Interstitial cells of Cajal are involved in the afferent limb of the rectoanal inhibitory reflex

F de Lorient, W J de Jonge, T Wedel, J M Vanderwinden, M A Benninga, G E Boeckxstaens

Background and aims: Interstitial cells of Cajal (ICC) have been shown to be involved in nitricergic neurotransmission of the lower oesophageal sphincter and pylorus. Here we studied the role of ICC and nitric oxide (NO) in the inhibitory neurotransmission of the murine internal anal sphincter (IAS).

Methods: The rectoanal inhibitory reflex, rectal compliance, and relaxation of the isolated IAS to electrical stimulation were measured in controls, KIT+/KIT− mice, and neuronal NO synthase (nNOS) deficient mice. In addition, we evaluated the effect of blockade of nNOS using N-nitro-L-arginine methyl ester. Distribution of nNOS positive neurones and ICC in the IAS was assessed immunohistochemically.

Results: KIT positive ICC were present in a dense network in the IAS of controls but not in KIT+/KIT− mice. Relaxation of IAS muscle strips induced by electrical stimulation was diminished in nNOS+/− mice but not in KIT+/KIT− mice. Blockade of NOS reduced the relaxation of IAS muscle strips in both mice. Relaxation of the IAS to rectal distension was significantly diminished in KIT+/KIT− mice and nNOS deficient mice. In concert, in vivo blockade of NOS attenuated the relaxation of the IAS in controls. No significant difference in compliance was found.

Conclusion: The inhibitory innervation of the IAS and the rectoanal inhibitory reflex are mediated by NO and the rectoanal inhibitory reflex requires an intact network of ICC in the IAS. Thus both loss of nitricergic innervation and deficiency of ICC lead to impaired anal relaxation and may play an important role in rectal evacuation disorders.

Materials and methods

Animals

Adult KIT+/KIT− mice (20–30 g) and their wild-type (KIT+/+) controls, as well as neuronal nitric oxide synthase (nNOS) deficient mice (18–28 g) and their respective wild-type controls (site bred C57BL/6J) were purchased from the Jackson Laboratory (Bar Harbor, Maine, USA). For immunohistochemical studies, transgenic mice were used that carry the KIT W−/lacZ allele (“lacZ positive controls”).10–13 KIT W−/lacZ/KIT− mice lack ICC,14 similar to the more extensively studied KIT+/KIT− animals,15 and will be referred to as “ICC deficient animals”.

All animals were maintained under controlled conditions and were used at 8–12 weeks of age. Experiments were approved by the Ethical Animal Research Committee of the University of Amsterdam, the Netherlands, and by the Faculty Committee for Use of Laboratory Animals of the Faculté de Médecine, Université Libre de Bruxelles, Belgium.

Immunohistochemistry

Fresh frozen anorectal specimens of control and KIT+/KIT− mice were harvested for longitudinal cryosections, while paraformaldehyde fixed specimens of control (KIT+/lacZ/+), and KIT+/lacZ/KIT− mice were harvested for transverse and longitudinal cryosections as well as for whole mount preparations, as described previously.10–13

Whole mounts: preparation and immunohistochemistry

After preincubation with 10% normal mouse serum, samples were incubated overnight with the KIT goat antisera (Santa Cruz Biotechnology, Santa Cruz, California, USA) diluted in Tris buffered saline-Triton X (TBS-TX) containing 1% normal horse serum (NHS). Samples were then rinsed in TBS, incubated in the dark for one hour at room temperature in TBS containing donkey anti-rabbit antisera coupled to FITC (Jackson Immunoresearch Laboratories, West Grove, Pennsylvania, USA) and biotinylated donkey anti-goat antiserum (Jackson Immunoresearch Laboratories).

