td>4</td>
<td>34, M, NR</td>
<td>NR</td>
<td>DLBL</td>
<td>NR</td>
</tr>
<tr>
<td>5</td>
<td>70, M, NR</td>
<td>NR</td>
<td>Hodgkin lymphoma</td>
<td>NR</td>
</tr>
<tr>
<td>6</td>
<td>29, M, CD, 5 mg/kg, 3</td>
<td>Hodgkin lymphoma</td>
<td>B cell NHL</td>
<td>NR</td>
</tr>
<tr>
<td>7</td>
<td>68, F, NR</td>
<td>NR</td>
<td>B cell NHL</td>
<td>NR</td>
</tr>
<tr>
<td>8</td>
<td>62, M, NR</td>
<td>NR</td>
<td>DLBL</td>
<td>NR</td>
</tr>
<tr>
<td>9</td>
<td>73, M, NR</td>
<td>NR, multiple</td>
<td>Mantle cell lymphoma</td>
<td>NR</td>
</tr>
<tr>
<td>10</td>
<td>74, F, RA</td>
<td>10 mg/kg, 8</td>
<td>B cell NHL</td>
<td>NR</td>
</tr>
<tr>
<td>11</td>
<td>48, M, RA</td>
<td>10 mg/kg, 2</td>
<td>B cell NHL</td>
<td>NR</td>
</tr>
<tr>
<td>12</td>
<td>59, F, RA</td>
<td>3 mg/kg, 5</td>
<td>Multiple myeloma</td>
<td>NR</td>
</tr>
<tr>
<td>13</td>
<td>61, M, RA</td>
<td>1 mg/kg, 1</td>
<td>Hodgkin lymphoma</td>
<td>NR</td>
</tr>
<tr>
<td>14</td>
<td>36, M, CD, HIV, 10 mg/kg, NR</td>
<td>B cell NHL</td>
<td>NR</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>62, M, CD</td>
<td>10 mg/kg, 1</td>
<td>Intravascular B-NHL</td>
<td>NR</td>
</tr>
<tr>
<td>16</td>
<td>48, F, DM</td>
<td>5 mg/kg, 3</td>
<td>DLBL</td>
<td>NR</td>
</tr>
<tr>
<td>17</td>
<td>47, M</td>
<td>6 mg/kg, 3</td>
<td>CD30+ T-cell lymphoma</td>
<td>Negative</td>
</tr>
<tr>
<td>18</td>
<td>70, M, CD</td>
<td>5 mg/kg, 3</td>
<td>Folicular lymphoma</td>
<td>NR</td>
</tr>
<tr>
<td>19</td>
<td>51, M, CD</td>
<td>5 mg/kg, 4</td>
<td>Hodgkin lymphoma</td>
<td>NR</td>
</tr>
<tr>
<td>20</td>
<td>25, M, CD</td>
<td>5 mg/kg, 1</td>
<td>NK cell lymphoma</td>
<td>NR</td>
</tr>
<tr>
<td>21</td>
<td>79, M, CD</td>
<td>5 mg/kg, 1</td>
<td>B cell NHL</td>
<td>NR</td>
</tr>
<tr>
<td>22</td>
<td>24, F, CD</td>
<td>5 mg/kg, NR</td>
<td>B cell NHL</td>
<td>NR</td>
</tr>
<tr>
<td>23</td>
<td>NR, RA, NR</td>
<td>NR</td>
<td>Mixed cell NHL</td>
<td>NR</td>
</tr>
<tr>
<td>24</td>
<td>NR, RA</td>
<td>NR</td>
<td>Mixed cell NHL</td>
<td>NR</td>
</tr>
<tr>
<td>25</td>
<td>NR, RA</td>
<td>NR</td>
<td>B cell NHL</td>
<td>NR</td>
</tr>
<tr>
<td>26</td>
<td>NR, RA</td>
<td>NR</td>
<td>B cell NHL</td>
<td>NR</td>
</tr>
<tr>
<td>27</td>
<td>NR, RA</td>
<td>NR</td>
<td>B cell NHL</td>
<td>NR</td>
</tr>
<tr>
<td>28</td>
<td>NR, RA</td>
<td>NR</td>
<td>DLBL</td>
<td>NR</td>
</tr>
<tr>
<td>29</td>
<td>NR, RA</td>
<td>NR</td>
<td>Lymphocytic NHL</td>
<td>NR</td>
</tr>
<tr>
<td>30</td>
<td>NR, RA</td>
<td>NR</td>
<td>Low grade NHL</td>
<td>NR</td>
</tr>
<tr>
<td>31</td>
<td>NR, RA</td>
<td>NR</td>
<td>Mixed cell NHL</td>
<td>NR</td>
</tr>
<tr>
<td>32</td>
<td>NR, CD</td>
<td>5 mg/kg, 1</td>
<td>NK cell lymphoma</td>
<td>NR</td>
</tr>
<tr>
<td>33</td>
<td>61, M, CD, 10 mg/kg, 3</td>
<td>Metachromatic lymphoma (ALCL, DLBL)</td>
<td>Positive</td>
<td></td>
</tr>
</tbody>
</table>

ALCL, anaplastic large cell lymphoma; CD, Crohn’s disease; DLBL, diffuse large B cell lymphoma; DM, dermatomyositis; NHL, non-Hodgkin lymphoma; NR, not reported; RA, rheumatoid arthritis.

