Dose dependent and divergent effects of superoxide anion on cell death, proliferation, and migration of activated human hepatic stellate cells

E Novo, F Marra, E Zamara, L Vallfre di Bonzo, A Caligiuri, S Cannito, C Antonaci, S Colombatto, M Pinzani, M Parola

Background and aim: Activated myofibroblast-like cells, originating from hepatic stellate cells (HSC/MFs) or other cellular sources, play a key profibrogenic role in chronic liver diseases (CLDs) that, as suggested by studies in animal models or rat HSC/MFs, may be modulated by reactive oxygen intermediates (ROI). In this study, human HSC/MFs, exposed to different levels of superoxide anion (O$_2^-$) and, for comparison, hydrogen peroxide (H$_2$O$_2$), were analysed in terms of cytotoxicity, proliferative response, and migration.

Methods: Cultured human HSC/MFs were exposed to controlled O$_2^-$ generation by hypoxanthine/xanthine oxidase systems or to a range of H$_2$O$_2$ concentrations. Induction of cell death, proliferation, and migration were investigated using morphology, molecular biology, and biochemical techniques.

Results: Human HSC/MFs showed to be extremely resistant to induction of cell death by O$_2^-$ and high rates of O$_2^-$ generation induced either necrotic or apoptotic cell death. Non-cytotoxic low levels of O$_2^-$, able to upregulate procollagen type I expression (but not tissue inhibitor of metalloproteinase 1 and 2), stimulated migration of human HSC/MFs in a Ras/extracellular regulated kinase (ERK) dependent, antioxidant sensitive way, without affecting basal or platelet derived growth factor (PDGF) stimulated cell proliferation. Non-cytotoxic levels of H$_2$O$_2$ did not affect Ras/ERK or proliferative response. A high rate of O$_2^-$ generation or elevated levels of H$_2$O$_2$ induced cytoskeletal alterations, block in motility, and inhibition of PDGF dependent DNA synthesis.

Conclusions: Low non-cytotoxic levels of extracellularly generated O$_2^-$ may stimulate selected profibrogenic responses in human HSC/MFs without affecting proliferation.
persistent activation or burst activation of infiltrating or resident leucocytes and their interaction with HSC/MFs) and to monitor specific profibrogenic responses, such as cell motility and proliferation.

We report that the response of human HSC/MFs strictly depends on the rate of $\text{O}_2^{\cdot-}$ generation, ranging from "profibrogenic" responses (procollagen type I and migration) to induction of cell death in the presence of $\text{O}_2^{\cdot-}$ levels, mimicking chronic inflammation or acute hepatitis, respectively. Profibrogenic responses to $\text{O}_2^{\cdot-}$ did not include proliferation and did not apparently involve H$_2$O$_2$ generation.

METHODS

Materials

HNE, transforming growth factor β_1 (TGF-β_1), platelet derived growth factor (PDGF)-BB, genistein, PD-98095, and LY-294002 were from Calbiochem (La Jolla, California, USA). Enhanced chemiluminescence (ECL) reagents and nitrocellulose membranes Hybond-C extra were purchased from Amersham Pharmacia Biotech (Cologno Monzese, Milano, Italy). Polyclonal and monoclonal antibodies were from Santa Cruz Biotech Inc (Santa Cruz, California, USA). Hypoxanthine, xanthine oxidase, and all other reagents were from Sigma Chemical Co. (Sigma Aldrich Spa, Milano, Italy).

Cell isolation and culture

The use of human material was approved by the ethics committee for research of the University of Florence, where cells were isolated from surgical wedge sections of human liver not suitable for transplantation, as described elsewhere.19 Cells were cultured in Iscove’s medium supplemented with 20% fetal bovine serum, subcultured when confluent at a 1:3 split ratio and, unless otherwise stated, used between passages 4 and 7. At these stages of culture, cells show functional and ultrastructural features of fully activated HSC/MFs with antigen profiles identical to those of "interface" myofibroblasts detected in liver tissue specimens at the border between "active" fibrotic septa and parenchyma.11,12 In most experiments, confluent HSC/MFs were left for 24 hours in serum free Iscove’s (SFI) medium before addition of the stimuli; in experiments designed to evaluate functional and ultrastructural features of fully activated HSC/MFs with antigen profiles identical to those of "interface" myofibroblasts detected in liver tissue specimens at the border between "active" fibrotic septa and parenchyma.11,12

Table 1 Estimated mean generation of superoxide anion by the hypoxanthine/xanthine oxidase (X/XO) systems used in this study