Abbreviations: IAS, internal anal sphincter; ICC, interstitial cells of Cajal; nNOS, neuronal nitric oxide synthase; NO, nitric oxide; RAIR, rectoanal inhibitory reflex; L-NAME, N-nitro-L-arginine methyl ester; LOS, lower oesophageal sphincter; TBS-TX, Tris buffered saline-Triton X; NHS, normal horse serum; NAANC, non-adrenergic non-cholinergic; SNP, sodium nitroprusside; ATP, 5′-adenosine triphosphate
diluted 1/200 and 1/100 (v/v), respectively, rinsed in TBS, and finally incubated in the dark for one hour at room temperature with streptavidin Texas red (Jackson) diluted 1/400 (v/v) in TBS. Specimens were then transferred onto a glass slide coated with 0.1% poly-L-lysine and were cut into two equal parts. Coverslips were mounted with “Slow Fade Light” antifade mounting medium (Molecular Probes, Eugene, Oregon, USA) before viewing on a confocal microscope (MRC 1024; Bio-Rad Laboratories, Hemel Hempstead, Hertfordshire, UK) fitted on an inverted microscope equipped with a Plan-Neofluar 40×/1.3 oil immersion objective (Axiovert 100; Zeiss, Oberkochen, Germany). As KIT-ir appeared fairly weak in ICC deficient animals with the fluorescent detection system, the more sensitive detection system using peroxidase was additionally applied.

Sections: preparation and immunohistochemistry
Specimens were fixed overnight in fresh 4% paraformaldehyde solution in phosphate buffered saline, pH 7.4, at 4°C, cryopreserved in graded solutions of sucrose (10–30%), embedded in Tissue-Tek OCT compound (Miles, Elkhart, Indiana, USA), oriented either transversely or longitudinally, and snap frozen in 2-methyl butane at −80°C. Sections (15 mm thick) were cut on a cryostat and mounted on slides coated with 0.1% poly-L-lysine.

After preincubation with NHS, sections were exposed overnight at room temperature to KIT goat antiserum (Santa Cruz Biotechnology) diluted 1/500 in TBS-TX containing 1% NHS, rinsed in TBS, incubated for one hour at room temperature in TBS containing biotinylated donkey antigoat antiserum (Jackson) diluted 1/200 (v/v), followed by incubation for one hour at room temperature in a solution containing an avidin biotin complex (ABC Vectastain,Vector, Burlingame, California, USA). The immunoreaction was visualised with the chromogen 3,3’-diaminobenzidine (Dako, Denmark).

Xgal histochemistry on KIT W-lacZ/+ and KIT W-lacZ/KIT Wv transgenic mice was performed as previously reported.10

In vitro studies
Organ bath experiments
KIT W+/Kit W− mice, nNOS−/−, and control mice were killed by cervical dislocation. The perianal skin was excised and the anus and terminal rectum were quickly removed and placed in Krebs-Ringer’s solution (KRS) (mmol/l: NaCl 118.3, KCl 4.7, MgSO4 1.2, KH2PO4 1.2, CaCl2 2.5, NaHCO3 25, glucose 11.1). The solution was maintained at 37°C and aerated with a mixture of 95% O2 and 5% CO2.

A ring segment comprising 2 mm of the terminal rectum, including the anal orifice, was removed and opened. One circular muscle strip was cut and mounted in an organ bath (25 ml) filled with Krebs-Ringer’s solution. Each muscle strip was connected to a metal rod and attached to a strain gauge transducer (Statham UC2, Quincy, Massachusetts, USA) for continuous recording of isometric tension. A resting force of 600 mg was applied on the strips. Platinum electrodes were placed parallel to the tissue in the organ baths for application of electrical field stimulation. Electrical impulses (0.25–0.80 Hz, 1 ms, pulse trains lasting 10 seconds) were provided by a Grass stimulator (Quincy) and a direct current amplifier. Non-adrenergic non-cholinergic (NANC) conditions were obtained by addition of 1 µmol l-1 atropine and 1 µmol l-1 guanethidine. After each contraction, the muscle strips were washed at least three times every five minutes.

In a first series of experiments, the effect of electrical stimulation was investigated and the effect of sodium nitroprusside (SNP 2.5 mmol/l) and 5’-adenosine triphosphate (ATP 1.0 mmol/l) were tested on circular muscle strips of murine IAS.

