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ABSTRACT
Background and Aims: The gold standard treatment of
chronic hepatitis C (CHC) is combined pegylated interferon
and ribavirin. Considering side effects and treatment cost,
prediction of treatment response before therapy is
important. The aim of this study was to identify a liver
gene signature to predict sustained virological response in
patients with CHC.
Methods: Group A (training set) comprised 40 patients
with CHC including 14 non-responders (NRs) and 26
sustained virological responders (SVRs). Group B (valida-
tion set) comprised 29 patients including 9 NRs and 20
SVRs. Eleven responder–relapsers were also included. A
total of 58 genes associated with liver gene expression
dysregulation during CHC were selected from the
literature. Real-time quantitative RT-PCR assays were
used to analyse the mRNA expression of these 58
selected genes in liver biopsy specimens taken from the
patients before treatment.
Results: From the Group A data, three genes whose
expression was significantly increased in NRs compared
with SVRs were identified: IFI-6-16/G1P3, IFI27 and
ISG15/G1P2. These three genes also showed significant
differences in their expression profiles between NRs and
SVRs in the independent sample (Group B). Supervised
class prediction analysis identified a two-gene (IFI27 and
CXCL9) signature, which accurately predicted treatment
response in 79.3% (23/29) of patients from the validation
set (Group B), with a predictive accuracy of 100% (9/9)
and of 70% (14/20) in NRs and SVRs, respectively. The
expression profiles of responder–relapsers did not differ
significantly from those of NRs and SVRs, and 73% (8/11)
of them were predicted as SVRs with the two-gene
classifier.
Conclusion: NRs and SVRs have different liver gene
expression profiles before treatment. The most notable
changes occurred mainly in interferon-stimulated genes.
Treatment response could be predicted with a two-gene
signature (IFI27 and CXCL9).

Chronic hepatitis C (CHC) is among the leading
causes of chronic liver disease worldwide, with a
prevalence of approximately 170 million people.
The severity of disease varies from asymptomatic
chronic infection to cirrhosis and hepatocellular
carcinoma.1–3 The main treatment goal in CHC is
the prevention of cirrhosis and hepatocellular
carcinoma by eradicating the virus. Recently,
advances have been made in treatment with the
combination of pegylated interferon (PEG-IFN)
and ribavirin.4–8 Despite this progress, treatment
failure still occurs in about half of the patients.

Furthermore, therapy results in several side effects.
Premature withdrawal due to adverse events was
required in 10–14% of participants in registration
trials.5–8 Considering side effects and treatment
cost, prediction of virological non-response before
therapy with more reliable markers is manda-
tory.1 2

The recent development of effective tools for the
large-scale analysis of gene expression has provided
new insights into the involvement of gene net-
works and regular pathways in various disease
processes.9 These methods include microarrays to
analyse the expression of thousand of genes at a
time, and real-time RT-PCR assays for more
accurate and quantitative expression analysis of
smaller numbers of candidate genes.10 Using large-
scale real-time quantitative RT-PCR, we have
shown that several altered molecular pathways
are involved in CHC compared with normal liver11

and in the progression of fibrosis.10 Real-time RT-
PCR is also more appropriate than microarrays for
analysing weakly expressed genes such as genes
encoding cytokines.

We hypothesised that non-responders (NRs) and
sustained virological responders (SVRs) might have
different liver gene expression patterns prior to
treatment. The aim of our study was to predict
treatment outcome using real-time PCR in patients
with CHC before treatment. We selected 58 genes
from the literature involved in various cellular and
molecular mechanisms associated with liver gene
expression during CHC.10–17 We then built predic-
tion models using supervised class prediction
algorithms for gene signature discovery. A two-
gene subset (IFI27 and CXCL9) accurately pre-
dicted treatment response (79.3%) in the validation
set. This signature might help predict response to
PEG-IFN plus ribavirin therapy in CHC.

PATIENTS AND METHODS

Chronic hepatitis C patients
Percutaneous liver biopsy specimens were selected
from a cohort of adult patients with CHC followed
at Beaujon Hospital (Clichy, France). Pretreatment
liver biopsies from patients who were subsequently
treated and for whom treatment responses were
known were used for the study. In each case, both
immediately frozen liver tissue (stored at 280uC)
and fixed paraffin-embedded tissue (for histology)
were available. Participants gave their informed
consent. The study conformed to the ethical
guidelines of the 1975 Declaration of Helsinki.