<table>
<thead>
<tr>
<th>System</th>
<th>Hypoxanthine (mM)</th>
<th>Xanthine oxidase (mM)</th>
<th>Estimated generation of superoxide (nMol/min/ml medium)</th>
</tr>
</thead>
<tbody>
<tr>
<td>X/XO I</td>
<td>0.4</td>
<td>2</td>
<td>0.8–1.2</td>
</tr>
<tr>
<td>X/XO II</td>
<td>0.2</td>
<td>20</td>
<td>7–10</td>
</tr>
<tr>
<td>X/XO III</td>
<td>0.05</td>
<td>100</td>
<td>25–50</td>
</tr>
</tbody>
</table>

In order to evaluate estimated mean generation of superoxide anion under controlled conditions (that is, known values of available substrate, enzyme, and enzyme activity, pH, temperature, volume of medium, etc) the methods based on nitroblue of tetrazolium (NBT) reduction or dichloro-fluorescein (DCF) fluorescence were used. Kinetics of NBT reduction in culture medium at 37°C were found to be essentially linear until substrate consumption in X/XO II and III systems as well as, at least for 45–50 minutes, in the X/XO I system also. The DCF method (performed by taking samples of culture medium at desired time points after starting superoxide generation) was then essentially used to establish the time of disappearance of reactive oxygen species dependent DCF fluorescence, in the presence or absence of 100 U of superoxide dismutase, with the X/XO I system designed to generate low levels of superoxide over a long period of time.

Superoxide generation

In preliminary experiments, in order to define standard experimental conditions, generation of $\text{O}_2^{\cdot-}$ in culture medium was ascertained in the presence of different combinations of hypoxanthine/xanthine oxidase (X/XO). Superoxide generation was evaluated as follows: (i) by following the kinetics of nitroblue of tetrazolium reduction17; and (ii) by monitoring, for longstanding generation of $\text{O}_2^{\cdot-}$ (X/XO I system), disappearance of dichloro-fluorescein fluorescence20 in culture medium samples obtained at defined time points, in the presence or absence of 100 U of superoxide dismutase (SOD). More details are provided in the footnote to table 1. Control cells were incubated in the absence of xanthine oxidase.

Evaluation of cell death and apoptosis

Necrotic or apoptotic cell death was evaluated as recently described,20 by monitoring release of lactate dehydrogenase (LDH) or 4,6-diamidine-2-phenylindole dihydrochloride fluorescence staining to detect nuclear DNA and fluorimetric detectable caspase 3-like activity, respectively. A modified clonogenic assay was also performed as previously described.26

Western blot and other assays for protein levels

Cell lysates from HSC/MFs were subjected to sodium dodecyl sulphate-polyacrylamide gel electrophoresis on 10% or 7.5% acrylamide gels and blots incubated with the desired primary antibodies, followed by incubation with peroxidase conjugated antiamine or antirabbit immunoglobulins in Tris buffered saline-Tween containing 2% (wt/vol) non-fat dry milk, as previously described.20,22,23 Immunoblots were developed with ECL reagents according to the manufacturer’s instructions. Collagen type I levels were analysed by an ELISA method.20

DNA extraction and northern blot

Total RNA from HSC/MFs was isolated as previously described20,22,23 and evaluated spectrophotometrically by absorbance at 260 nm. Northern blot analysis of mRNA (tissue inhibitor of metalloproteinases 1 and 2 (TIMP-1, TIMP-2)) was performed according to standard procedures19,20,22,23 using specific human cDNA probes.20 To exclude significant sample loading differences, filters were cohybridised with a 32P labelled probe encoding for the ribosomal protein 36B4.26

DNA synthesis and cell migration

DNA synthesis20 as well as migration of human HSC/MFs20,27 were evaluated as previously described by monitoring incorporation of $[^3H]$ thymidine or using the wound healing assay, respectively.

Statistical analysis

Data in bar graphs represent means (SEM) and means were obtained from average data of at least three independent experiments. Luminograms and morphological images are representative of at least three experiments with similar results. Statistical analysis was performed using the Student’s t test or with ANOVA for analysis of variance when appropriate ($p<0.05$ was considered significant).