In a second series, the effects of N-nitro-L-arginine methyl ester (L-NAME 200 µmol/l), the blocker of neuronal conductance tetrodotoxin (2.0 µmol/l), the blocker of P2 purinergic receptors suramin (100 µmol/l), and the combination of L-NAME and suramin were investigated on the responses to electrical impulses, to ATP (1.0 mmol/l), and to SNP (2.5 mmol/l). L-NAME and suramin were added at least 20 minutes before the experiments.

In vivo studies
Anorectal manometry
Anorectal perfusion manometry was performed with a purpose built micromanometric anorectal catheter (outer diameter 0.8 mm). The polyimide catheter incorporated an array of four side holes spaced 0.3 mm apart for measurement of anal sphincter pressure and basal pressure within the rectum. All side holes were perfused with sterile degassed water at a rate of 0.02 ml/min. A polyethylene balloon was located proximally to the catheter to distend the rectum.

Protocol
Anorectal manometry was performed in anaesthetised mice. Mice were anaesthetised by intraperitoneal injection of a mixture of fentanyl citrate/fluanisone (Hynnorm; Janssen Pharmaceuticals, Beerse, Belgium) and midazolam (Dormicum; Roche, Mijdrecht, the Netherlands) at 0.07 ml/10 g (fentanyl 0.32 mg/ml, fluanisone 10 mg/ml, midazolam 5 mg/ml). The catheter was positioned with at least two side holes straddling the anal sphincter high pressure zone and one side hole in the rectum. After positioning, basal anal sphincter pressure was recorded. Thereafter a polyethylene rectal balloon was introduced and positioned aside the manometric catheter. After an equilibration time of 15 minutes, graded rectal distensions of 10 seconds were applied using the polyethylene balloon (0.25–0.40 ml air insufflation) to evoke IAS relaxations. Consecutive rectal distensions were performed at one minute intervals and distensions were repeated three times at each volume. This distension protocol was repeated after addition of L-NAME (100 mg/kg intraperitoneally).16

In a separate series of experiments, rectal compliance was measured with a non-compliant (polyethylene) balloon with a maximum capacity of 0.45 ml. The balloon was fixed on a silicone catheter with a diameter of 1 mm. This catheter was connected to a pressure transducer measuring intraballoon pressure during stepwise volume controlled distension (0.04–0.40 ml).

Data analysis
Basal IAS pressures were obtained from the baseline period preceding the distension protocol. A drop in anal sphincter pressure of at least 5 mm Hg over 2–5 seconds, was identified as a RAIR. If rectal distension resulted in a RAIR, the amplitude of each relaxation was determined as the percentage decrease in basal pressure. This was calculated from the mean anal sphincter pressure before distension to the minimal anal sphincter pressure during the reflex. Duration of the reflex was measured from the onset of the relaxation until the pressure returned to its basal level.

Chemicals
All chemicals were from Sigma (St. Louis, Missouri, USA), unless otherwise stated. The following drugs were used: ATP, L-NAME, suramin, tetrodotoxin, and SNP. All chemicals were dissolved in distilled water and diluted in Krebs-Ringer solution to the stated final concentration.
Statistical analysis

Group data are expressed as mean (SEM). Differences in data were evaluated using the Mann-Whitney U test or the Wilcoxon signed ranks test were indicated. A p value of <0.05 was considered statistically significant. The n values reported refer to the number of animals used in each protocol.

RESULTS

Immunohistochemistry

nNOS-ir in the region of the IAS

In both control (KIT W-+) and ICC deficient KIT Wv mice (fig 1A, B), a dense network of nNOS-ir nerve fibres was present in the circular and longitudinal muscle layers of the distal rectum, including the IAS. Within the intermuscular plane of the IAS, both nNOS-ir neurones and nerve bundles were present but myenteric ganglia contained fewer neurones and the nerve bundles were coarser when compared with the distribution in the proximal rectum (not shown). Conversely, the density of nNOS-ir nerve fibres and neurones of the

Figure 1 Neuronal nitric oxide synthase (nNOS)-ir distribution in the anorectum of a KIT W-/+ interstitial cells of Cajal deficient mouse. (A) An 8 μm thick projection of the myenteric region, showing a few nNOS-ir myenteric neurones and numerous large nerve bundles. (B) A 16 μm thick projection of the circular muscle layer and submucosal plexus, showing abundant nNOS-ir nerve fibres in the circular muscle layer and submucosal nNOS-ir fibres and neurones. Orientation: oral, left; aboral, right. Scale bars 50 μm.