Hepatitis

516 Gut 2008;57:516–524. doi:10.1136/gut.2007.128611

 on A
pril 8, 2024 by guest. P

rotected by copyright.
http://gut.bm

j.com
/

G
ut: first published as 10.1136/gut.2007.128611 on 25 S

eptem
ber 2007. D

ow
nloaded from

 

http://gut.bmj.com/


Patients were included in this study if they met the following
criteria.
c An established diagnosis of CHC with detectable anti-

hepatitis C virus (HCV) antibodies, and detectable serum
HCV RNA with RT-PCR (HCV Amplicor 2.0; Roche
Diagnostics, Mannheim, Germany).

c Absence of other causes of chronic liver disease (undetect-
able hepatitis B surface antigen (HBs-Ag), no excessive
alcohol consumption (,30 g/day), haemochromatosis,
autoimmune hepatitis, Wilson disease, a-1 antitrypsin
deficiency, primary sclerosing cholangitis or primary biliary
cirrhosis).

c Standard treatment regimen: all were naı̈ve patients and
received the same complete treatment of PEG-IFNa-2b
(Viraferon-peg, 1.5 mg/kg/week; Schering Corp.) and riba-
virin (dose adjusted to body weight: ,65 kg, 800 mg/day;
65–85 kg, 1000 mg/day; .85 kg, 1200 mg/day). Duration of
treatment was 24 weeks for genotypes 2 or 3, and 48 weeks
for genotypes 1 or 4. NRs were treated for a full course of
therapy.

c Adequate follow-up: detection of serum HCV RNA by RT-
PCR was performed at week 24, at the end, and 6 months
after the end of treatment.

Patients were selected based on their treatment response.
Sustained virological response was defined as undetectable HCV
RNA 6 months after completion of treatment.1 2 Non-response
was defined as detectable serum HCV RNA at the end of
treatment.

We first built a gene signature on a training set with 40
patients with CHC including 14 NRs and 26 SVRs (Group A).
We then validated the gene signature on an independent
validation set of 29 patients including 9 NRs and 20 SVRs
(Group B), to confirm that it would generalise to new data.
Baseline characteristics of groups A and B are shown in tables 1
and 2.

A group of 11 responder–relapsers (RRs) was also included in
the study. Relapse was defined as the reappearance of detectable
serum HCV RNA after treatment cessation in patients with no
detectable serum HCV RNA at the end of treatment. They have
been included with the same criteria as previous CHC patients.

In particular, they were all naı̈ve patients and received the same
complete treatment of PEG-IFNa-2b (Viraferon-peg, 1.5 mg/kg/
week; Schering Corp.) and ribavirin (dose adjusted to body
weight: ,65 kg, 800 mg/day; 65–85 kg, 1000 mg/day; .85 kg,
1200 mg/day). Baseline characteristics of RR patients are shown
in table 3.

Histologically normal controls
Percutaneous liver biopsy specimens were taken from eight
adults with mildly elevated alanine aminotransferase (ALT)
activity with no cause of liver disease (medication, alcohol,
chronic viral hepatitis, autoimmune processes and metabolic
disease). All these adults gave their informed consent for the
study. All these eight liver tissue specimens were histologically
normal (ie, absence of inflammation, fibrosis and pathological
pattern).

Real-time RT-PCR
In previous studies using the same technological approach, we
have shown that several altered molecular pathways are
involved in hepatitis C compared with the normal liver11 and
in the progression of liver fibrosis.10

Theoretical basis
The theoretical and practical aspects of real-time quantitative
RT-PCR using the ABI Prism 7900 Sequence Detection System
(Perkin-Elmer Applied Biosystems, Foster City, CA) have been
described in detail elsewhere.10

The precise amount of total RNA added to each reaction mix
(based on optical density) and its quality (ie, lack of extensive
degradation) are both difficult to assess. We therefore also
quantified transcripts of two endogenous RNA control genes
involved in two cellular metabolic pathways, namely TBP
(GenBank accession no. NM_003194), which encodes the TATA
box-binding protein (a component of the DNA-binding protein
complex TFIID), and RPLP0 (also known as 36B4; NM_001002),
which encodes human acidic ribosomal phosphoprotein P0.
Each sample was normalised on the basis of its TBP (or RPLPO)
content. Results, expressed as n-fold differences in target gene
expression relative to the TBP (or RPLPO) gene, and termed
‘‘Ntarget’’, were determined as Ntarget = 2DCtsample, where the
DCt value of the sample was determined by subtracting the
average Ct value of the target gene from the average Ct value of
the TBP (or RPLP0) gene.

The Ntarget values of the samples were subsequently
normalised such that the median of the normal histological
liver Ntarget values was 1.

Selection of genes
By studying the literature, we selected 58 genes involved in
various cellular and molecular mechanisms associated with liver
gene expression dysregulation during CHC in humans.10–17 We
especially focused on genes whose expression was dysregulated
during HCV infection compared with the normal histological
liver (n = 37),11 genes involved in the progression of fibrosis in
CHC (n = 7),10 those recently associated with treatment out-
come (n = 18)12 and genes associated with the immune response
to HCV.17 These genes mainly encode proteins involved in the
immune response and interferon signalling pathways (table 4).