RESULTS

In order to confirm the results of a recent study showing that $\text{O}_2^{\cdot-}$ is able to induce apoptotic cell death in activated rat HSC, we first evaluated whether exposure of human HSC/MFs to $\text{O}_2^{\cdot-}$ generating systems is followed by induction of cell death. As a first experiment, human HSC/MFs were exposed to a X/XO system (0.4 mM hypoxanthine/2 mM/ml xanthine oxidase, X/XO 1), already used in previous
(iv) induction of necrotic or apoptotic type of cell death

(i) modest increase in LDH release and some evidence of nuclear condensation or caspase 3-like activity (fig 2A, B). By progressively increasing the rate of superoxide generation (see table 1) we observed the following results (illustrated in fig 1A–C, fig 2A, 2B):

(ii) significant signs of apoptotic cell death (nuclear condensation or caspase 3-like activity) when cells were exposed to a flash of very high levels of O$_2^-$ (X/XO III);

(iii) evident morphological changes (fig 1B) in cells exposed to X/XO II and III systems, characterised by more rapid substrate consumption and accelerated generation of higher levels of O$_2^-$; Several cells exposed to X/XO II (approximately 25–30%) showed a condensed and shrunken shape with a neuronal-like appearance; this feature was exacerbated in cells exposed to X/XO III and accompanied by detachment of about 80% of cells after 24 hours (not shown);

(iv) induction of necrotic or apoptotic type of cell death was seen for human HSC/MFs only in the presence of 50 μM HNE or 100 μg/ml cycloheximide, respectively; these conditions were used as positive controls

(v) H$_2$O$_2$, a ROI that may result from conversion of O$_2^-$, induced necrotic cell death, but not apoptosis, only at very high concentrations.

In order to unequivocally check their viability, cells exposed to X/XO combinations were also used in a modified clonogenic assay (fig 1C). Cells exposed to X/XO I behaved similarly to control cells whereas cells exposed to the other two combinations were either totally (X/XO III) or partially (X/XO II) unable to proliferate after removal of medium and treatment with fresh medium containing serum. As X/XO III exerted very severe cytotoxicity, this combination was not used further in our experiments.

Data concerning absence of any detectable adverse effect of X/XO I were confirmed by further experiments. As previously reported, X/XO I upregulated the synthesis of procollagen type I in human HSC/MFs, confirming the profibrogenic potential of low levels of O$_2^-$; moreover, the presence of SOD in the medium abolished X/XO I induced synthesis of procollagen type I (fig 3A). However, in the presence of the X/XO II system, no significant change in procollagen type I was observed (data not shown). In parallel experiments, no significant effect was exerted by either X/XO I or II system on mRNA synthesis for TIMP-1 or TIMP-2 (fig 3B, 3C).

By performing a wound healing assay we found that exposure of cells to low levels of O$_2^-$ generation (X/XO I)
Superoxide anion and activated hepatic stellate cells

resulted in significant stimulation of cell migration, as evaluated by invasion of the artificial wound (fig 4). The entity of this stimulation accounted for approximately 50–60% of that observed with PDGF-BB, used as a positive control. In contrast, exposure of cells to X/XO II was not only ineffective but also apparently prevented the physiological entry of some cells in the lesion, as is usually observed under control conditions. In other experiments, pharmacological inhibitors of signalling pathways, antioxidants, or other agents were used to better characterise X/XO I dependent migration of human HSC/MFs. When human cells were exposed to CHX positive controls for TIMP-2 and TIMP-1, respectively. To evaluate sample loading, filters were cohybridised with a probe encoding for the ribosomal protein 36B4.

Figure 2 Induction of apoptotic cell death in human activated hepatic stellate cells in myofibroblast-like phenotype (HSC/MFs) exposed to the three different hypoxanthine/xanthine oxidase (X/XO) systems and, for comparison, to cycloheximide (CHX 100 µg/ml) as a positive control. Under these experimental conditions, analysis of apoptosis was performed as follows: (i) synthesis of procollagen type I (A), as evaluated in culture media of 24 hour serum deprived cells and then either not exposed (control, C) or exposed to the hypoxanthine/xanthine oxidase I (X/XO I) system (in the presence or absence of 100 U/ml of superoxide dismutase (SOD)); data are expressed in terms of µg of protein/µg of DNA and are means (SEM) (n = 3) ([**p < 0.01 v control values; ††p < 0.01 v values obtained in the presence of X/XO I only); (ii) northern blot analysis of mRNA for tissue inhibitor of metalloproteinase (TIMP-2) (B) and TIMP-1 (C) that was performed on RNA isolated from confluent cells incubated for 24 hours in serum free medium and then exposed or not for three hours to the X/XO I and X/XO II systems; serum (S) or transforming growth factor β1 (TGF-β1 10 ng/ml) were used as positive controls for TIMP-2 and TIMP-1, respectively.