Figure 2 Distribution of KIT-ir interstitial cells of Cajal (ICC) in the internal anal sphincter (IAS) region of control KIT W-/+ and ICC deficient KIT Wv mice. (A, B) Longitudinal sections across the IAS region of a control KIT W-/+ mouse (A) and an ICC deficient KIT Wv mouse (B). The arrows in the lumen indicate mucocutaneous transition. The various populations of KIT-ir ICC are abundant in the control (A) while KIT-ir ICC are essentially lacking in ICC deficient animals (B). (C, D) Whole mount preparations showing KIT-ir ICC in the submucosal plexus of a control KIT W-/+ mouse (C) and an ICC deficient KIT Wv mouse (D). KIT-ir ICC form chains running parallel to the circular muscle layer and interconnected by multiple processes in the submucosal plexus of a control KIT W-/+ mouse (C) while in the submucosal plexus of an ICC deficient KIT Wv mouse (D) chains of KIT-ir ICC appeared only faintly stained (arrowheads) and lack most longitudinal interconnecting processes. Orientation in (C, D): oral at left, aboral at right. CM, circular muscle layer; LM, longitudinal muscle layer; PF, striated muscle of the pelvic floor. Scale bars 50 μm.

Figure 3 Representative recordings showing the non-adrenergic non-cholinergic inhibitory responses to electrical impulses (0.25–8.0 Hz, 1 ms, pulse trains lasting 10 seconds), 5'-adenosine triphosphate (ATP 1.0 mM), and sodium nitroprusside (SNP 2.5 mM) in muscle strips of a KIT W-/+ control (A), KIT Wv (B), neuronal nitric oxide synthase (nNOS) control (C), and nNOS−/− mouse (D).
submucosal plexus within the region of the IAS was similar to the proximal rectum.

KIT-ir in the region of the IAS
In controls (fig 2A), spindle shaped KIT-ir ICC were present in both muscle layers, parallel to smooth muscle cells. Stellate KIT-ir ICC were abundant surrounding the myenteric ganglia. At the level of the submucosal plexus, KIT-ir ICC formed chains parallel to the circular muscle layer. These chains were connected to each other by numerous delicate longitudinally processes. ICC at the submucosal plexus exhibited a weaker KIT-ir compared with the other populations of KIT-ir ICC and were best viewed on whole mounts (fig 2C). In the jejunum of the same animals, KIT-ir was detected in ICC-MP and ICC-DMP, as expected (not shown).

In ICC deficient animals mice, KIT-ir ICC were lacking in the muscle layers and around the myenteric ganglia (fig 2B) while faint KIT-ir ICC at the level of the submucosal plexus were still present (fig 2D). However, they were less abundant and apparently lacked the normal branching pattern (compare with fig 2C). In the jejunum of these animals, a few ICC-DMP exhibited weak KIT-ir, as expected in these ICC deficient animals (not shown). Due to the extreme lack of KIT expressing ICC in the region of the IAS of ICC deficient animals, no quantification was attempted.

Xgal histochemistry in KIT^{W_v-lacZ}/KIT^{W_v}
While Xgal histochemistry readily detected nuclei of KIT expressing ICC-DMP in the jejunum, no Xgal deposit was observed in the proximal rectum, or in the region of the IAS (not shown).

Organ bath studies
Involvement of NO in the inhibitory innervation of the IAS
In the presence of atropine and guanethidine, electrical stimulation (0.25–8.0 Hz, 1 ms, pulse trains lasting 10 seconds) induced a frequency dependent relaxation of circular muscle strips of the murine IAS during the period of stimulation followed by an off contraction (fig 3A, C). Maximal relaxation of KIT^{W_v}/+ controls was obtained at 4 Hz (0.16 (0.05) g) (fig 4A) and in nNOS controls at 2 Hz (0.32 (0.14) g) (fig 4B). The resting (active) tone of the muscle strips of KIT^{W_v}/+ controls (0.5 g), KIT^{W_v}/KIT^{W_v} mice (0.5 g), nNOS controls (0.6 g), and nNOS^{−/−} mice (0.6 g) were comparable.