Primers and controls
Primers for TBP, RPLP0 and the 58 target genes were chosen
with the assistance of the Oligo 5.0 computer program

Table 1 Characteristics of patients from the training set (Group A)

Variable Patients NRs SVRs

No. 40 14 26

Gender (male, n (%)) 26 (65) 9 (64) 17 (65)

Age (years) 47.4 (8.6) 46.5 (7.1) 47.9 (9.4)

Source of infection (n (%))

Blood transfusion 11 (27.5) 3 (21.4) 8 (30.8)

Intravenous drug use 13 (32.5) 5 (35.7) 8 (30.8)

Unknown 16 (40.0) 6 (42.9) 10 (38.5)

ALT (IU/l, median) 120 (57) 132 (86) 114 (43)

HCV genotype (n)

1 24 13 11

2 3 0 3

3 8 0 8

4 4 1 3

5 1 0 1

Stage (n)

F1 13 1 12

F2 15 7 8

F3 8 4 4

F4 4 2 2

ALT, alanine aminotransferase; HCV, hepatitis C virus; NRs, non-responders; SVRs,
sustained virological responders.
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(National Biosciences, Plymouth, MN). We conducted searches
in the dbEST and nr databases to confirm the total gene
specificity of the nucleotide sequences chosen as primers, and
the absence of single nucleotide polymorphisms. In particular,
the primer pairs were selected to be unique in relation to the
sequences of closely related family member genes or of the
corresponding retropseudogenes. To avoid amplification of
contaminating genomic DNA, one of the two primers was
placed at the junction between two exons, if possible. In
general, amplicons were between 70 and 120 nucleotides long.
Gel electrophoresis was used to verify the specificity of PCR
amplicons.

For each primer pair, no-template control (NTC) and no-
reverse transcriptase control (RT negative) assays were
performed and produced negligible signals (usually .40 in Ct
value), suggesting that primer dimer formation and genomic
DNA contamination effects were negligible. The RNA extrac-
tion, cDNA synthesis and PCR conditions are described
elsewhere.10

Significance testing, clustering and supervised class prediction
Genes differentially expressed between SVRs and NRs were
identified using the signal-to-noise (SNR) and Student t test
statistics. p Values were estimated using 10 000 permutations of
the sample status (SVR/NR), and genes with an adjusted p
value ,0.05 were considered to be significantly differentially
expressed. p Values were corrected using the Benjamini and
Hochberg false discovery rate (FDR) method18 to control false-
positive results from multiple testing.

Unsupervised hierarchical clustering of expression data was
performed using average linkage clustering with cosine distance
as the similarity metric.

Supervised class prediction analysis was performed using k
nearest neighbour (KNN) and weighted voting (WV) prediction
algorithms to achieve optimal predictive accuracy for sample
classification with a minimal set of predictors. Briefly, a KNN
classifier19 is based on a distance function between pairs of
observations and identifies the class of a testing sample by
determining its k nearest neighbours in the training data set and

by choosing the most common class of those k neighbours. Our
KNN classifier used a distance-weighted voting scheme with
cosine distance. The number of k neighbours was chosen by
cross-validation (CV) on the training set, and the k yielding the
smallest CV error rate was retained for use on the test set. The
WV classifier makes a weighted linear combination of relevant
marker genes obtained in the training set to provide a
classification scheme for new samples. The selection of classifier
input features was performed by computing the SNR statistic.

Prediction models were built using gene expression data from
Group A samples, which served as a training set. Models
containing increasing numbers of genes were evaluated by leave-
one-out cross-validation (LOOCV) to identify the smallest
predictive model yielding the most accurate class assignments.
In LOOCV, one sample from the training set is excluded, and
the rest of the training samples are used to build the classifier.
Then the classifier is used to predict the class of the one that
was left out, and this is repeated for each sample in the training
set. The LOOCV estimate of classification accuracy is the
overall number of correctly classified samples, divided by the
number of samples in the training set. Thereafter, a validation
analysis of the predictive classification model was performed
using an independent test set (Group B), and the overall
accuracy of class assignment for samples in the test set was
reported.

All analyses were performed using GenePattern version 2.0
(http://www.broad.mit.edu/cancer/software/genepattern).20

RESULTS

Identifying significantly differentially expressed genes between
SVRs and NRs
We first examined whether there were significant differences in
individual gene expression between SVR and NR liver tissue
specimens. Table 5 shows the results of the Student t tests
when applied to Group A. Similar results were obtained with
the SNR statistic, pointing to the same differentially expressed
genes, although not ranked exactly in the same order. Genes
correlated with SVR/NR status were identified by sorting all of
the genes according to the t test statistic. Ten genes displayed a
non-adjusted p value ,0.05. Although this does not strictly

Table 2 Characteristics of patients from the validation set (Group B)

Variable Patients NRs SVRs

No. 29 9 20

Gender (male, n (%)) 22 (76) 8 (89) 14 (70)

Age (years) 45.1 (9.1) 48.2 (10.6) 43.6 (8.3)

Source of infection (n (%))

Blood transfusion 3 (10.3) 1 (11) 2 (10)

Intravenous drug use 9 (31.1) 3 (33) 6 (30)

Unknown 17 (58.6) 5 (66) 12 (60)

ALT (IU/l, median) 129 (70) 120 (49) 132 (79)

HCV genotype (n)

1 17 8 9

2 2 0 2

3 6 0 6

4 4 1 3

5 0 0 0

Stage (n)

F1 7 1 6

F2 13 4 9

F3 7 2 5

F4 2 2 0

ALT, alanine aminotransferase; HCV, hepatitis C virus; NRs, non-responders; SVRs,
sustained virological responders.