Figure 3 Analysis of the effect of superoxide anion generation versus cultured human activated hepatic stellate cells in myofibroblast-like phenotype (HSC/MFs) in terms of phenotypic responses related to extracellular matrix synthesis and degradation. The following responses were considered: (i) synthesis of procollagen type I (A), as evaluated in culture media of 24 hour serum deprived cells and then either not exposed (control, C) or exposed to the hypoxanthine/xanthine oxidase I (X/XO I) system (in the presence or absence of 100 U/ml of superoxide dismutase (SOD)); data are expressed in terms of µg of protein/µg of DNA and are means (SEM) (n = 3) (**p < 0.01 v control values; ††p < 0.01 v values obtained in the presence of X/XO I only); (i) northern blot analysis of mRNA for tissue inhibitor of metalloproteinase (TIMP-2) (B) and TIMP-1 (C) that was performed on RNA isolated from confluent cells incubated for 24 hours in serum free medium and then exposed or not for three hours to the X/XO I and X/XO II systems; serum (S) or transforming growth factor β1 (TGF-β1 10 ng/ml) were used as positive controls for TIMP-2 and TIMP-1, respectively.
increasing concentrations of \(\text{H}_2\text{O}_2 \), no significant change in phosphorylated levels of ERK1/2 was observed (fig 6B).

In order to evaluate whether generation of nitric oxide (NO) may affect X/XO I stimulated migration of human HSC/MFs, cells were pretreated with the inhibitor of NO synthesis N-nitro-L-arginine methyl ester (L-NAME). L-NAME did not affect X/XO I stimulated migration or activation of ERK (fig 7A, B).

Results observed on Ras/ERK signalling and literature data on rat HSC/MFs prompted us to evaluate whether \(\text{O}_2^- \) may be able to affect incorporation of radiolabelled thymidine, used as a sensitive way to monitor DNA synthesis. However, we could not find any significant change in basal incorporation of radiolabelled thymidine (fig 8A) although a trend towards inhibition of basal levels was observed for X/XO II. In contrast, higher levels of superoxide (X/XO II) as well as of \(\text{H}_2\text{O}_2 \) clearly inhibited PDGF stimulated DNA synthesis (fig 8A, B), an effect possibly due to ROI mediated inhibition of PDGF-BB dependent downstream signalling, including phosphorylation of ERK1/2, as suggested by the experiments illustrated in fig 9.

DISCUSSION

Induction of oxidative stress has been unequivocally documented under acute and chronic experimental and clinical conditions of liver injury, and ROI such as \(\text{H}_2\text{O}_2 \) and \(\text{O}_2^- \) have been proposed as key profibrogenic and promitogenic stimuli.1–3 However, this assumption was based on studies limited to rat HSC/MFs and animal models, and no clearcut evidence is currently available in human systems. In addition, we still lack precise analysis of “in vivo” ROI generation during the development of liver injury.

Lores Arnaiz and colleagues28 reported that during experimental massive acute liver damage induced by the prooxidant drug acetaminophen, total ROI generation reached approximately 250 nM, 150 nM of which was attributed to \(\text{H}_2\text{O}_2 \) generation, indirectly suggesting that superoxide levels should not exceed levels of 100 nM in this model of hyperacute liver damage. On the other hand, data on maximal rate of superoxide generation by activated leucocytes indicate that: (i) activated neutrophils may generate, depending on the stimulus, 10–20 nmol \(\text{O}_2^- \)/min/106 cells (value for resting neutrophils being 0.1–0.2);12 (ii) Kupffer cells isolated from injured liver may generate up to 10–15 nmol/106 cells/h10,11; and (iii) superoxide generation, in the perfusate of in vivo perfused /damaged rat livers, may account for 7.0–25.0 nmol/min.35 On these bases, in the present study, human HSC/MFs were exposed to controlled superoxide generation rates that should be considered as realistic in the attempt to reproduce conditions ranging from mild/moderate inflammation (0.8–1.2 nmol/min/ml) to sustained inflammatory response/acute hepatitis (up to 25–50 nmol/min/ml).
Superoxide anion and activated hepatic stellate cells were maintained in SOD containing medium, indicating the oxidative dependent nature of migration and a role for superoxide itself. In addition, desferrioxamine pretreatment was ineffective, suggesting that involvement of traces of iron should not be relevant in mediating superoxide effects. According to the latter finding and to the preventive effect of SOD (that is, the enzyme enhancing dismutation of O_2^- to H_2O_2), H_2O_2 was unable to affect migration of HSC/MFs and had no effect on either the Ras/ERK or PI 3-K pathway or DNA synthesis. Further manipulation of the experimental design in the wound healing assay (migration evaluated after 18 hours from exposure to the desired stimulus) also apparently excluded involvement of NO synthesis as well as at least an early contribution of an autocrine, superoxide induced regulation of peptide chemotactic factors, such as monocyte chemoattractant protein 1, as indicated by lack of significant effects observed with actinomycin D.