Both relaxation and the off contraction were abolished by tetrodotoxin, a blocker of neuronal conductance. SNP induced sustained relaxation (0.15 (0.01) g for control mice) of IAS muscle strips. Relaxation to SNP was resistant to tetrodotoxin. In contrast with SNP, ATP failed to relax the IAS preparation (fig 3).

Effect of L-NAME in control mice
Inhibition by L-NAME reduced relaxations in KIT^{W_v}/+ controls (n = 8, fig 4A) and in nNOS control mice (n = 6, fig 4B) (p<0.001). L-NAME had no effect on relaxations to SNP. The combination of L-NAME and suramin did not further reduce relaxations (n = 4, p = 0.19) (data not shown).

Studies in nNOS^{−/−} mice
To further evaluate the role of nitricergic neurotransmission in the relaxation of the IAS, mice deficient in nNOS were

Figure 4 (A) Effect of N-nitro-L-arginine methyl ester (L-NAME) (200 μmol/l) on relaxations induced by electrical field stimulation (EFS) in KIT^{W_v}/KIT^{W_v} and control mice. (B) Relaxations of internal anal sphincter muscle strips evoked by EFS in control mice and neuronal nitric oxide synthase deficient (nNOS^{−/−}) mice. Addition of L-NAME (200 μM) reduced relaxations of wild-type muscle strips. Values are mean (SEM) (n = 6; p < 0.001, Wilcoxon signed ranks test).

Figure 5 Basal internal anal sphincter (IAS) pressure of KIT^{W_v}/+ control mice and KIT^{W_v}/KIT^{W_v}. Horizontal lines represent mean values (n = 10; NS).

Figure 6 Representative in vivo rectoanal manometry recordings from a KIT^{W_v}/+ control (A), KIT^{W_v}/KIT^{W_v} (B), and neuronal nitric oxide synthase deficient (nNOS^{−/−}) mouse (C). Clear rectoanal inhibitory reflexes (RAIRs) are observed on incremental volumes of air insufflated (0.25–0.40 ml, as indicated) in KIT^{W_v}+ controls. In KIT^{W_v}/KIT^{W_v} mutant mice, aberrant RAIRs are only observed on distension volumes of 0.40 ml. Clear RAIRs are also seen in nNOS^{−/−} mice but the amplitude of the RAIR is lower in nNOS^{−/−} mice compared with nNOS controls.
Effect of L-NAME in control mice

Administration of intraperitoneal L-NAME to nNOS controls reduced significantly the relaxations ($p<0.05$) (fig 7). In KIT $W^{+/+}$ control mice, a comparable reduction was seen after administration of L-NAME (results not shown).

Studies in nNOS$^{-/-}$ mice

Basal IAS pressure in nNOS$^{-/-}$ mice was comparable to their nNOS controls (21 (3) and 21 (2) mm Hg, respectively). However, the amplitude of the RAIR was significantly lower in nNOS$^{-/-}$ mice compared with nNOS controls ($p<0.01$) (figs 6, 7). Notably, the average duration of the RAIR was increased in nNOS$^{-/-}$ mice compared with their controls (24 (3) and 15 (1) seconds, respectively; $p<0.01$).

Evaluation of the role of ICC in the inhibitory innervation of the IAS

Basal IAS pressure in KIT $W^{+/+}$/KIT W^{++} mice was comparable to controls (15 (2) and 21 (3) mm Hg respectively, n = 10) (fig 5). Although the magnitude of the basal pressure was comparable, KIT $W^{+/+}$/KIT W^{++} mice showed a more irregular basal sphincter pressure pattern with twitch contractions compared with controls. Distension of the rectum elicited a volume dependent relaxation in KIT $W^{+/+}$/KIT W^{++} mice. However, the RAIR amplitude was significantly attenuated in KIT $W^{+/+}$/KIT W^{++} mice compared with KIT $W^{+/+}$/controls (figs 6, 7). Administration of intraperitoneal L-NAME to KIT $W^{+/+}$/KIT W^{++} mice had no effect (fig 7).