Table 3 Characteristics of the responder–relapser patients

Variable Patients

No. 11

Gender (male, n (%)) 8 (73)

Age (years) 50.7 (6.2)

Source of infection (n (%))

Blood transfusion 3 (27)

Intravenous drug use 3 (27)

Unknown 5 (45)

ALT (IU/l, median) 123 (54)

HCV genotype (n)

1 3

2 1

3 5

4 2

5 0

Stage (n)

F1 3

F2 4

F3 4

F4 0

ALT, alanine aminotransferase; HCV, hepatitis C virus.
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assess significance, these non-adjusted p values are useful to
identify genes that should be studied further. From the Group A
data, we identified three genes whose expression differed
significantly between SVRs and NRs (FDR ,0.05): IFI-6-16
(previously named G1P3), IFI27 and ISG15 (previously named
G1P2) (table 5). Note that ISG15 and IFI-6-16 were already
identified as differentially expressed genes between SVRs and
NRs (p,0.001) in an independent study.12

When the gene expression profiles of the 10 genes displaying a
non-adjusted p value ,0.05 in Group A were compared between
NR and SVR patients from Group B, 6 out of 10 genes (IFI27,
ISG15, IFI-6-16, OAS2, HERC5 and IFIT1) were found to be
differentially expressed in this independent data set (FDR
,0.05) (table 6). Among these six genes, five (IFI27, ISG15, IFI-
6-16, OAS2 and IFIT1) were also identified as differentially
expressed in a previous study.12 The three genes shown to be
significant (FDR ,0.05) in Group A (IFI-6-16, IFI27 and ISG15)
also showed significant differences in their expression profiles
between SVRs and NRs in Group B and displayed the highest
level of significance.

Selection of the most useful gene subsets for gene expression-
based classification
Exploratory data analysis using unsupervised hierarchical cluster-
ing was performed on both Group A and Group B using the whole
set of genes (n = 58). No distinctive clusters were identified
between the SVR and NR groups by this analysis. This was
expected since most of the genes considered were not correlated
with NR/SVR status. Hence, the SVR and NR patients could not
be differentiated by unsupervised data analysis.

Table 4 List of the 58 genes studied

Gene Protein

Interferon signalling pathway:

IRF7 Interferon regulatory factor 7

ISGF3G Interferon-stimulated transcription
factor 3, gamma 48 kDa

STAT1 Signal transducer and activator of
transcription 1

STAT2 Signal transducer and activator of
transcription 2

Interferon-inducible proteins:

ISG15 Interferon alpha-inducible protein 2
(clone IFI -15K)

IFI-6-16 Interferon alpha-inducible protein 3
(clone IFI-6-16)

IFI27 Interferon alpha-inducible protein
27

IFI35 Interferon alpha-inducible protein
35

IFIT1 Interferon-induced protein with
tetratricopeptide repeats 1

IFIT4 Interferon-induced protein with
tetratricopeptide repeats 4

IFITM1 Interferon-induced transmembrane
protein 1

LGALS3BP Lectin galactoside-binding soluble 3

MX1 Myxovirus (influenza virus)
resistance 1

OAS1 29-59-Oligoadenylate synthetase 1

OAS2 29-59-Oligoadenylate synthetase 2

OAS3 29-59-Oligoadenylate synthetase 3

PLSCR1 Phospholipid scramblase 1

PRKR Protein kinase IFN-inducible
double-stranded RNA dpt

PSMB9 Proteasome (prosome, macroprain)
subunit beta type 9

HERC5 Hect domain and RLD 5

RSAD2 Radical S-adenosyl methionine
domain-containing 2

Growth factor receptors:

CXCR3 Chemokine (C-X-C motif) receptor 3

Growth factors; chemokines; interleukins:

CXCL6 Chemokine (C-X-C motif) ligand 6
(GCP-2)

CCL8 Chemokine (C-C motif) ligand 8
(MCP-2)

CXCL9 Chemokine (C-X-C motif) ligand 9
(MIG)

CXCL10 Chemokine (C-X-C motif) ligand 10
(IP-10)

CXCL11 Chemokine (C-X-C motif) ligand 11
(IP-9)

FGF7 Fibroblast growth factor 7 (FGF)