However, tumour cells were negative for CD30 and ALK protein. Molecular analysis demonstrated a monoclonal immunoglobulin heavy chain rearrangement in the absence of a T cell receptor rearrangement, confirming the diagnosis. The tumour was neither responsive to CHOP-Rituximab nor to the ensuing second and third line chemotherapies. When the patient presented for fourth line chemotherapy, spontaneous partial remission was seen, persisting now for 10 months up to the last clinical follow up in September 2004.

As mentioned by Sandborn and Faubion, the 33 published cases (table 1) of lymphomas following infliximab therapy raise the question of a contributory role of infliximab in the propagation of lymphoproliferative disorders. We can now add a unique case of a metachronous duplex non-Hodgkin lymphoma of initially T and then B cell phenotype. Imbalanced function of T lymphocytes may have acted as a key feature in this patient as the development of CD and the EBV related B cell non-Hodgkin lymphoma were both closely related to T lymphocytes. This links the case to infliximab as proapoptotic effects on T lymphocytes caused by infliximab have been described. Therefore, the recommendation to routinely give infliximab maintenance therapy and concomitant immunosuppressive treatment to minimise the formation of antichimeric antibodies seems to carry a theoretical risk of elevating the incidence of lymphoma above the background rate. Infliximab was approved by the US Federal Drug Administration five years ago, and up until April 2004 approximately 500 000 patients have been treated. Based on medwatch data, an incidence of non-Hodgkin lymphoma of 6.6/100 000 treated patients was estimated in 2002, which still seems valid if compared with published cases. However, our current knowledge does not allow definitive conclusions to be drawn about the association of infliximab and lymphoma.

References

Genotypes 677TT and 677CT+1298AC of methylenetetrahydrofolate reductase were associated with the severity of ulcerative colitis in central China

Increased blood levels of homocysteine have been found to be associated with inflammatory bowel disease (IBD) in several studies.1 The main genetic determinant associated with elevated plasma levels of homocysteine (t-Hcy) is the MTHFR 677C→T gene polymorphism of methylenetetrahydrofolate reductase, a critical enzyme involved in the remethylation pathway of homocysteine.2 An association of the MTHFR 677T allele with IBD has been reported in Northern Europe2–7 but not in three other series from Italy and France.8–10 Double heterozygosity MTHFR 677CT+1298AC also produces reduced enzyme activity and increased t-Hcy, but its association with IBD has never been studied. Similarly, the association of IBD with transcobalamin (TCN1 776C→G), a genetic determinant that influences transcobalamin levels and t-Hcy, is not known. Transcobalamin is the protein that promotes intestinal transcytosis and cell delivery of vitamin B12, the cofactor of the methionine synthase dependent remethylation pathway.4

In this study, we have evaluated the association of ulcerative colitis (UC) with MTHFR 677C→T, MTHFR 1298A→C, and TCN1 776C→G in a series of 72 patients from central China who gave informed consent. This series was compared with 111 age and sex matched controls. The research protocol was approved by the local respective committee. Extraction of DNA and determination of polymorphisms were performed as described previously by us.1 A continuity corrected test and an ANOVA test were used, respectively, to assess differences in categorical and continuous variables between groups. Odds ratios of independent categorical variables.
that differed significantly between patients and controls were determined by logistic regression analysis. A p value <0.05 was considered to indicate statistical significance.

The main clinical characteristics are summarised in table 1. Most of the cases were recently diagnosed. None had any thrombotic manifestations. TCN1 776G allele frequency was approximately 1.5-fold higher compared with Caucasians, and we failed to find any association with the risk of UC or severity of disease. MTHFR 677T allele frequency in our control group was close to that reported in South Europe and much higher than that of the coast of West Africa. It is possible that increased prevalence of MTHFR 677TT variant in patients with IBD, as well as its clinical implications, is due to the increasing use of immunosuppressants in Crohn's disease on the need for intestinal surgery.

Our results were different when the two 677TT and 677CT/1298AC genotypes of MTHFR were considered together, that correspond to decreased catalytic activity. Firstly, the difference in frequency between patients and controls was at the limit of significance and this could be related to the limited size of our patient series (table 1). Secondly, these genotypes were associated with an increased risk of extensive UC (whole colon) (table 1), with an odds ratio of 4.92 (95% confidence interval 1.3–18.3; p = 0.017), after adjustment for age and sex.

In conclusion, our study showed that the genotypes of MTHFR, associated with a decrease in enzyme activity, seemed to be more significantly associated with extension of disease than with the primary risk, at least in central China.
Inflammatory bowel disease stimulates formation of carcinogenic \(N\)-nitroso compounds

T M C M de Kok, L G J B Engels, E J Moonen and J C S Kleinjans

\textit{Gut} 2005 54: 731
doi: 10.1136/gut.2004.057471

Updated information and services can be found at:
http://gut.bmj.com/content/54/5/731.2

These include:

\textbf{References}
This article cites 6 articles, 0 of which you can access for free at:
http://gut.bmj.com/content/54/5/731.2#BIBL

\textbf{Email alerting service}
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/