Compliance in KIT $W^{+/+}$ control mice and in KIT $W^{+/+}$/KIT W^{++} mice

As the differences in RAIR could result from changes in rectal compliance, we also determined this parameter in both control and KIT $W^{+/+}$/KIT W^{++} mice. Stepwise rectal volume distension revealed a similar increase in rectal pressure, demonstrating that rectal compliance was similar in control and KIT $W^{+/+}$/KIT W^{++} mice (fig 8).

DISCUSSION

NO is recognised as an important inhibitory neurotransmitter in the IAS. Previous studies showed that blockade of NO biosynthesis reduced the relaxation of muscle strips of the IAS induced by electrical stimulation and impaired the RAIR. In the present study, we extended the role of NO as an inhibitory neurotransmitter to the murine IAS: blockade of NO biosynthesis resulted in a reduction of both the in vitro and in vivo relaxation of the IAS. These findings were further corroborated by experiments in nNOS$^{-/-}$ mice. Isolated muscle strips relaxed significantly less whereas the RAIR was impaired compared with controls. It should be emphasised that the IAS still relaxed in nNOS$^{-/-}$ mice and that blockade of NO biosynthesis in controls incompletely...
reduced electrical stimulation induced relaxation. These observations suggest that either nitrergic blockade was incomplete or, most likely, that another inhibitory neurotransmitter is involved. Previous studies in the rat IAS suggested ATP as a possible candidate. However, in our study, high concentrations of ATP failed to relax the IAS. In addition, suramin had no effect on relaxation, excluding the possible involvement of ATP. To what extent vasoactive intestinal polypeptide is involved remains to be investigated.

ICC have been suggested to play a crucial role in normal gastrointestinal motility. In addition to their role as pacemaker cells, previous studies have suggested that ICC function as an intermediate between nerve fibres and smooth muscle cells mediating the nitrergic inhibitory neurotransmission in the stomach, LOS, and pyloric sphincter. Due to the absence of the intramuscular-type of ICC, LOS muscle strips from KIT^W/KIT^W mice contracted rather than relaxed in response to electrical stimulation. Administration of L-NAME did not further change the response. As immunohistochemistry staining showed that the nitrergic innervation was intact, these findings indicated that ICC are important mediators of the nitrergic innervation in these tissues. In the present study, we failed to confirm this observation in the IAS. Electrical stimulation of the IAS of KIT^W/KIT^W mice relaxed to the same extent as those from controls. In addition, blockade of NO biosynthesis greatly reduced these relaxations, indicating that nitrergic innervation was intact. The latter was further confirmed by immunohistochemical staining. Our results argue against a role for ICC as intermediate between nitrergic nerves and smooth muscle cells. A similar conclusion was drawn by Sivarao and colleagues who showed that relaxations of the LOS in response to swallowing or vagal stimulation was unaffected in KIT^W/KIT^W mice.

How can the discrepancy between our data and those of Ward and colleagues be explained? One could argue that the electrical stimulation parameters used (1 ms) were too intense, resulting in overflow of NO to the smooth muscle which might still elicit responses in tissue lacking ICC.

However, in preliminary experiments, electrical stimulation with pulse trains of 0.5 ms failed to relax the IAS significantly. Furthermore, 1 ms pulse trains resulted in a normal frequency dependent response curve, excluding this possibility. Another explanation could be that the network of ICC in the IAS is intact, and the contraction is mediated by a neural circuitry located within the enteric nervous system and, so far, no abnormalities in the enteric sensory neurones have been described in ICC deficient mice. To what extent the RAIR is impaired in KIT^W/KIT^W mice compared with controls. This would suggest that abnormalities in the afferents secondary to the absence of a normal ICC network would underlie the impaired detection of stretch. However, the RAIR is considered to be mediated by a neural circuitry located within the enteric nervous system and, so far, no abnormalities in the enteric sensory neurones have been described in ICC deficient mice. To what extent the RAIR is impaired in KIT^W/KIT^W mice compared with controls. This would suggest that abnormalities in the afferents secondary to the absence of a normal ICC network would underlie the impaired detection of stretch. However, the RAIR is considered to be mediated by a neural circuitry located within the enteric nervous system and, so far, no abnormalities in the enteric sensory neurones have been described in ICC deficient mice. To what extent the RAIR is impaired in KIT^W/KIT^W mice compared with controls. This would suggest that abnormalities in the afferents secondary to the absence of a normal ICC network would underlie the impaired detection of stretch.