IFNG Interferon, gamma

IL6 Interleukin 6

IL8 Interleukin 8

IL10 Interleukin 10

MDK Midkine (NEGF2)

TGFB2 Transforming growth factor beta 2

TNF Tumour necrosis factor

TSLP Thymic stromal lymphopoeitin

Angiogenesis:

FIGF VEGF-D

Signal transduction:

DUSP1 Dual specificity phosphatase 1
(MKP-1)

EEF1G Eukaryotic translation elongation
factor 1 g

Continued

Table 4 Continued

Gene Protein

Cell cycle:

CDKN2A CDK inhibitor 2A (p16 protein)

SFN Stratifin (protein 14-3-3 sigma)

Transcription factors:

ATF5 Activating transcription factor 5

Cytoskeletal:

STMN2 Stathmin-like 2 (SCG 10)

Iron metabolism:

HAMP Hepcidin antimicrobial peptide

Oxidative stress:

CA9 Carbonic anhydrase IX

CYP2E1 Cytochrome P450 CYP2E1

Cell adhesion and cell junction:

ITGA2 Integrin, alpha 2

Matrix proteases:

MMP9 Matrix metalloproteinase 9

ANPEP Alanyl aminopeptidase (CD13)

Various:

CD14 CD14 antigen

HLA-B Major histocompatibility complex,
class I, B

LGP1 D11lgp1e-like

STXBP5 Syntaxin-binding protein 5
(Tomosyn)

PIK3AP1 Phosphoinositide-3-kinase adaptor
protein 1

RPLP2 Ribosomal protein large P2

RPS28 Ribosomal protein S28

LAP3 Leucine aminopeptidase 3

USP18 Ubiquitin-specific protease 18
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Prediction models were built using two supervised learning
classifiers, KNN and WV, for gene signature discovery. Since
good predictors do not necessarily have low type 1 errors when
the null hypothesis of no association with the clinical outcome
is tested for each of the investigated variables,21 the analysis was
not restricted to the statistically significant discriminatory
genes but was performed using the entire set of genes. The KNN
algorithm identified a two-gene classifier (IFI27 and CXCL9,
using k = 3) that gave the highest overall accuracy (77.5%) in
distinguishing between SVR and NR gene expression profiles as
evaluated by LOOCV of Group A, used as a training set (fig 2).
Increasing the size of the classifier set did not increase accuracy.
This two-gene signature correctly classified 23 of 26 SVR
patients (88.5%) and 8 of 14 NR patients (57.1%) (table 7). It
was validated on an independent test set (Group B) consisting
of 29 patients, 23 of whom were correctly classified (79.3%):
treatment response was correctly predicted for all NR patients
(100%) and 14 of 20 SVR patients (70%). With the WV
classifier, the highest classification accuracy (80.0%) was
obtained using a three-gene subset (IFI27, CXCL9 and IFI-6-
16) in Group A, and the results did not improve when additional
genes were included (fig 2 and table 7). This predictive gene
signature also showed good predictive accuracy in the indepen-
dent test set (Group B), with 72.4% (21/29) of samples correctly
assigned. Interestingly, among the genes selected as good
predictors for gene expression-based classification of treatment
outcomes, CXCL9 was not shown to be differentially expressed
between SVR and NR patients (FDR .0.05).

When we tested the two-gene (IFI27 and CXCL9) and the
three-gene (IFI27, CXCL9 and IFI-6-16) signatures in the group
of patients composed only of individuals with genotype 1
infection, both signatures correctly classified 31 of 41 patients
(75.6%). The predictive accuracy was of 71.4% (15/21) and 80%
(16/20) in NR and SVR patients, respectively, with the two-
gene signature, and it was of 66.7% (14/21) and 85% (17/20) in
NR and SVR patients, respectively, with the three-gene
signature.

The 69 patients from Group A and Group B were grouped
into two distinct samples according to their liver fibrosis stage,
and the performance of the proposed gene signatures was
evaluated separately in the ‘‘mild/moderate fibrosis’’ group (F1–
F2; n = 48) and in the ‘‘severe fibrosis/cirrhosis’’ group (F3–F4,
n = 21)(Metavir).22 In our experience, the majority of patients
with CHC have mild to moderate fibrosis (87%) in comparison

with a minority having advanced fibrosis/cirrhosis (13%).23 Both
signatures accurately predicted treatment outcome in either
group (table 8).

It is interesting to note that when we built predictive models
using the entire data set (69 samples from Group A and Group B
pooled together), the best results were obtained using a two-
gene (IFI27 and CXCL9, with k = 3) and a three-gene (IFI27,
CXCL9 and ISG15) subset using the KNN and WV classifier,
respectively. Both predictive models accurately predicted treat-
ment response for 56 of 69 patients (81.2%) with CHC.
However, while the prediction errors within the NR and SVR
groups of patients were similar with the two-gene signature
KNN classifier (26.1 and 15.2%, respectively), they were
markedly unbalanced when training the WV algorithm with
the three-gene subset (39.1 and 8.7%, respectively) (fig 2).