Another major finding from the present study was that O_2^- could not stimulate DNA synthesis in human HSC/MFs when used at profibrogenic and non-cytotoxic levels. In addition, O_2^- exerted an inhibitory effect on either basal or PDGF dependent DNA synthesis when experimental conditions were set to generate higher levels of superoxide. This feature was fully reproduced in analogous experiments in which human cells were exposed, for comparison, to a range of H_2O_2 concentrations. This finding is clearly not in agreement with various reports that, by using different experimental strategies, indicated a link between ROI generation and proliferation of rat HSC/MFs through a...
pathway involving redox modulation of cysteine residues in Raf-1, MEK, and ERK. In our hands, H₂O₂ was not even able to activate the Ras/ERK pathway and, accordingly, it was ineffective not only on DNA synthesis but also on migration. However, it should be noted that the literature also indicates that activated HSC have unusually high levels of catalase activity, being able to metabolise H₂O₂ with a very high efficiency, and that upregulation of collagen type I in HSC may also involve a ROI dependent upregulation of nuclear factor κB; this redox modulated transcription factor may also elicit survival signalling and indeed preliminary data indicated that human HSC/MFs can easily survive even to high levels of tumour necrosis factor α.

In conclusion, this study suggests that human HSC/MFs, displaying an antigenic profile identical to that of interface myofibroblast in human fibrotic and cirrhotic livers, respond to low non-cytotoxic levels of superoxide, equivalent to those easily detectable in chronic liver diseases, by affecting ECM synthesis or by stimulating in a Ras/ERK manner migration of these cells. This feature may be relevant in conditions of chronic inflammation that usually accompany chronic liver diseases, also on the basis of the recently revisited major profibrogenic role of macrophages. Moreover, we have reported for the first time that proliferation of human HSC/MFs, differently from that reported or suggested for rat cells, is not stimulated by ROI used at profibrogenic and non-cytotoxic concentrations. Finally, human HSC/MFs undergo block of proliferative responses as well as necrotic or apoptotic cell death when exposed to higher levels of ROI that may mimic conditions of acute liver injury (that is, acute hepatitis). In particular, high levels of ROI inhibit PDGF-BB dependent proliferation, likely by inhibiting relevant downstream steps of signalling, similar to what has already been reported in human HSC/MFs for another oxidative stress mediator, such as HNE. Along these lines, one may speculate that after an acute liver injury, time dependent changes in hepatic levels of ROI, like superoxide, may differently affect the response of HSC during wound healing.

Taken together, the results of the present study further refine the concept of the direct profibrogenic effect of ROI (that is, induction of fibrillar ECM synthesis) in the absence of other stimuli.
of significant proliferation of ECM producing cells. This condition likely represents the first profibrogenic step in clinical settings characterised by excessive oxidative stress such as alcoholic and non-alcoholic steatohepatitis.

ACKNOWLEDGEMENTS

Supported by grants from MIUR (protocols MM06315722 and RBAU01SXHY4), Regione Piemonte (Torino, Italy), and Italian Liver Foundation (Florence, Italy).

Authors’ affiliations

E Novo, E Zamara, L Valfrè di Bonzo, S Cannito, C Antonaci, S Calombato, M Parola, Dip Medicina e Oncologia Sperimentale, University of Torino, Torino, Italy

F Marra, A Caligiuri, M Pinzani, Dip Medicina Interna-Centro di Ricerca, Trasferimento e Alta Formazione “DENOTHE”, University of Florence, Florence, Italy

Conflict of interest: None declared.

REFERENCES

1 Friedman SL. Liver fibrosis: from bench to bedside. J Hepatol 2003;38:538–53

Dose dependent and divergent effects of superoxide anion on cell death, proliferation, and migration of activated human hepatic stellate cells

E Novo, F Marra, E Zamara, L Valfrè di Bonzo, A Caligiuri, S Cannito, C Antonaci, S Colombatto, M Pinzani and M Parola

Gut 2006 55: 90-97 originally published online July 24, 2005
doi: 10.1136/gut.2005.069633

Updated information and services can be found at:
http://gut.bmj.com/content/55/1/90

These include:

References
This article cites 43 articles, 6 of which you can access for free at:
http://gut.bmj.com/content/55/1/90#BIBL

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/