ACKNOWLEDGEMENTS

JMV is supported by grants from the National Fund for Scientific Research (Belgium), Fondation Medicale Reine Elisabeth (Belgium), and Fondation Universitaire David et Alice Van Buuren (Belgium). JMV is Senior Research Associate of the National Fund for Scientific Research (Belgium). TW is supported by grants from the Deutsche Forschungsgemeinschaft (DFG We 2366/3-1) and the Research Foundation of the University of Luebeck (120-2003). The authors are indebted to Perrine Hague for the skilful technical assistance and to Huy Nguyen Tran for the assistance with the digital artwork preparation.

Authors’ affiliations

de Lorijn, M A Benninga, Department of Paediatric Gastroenterology and Nutrition, Emma Children’s Hospital, Amsterdam, the Netherlands W J de Jonge, G E Boeckxstaens, Department of Gastroenterology and Hepatology, Academic Medical Centre, Amsterdam, the Netherlands
The radiologist made the diagnosis

Clinical presentation
A 59 year old man was referred with a one year history of change in bowel habit and a low folate level. He had been opening his bowels more frequently but there was no associated abdominal pain or weight loss. Previous medical history included uveitis. Medication consisted of folic acid and he smoked 40 cigarettes a day. Physical examination was unremarkable. Initial blood tests revealed a normal full blood count, urea and electrolytes, liver and thyroid function, glucose, and C reactive protein A double contrast barium enema was performed (fig 1).

Question
In fig 1, what abnormality is demonstrated and what diagnostic procedure was then performed?
See page 1168 for answer
This case is submitted by:

J R Bebb
Department of Gastroenterology, Nottingham City Hospital, Nottingham, UK

K H Latief
Department of Radiology, Nottingham City Hospital, Nottingham, UK

Correspondence to: Dr J R Bebb, Department of Gastroenterology, Nottingham City Hospital, Hucknall Rd, Nottingham NG7 1PB, UK; jamesbebb@doctors.org.uk
doi: 10.1136/gut.2004.063339

Figure 1 Double contrast barium enema.

EDITOR’S QUIZ: GI SNAPSHOT

The radiologist made the diagnosis

Clinical presentation
A 59 year old man was referred with a one year history of change in bowel habit and a low folate level. He had been opening his bowels more frequently but there was no associated abdominal pain or weight loss. Previous medical history included uveitis. Medication consisted of folic acid and he smoked 40 cigarettes a day. Physical examination was unremarkable. Initial blood tests revealed a normal full blood count, urea and electrolytes, liver and thyroid function, glucose, and C reactive protein A double contrast barium enema was performed (fig 1).

Question
In fig 1, what abnormality is demonstrated and what diagnostic procedure was then performed?
See page 1168 for answer
This case is submitted by:

J R Bebb
Department of Gastroenterology, Nottingham City Hospital, Nottingham, UK

K H Latief
Department of Radiology, Nottingham City Hospital, Nottingham, UK

Correspondence to: Dr J R Bebb, Department of Gastroenterology, Nottingham City Hospital, Hucknall Rd, Nottingham NG7 1PB, UK; jamesbebb@doctors.org.uk
doi: 10.1136/gut.2004.063339

Figure 1 Double contrast barium enema.

REFERENCES
8. Huizinga JD. Physiology and pathophysiology of the intestinal cell of Cajal: from bench to bedside. II. Gastric motility: lessons from mutant mice on slow waves and innervation. Am J Physiol Gastrointest Liver Physiol 2001;281:G1129–34.
The radiologist made the diagnosis

J R Bebb and K H Latief

Gut 2005 54: 1113
doi: 10.1136/gut.2004.063339

Updated information and services can be found at:
http://gut.bmj.com/content/54/8/1113

These include:

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/