Results obtained with the 11 RR samples
Besides the 69 NR and SVR patients included in the two
independent Groups A and B, we analysed 11 additional RR
patients. Compared with the normal liver controls, the three
genes IFI27, IFI-6-16 and CXCL9 were all upregulated in the 11
RR samples: their liver expression values were 29.1 (SD 25.0),
32.6 (29.4), and 49.4 (46.8), respectively, after normalisation
such that the median of the normal histological liver values was
1. Neither unsupervised hierarchical clustering nor supervised
class prediction analysis could distinguish the RR samples from
NRs or SVRs: instead of being assigned to a new group, they all
clustered with either the NR or the SVR samples. Once trained
on the pooled data from Group A and Group B, the two-gene
classifier (IFI27 and CXCL9) predicted 8 out of 11 RRs (73%) as
SVRs, and 10 out of 11 RRs (91%) were predicted as SVRs with
the three-gene classifier (IFI27, CXCL9 and IFI-6-16). The sole
RR sample classified as NR with the three-gene signature was
included in the three RR samples classified as NRs with the
two-gene signature.

DISCUSSION
In this study, we used large-scale real-time quantitative RT-PCR
to predict treatment outcome in patients with CHC receiving
PEG-IFN plus ribavirin. We examined the expression level of 58
genes known to be involved in various cellular and molecular
mechanisms associated with response to treatment. All patients
were well defined; all were naı̈ve patients and received the same
complete treatment of PEG-IFNa-2b with ribavirin.

Real-time quantitative RT-PCR is a promising alternative to
microarrays for gene profiling. In particular, real-time RT-PCR
is far more precise, reproducible and quantitative than micro-
arrays. Using this approach, we have shown that several altered
molecular pathways are involved in the progression of fibrosis in
CHC.10 Real-time RT-PCR is also more useful for analysing
weakly expressed genes such as cytokines in the present study.

The best classification results were obtained using a two-gene
(IFI27 and CXCL9) and a three-gene (IFI27, CXCL9 and IFI-6-16)
subset when performing KNN and WV analyses, respectively
(fig 1). The identified two-gene and three-gene signatures
accurately predicted treatment response for 79.3 and 72.4% of
patients from the validation set, respectively (table 7).

As patients with genotype 1 infection are less likely to
respond to antiviral therapy, we verified that the selected gene
signatures still perform well in this subgroup of patients and
observed that 75.6% (31/41) of the genotype 1 patients were
correctly classified. The signatures also performed well what-
ever the degree of fibrosis: they predicted treatment outcome

Table 5 List of the genes that differ between NRs and SVRs in Group A

Gene NR/normal SVR/normal NR/SVR p Value* FDR

IFI-6-16 126.5 (84.3) 35.6 (48.1) 3.5 0.002 0.039

IFI27 141.1 (107.3 33.6 (40.7) 4.2 0.002 0.039

ISG15 88.5 (80.3) 24.1 (33.0) 3.7 0.002 0.039

MX1 40.1 (33.9) 14.9 (19.2) 2.7 0.006 0.059

HERC5 11.6 (9.1) 5.4 (5.3) 2.2 0.006 0.059

TGFB2 6.2 (7.6) 2.3 (1.7) 2.7 0.006 0.059

OAS2 27.0 (15.4) 14.9 (16.0) 1.8 0.016 0.118

VEGFD 5.5 (5.0) 2.3 (2.9) 2.4 0.020 0.118

IL8 49.2 (63.9) 15.4 (15.5) 3.2 0.020 0.118

IFIT1 387.8 (1399.3) 7.0¡8.2 55.3 0.020 0.118

The gene expression values of the samples were normalised such that the median of
the normal histological liver values was 1. Gene expression ratios were compared
among NR and SVR liver gene expression values. Statistics are calculated using the
Student t test.
*Not adjusted for multiple testing.
FDR, false discovery rate; NR, non-responder; SVR, sustained virological responder.
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with a high classification accuracy in both the ‘‘mild/moderate
fibrosis’’ (F1 and F2; n = 48) and the ‘‘severe fibrosis/cirrhosis’’
(F3 and F4, n = 21) groups of patients (table 8). Note that the
IFI-6-16 (G1P3) liver gene expression has been shown to be
increased in patients with moderate fibrosis (F2) compared with
those with mild fibrosis (F1).10 This gene, in combination with
others, also appears in the present report to enable the
prediction of treatment response.

In a large randomised study, the proportion of patients with a
sustained virological response was 54% among 511 CHC
patients treated with PEG-IFNa-2b (1.5 mg/kg/week) plus
ribavirin, and the proportion of patients with response–relapse
was found to be low (,18%).5 In the present study, the RR
patients could not be distinguished from SVR and NR patients
on the basis of their liver gene expression profiles, and most of
them clustered with the SVR patients. Once trained on the
pooled data from Group A and Group B, the two-gene classifier
(IFI27 and CXCL9) predicted 8 out of 11 RRs (73%) as SVRs,
and 10 out of 11 RRs (91%) were predicted as SVRs with the
three-gene classifier (IFI27, CXCL9 and IFI-6-16). Interestingly,
in a previous study which evaluated the efficacy of IFN-PEGa-
2b plus ribavirin in the retreatment of 154 unselected patients
with CHC who previously failed to respond or relapsed after a
standard combination therapy, relapsers achieved higher
response rates than non-responders (58.5% vs 13%).24

Since a significant number of patients will fail to respond to
treatment and will develop significant side effects, it is of major

interest, both for patient care and economically, to predict non-
response as early as possible, ideally before treatment. For this
purpose, the best signature to predict non-response is the two-
gene (IFI27, CXCL9) subset, which correctly classified 100% of
NR patients in the validation set, using the KNN classifier. This
two-gene signature also displayed the highest overall predictive
accuracy in the validation set (79.3%). Both IFI27 and CXCL9
genes belong to the IFN-stimulated genes family.

Many of the genes that were found to be differentially
expressed between SVRs and NRs in both the training and the
validation set (IFI-6-16, IFI27, ISG15, OAS2 and IFIT1) belong to
IFN-inducible genes. Interestingly, all these genes were upregu-
lated in both SVR and NR samples compared with normal liver.
It was proposed that IFN-inducible genes are expressed during
CHC via direct activation of IRF3, NFKB1 or JUN through IFN-
dependent signalling events in host cells.14 Interestingly, the
three genes included in the identified signatures (IFI27, CXCL9
and IFI-6-16) were found to be strongly upregulated in CHC
(with mild disease) in comparison with normal liver.11 IFI27 and
IFI-6-16 are IFNa/b-inducible genes with unknown function.25

CXCL9 is an IFNc-inducible gene.
In a recent study, 18 genes were found to be differentially

expressed in the liver between 15 NRs and 16 SVRs.12

Interestingly, five of these genes (IFI27, ISG15, IFI-6-16, OAS2
and IFIT1) were also identified in our study as being
differentially expressed between NRs and SVRs. Using a
number of independent classifier analyses, the authors12

identified an eight-gene subset that predicted treatment
response for 30 of the 31 patients; and another analysis from
the same data using different methods found that the best
prediction results were obtained using a 24-gene signature,26

which correctly classified 28 of 31 patients. The predictive
models identified in the present study involved a smaller
number of genes which could be used as useful predictors.
Moreover, the predictive accuracy of the signatures identified in
our study was assessed using an independent validation set, and
not only by performing a supervised LOOCV analysis on a
single data set.

In another study, liver tissue samples prior to treatment by
IFN or IFN/ribavirin were analysed by microarray.27 In the IFN
treatment group, the differentially expressed genes were mainly
IFN-, lipid metabolism-, complement- and oxidoreductase-
related genes. For the IFN/ribavirin combination treatment, a

Table 6 List of the genes that differ between NRs and SVRs in Group B
among the 10 genes with a non-adjusted p value below 0.05 in Group A

Gene NR/normal SVR/normal NR/SVR p Value* FDR

IFI-6-16 443.2 (569.6) 78.3 (89.0) 5.7 0.002 0.026

IFI27 486.1 (370.7) 95.8 (108.9) 5.1 0.002 0.026

ISG15 341.3 (321.6) 43.0 (39.2) 7.9 0.002 0.026

OAS2 79.5 (77.9) 24.9 (26.5) 3.2 0.004 0.026

HERC5 24.6 (28.2) 5.5 (3.9) 4.5 0.004 0.026

IFIT1 24.3 (20.8) 9.1 (9.3) 2.7 0.012 0.047

The gene expression values of the samples were normalised such that the median of
the normal histological liver values was 1. Gene expression ratios were compared
among NR and SVR liver gene expression values. Statistics are calculated using the
Student t test.
*Not adjusted for multiple testing.
FDR, false discovery rate; NR, non-responder; SVR, sustained virological responder.

Figure 1 LOOCV (leave-one-out cross-
validation) classification accuracies of
supervised training models of increasing
size in Group A (40 patients) using k-
nearest neighbour and weighted voting
classifiers.
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Table 7 Supervised class prediction of NR and SVR using gene expression profiles

Best selected model
NR predictive
accuracy

SVR predictive
accuracy

Overall predictive
accuracy

k-nearest neighbour

Group A (training set, n = 40) IFI27, CXCL9* 57.1% (8/14) 88.5% (23/26) 77.5% (31/40)

Group B (test set, n = 29) 100% (9/9) 70.0% (14/20) 79.3% (23/29)

Weighted voting

Group A (training set, n = 40) IFI27, CXCL9, IFI-6-16* 64.3% (9/14) 88.5% (23/26) 80.0% (32/40)

Group B (test set, n = 29) 88.9% (8/9) 65.0% (13/20) 72.4% (21/29)

*p Value ,0.005 (estimated using 200 randomly permuted data sets).
NR, non-responder; SVR, sustained virological responder.

Table 8 Performance of the two-gene signatures according to liver fibrosis stage

NR predictive
accuracy

SVR predictive
accuracy

Overall predictive
accuracy

Two-gene signature (IFI27, CXCL9)*

Group F1–F2 (n = 48) 69.2% (9/13) 82.9% (29/35) 79.2% (38/48)

Group F3–F4 (n = 21) 90.0% (9/10) 81.8% (9/11) 85.7% (18/21)

Three-gene signature (IFI27, CXCL9, IFI-6-16)*

Group F1–F2 (n = 48) 69.2% (9/13) 88.6% (31/35) 83.3% (40/48)

Group F3–F4 (n = 21) 60.0% (6/10) 100% (11/11) 81.0% (17/21)

*The predictive accuracy of the two-gene and of the three-gene signatures was evaluated using the k-nearest neighbour classifier
and the weighted voting classifier, respectively.
NR, non-responder; SVR, sustained virological responder.

Figure 2 Results of the k-nearest
neighbour (KNN) and weighted voting
(WV) classifier analyses on the whole
data set (69 patients) using the two-gene
(IFI27, CXCL9) and the three-gene (IFI27,
CXCL9, ISG15) predictor sets,
respectively. Confidence scores in favour
of non-responders (NRs) are presented as
negative values, and confidence scores of
class assignments in favour of sustained
virological responders (SVRs) are
presented as positive values. The actual
origins of the patients are indicated (SVR,
light grey; NR, dark grey). The overall
accuracy of class assignment using the
two-gene predictor with KNN was 81.2%
(56/69) in the whole sample, in which 17
of 23 NRs were correctly classified as
NRs, and 39 of 46 SVRs were correctly
classified as SVRs. The overall
classification accuracy of the three-gene
predictor using WV was 81.2% (56/69) in
the whole sample, in which 14 of 23 NRs
were correctly classified as NRs, and 42
of 46 SVRs were correctly classified as
SVRs.
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different set of genes was identified including cyclophilin A and
multidrug resistance protein. Surprisingly the discriminatory
family genes that were identified were different in the two
groups receiving either IFN or IFN/ribavirin.

Finally, another study analysing gene expression patterns in
peripheral blood mononuclear cells during IFN therapy con-
firmed upregulation of genes thought to be IFN-stimulated
genes as well as genes involved in antigen processing and
presentation.28

These three studies have some limitations. First, only a few
patients were analysed without a validation set. Secondly,
patients were heterogenous according to treatment (IFN
monotherapy, PEG-IFN, ribavirin, etc.). Thirdly, compliance
with treatment was not assessed, and NR groups included
patients without a complete course of treatment. Moreover, the
diversity of microarray platforms used and the variability of
microarray data emphasise the need for quality assurance. High
quality RNA samples are essential, and must be rigorously
assessed. Careful measures must be taken throughout RNA
extraction to prevent the RNA from degrading. Furthermore,
improved analytical procedures and the use of large numbers of
patients are needed for validation.29

Many of the genes found to be upregulated between NRs and
SVRs encode molecules secreted in the serum (cytokines, IFN
pathway, IFI27 and ISG15) and provide a logical functional
approach for the development of serum markers to predict
treatment response. For instance, one study examined the levels
of chemokines (CXCL9, CXCL10 and CXCL11) that bind to
CXC chemokine receptor 3 (CXCR3) to determine whether
these chemokines might play a role in the failure of the immune
system to clear HCV infection.30 The baseline level of CXCL10
(before treatment) was highest in patients who did not respond
to therapy. These results suggest that plasma concentrations of
immunoreactive CXCL10 may predict non-responsiveness to
antiviral therapy. Another recent study revealed that pretreat-
ment IP-10 levels might help to predict sustained virological
response in patients with HCV genotype 1 infection.31

In conclusion, our study demonstrated that NR and SVR
patients have different gene expression profiles prior to
treatment. The most notable changes in gene expression were
mainly observed in the IFN-stimulated genes. We used two
independent groups of patients (training set and validation set)
and we could predict treatment response with a two-gene
signature (IFI27 and CXCL9). The majority of RR patients
clustered with SVR patients. Interestingly, the basal liver levels
of expression of IFN-stimulated genes were higher in NRs in
comparison with SVRs. In NRs, the failure to respond to
exogenous PEG-IFN could indicate a blunted response to IFN.
This raises the possibility that, in NRs, the IFN-stimulated
genes are already maximally induced. The genes included in the
signature encode molecules secreted in the serum and provide a
logical functional approach for the development of serum
markers to predict response to treatment.
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