Selective abdominal angiography

M. J. LAURIJSSENS AND JOHN T. GALAMBOS

From the Department of Medicine, Section of Gastroenterology, Emory University School of Medicine, and the Medical Service, Grady Memorial Hospital, Atlanta, Georgia, U.S.A.

EDITORIAL SYNOPSIS This paper illustrates the value of carefully siting the tip of the intra-aortic catheter adjacent to the artery supplying the organ about which more information is required. Cancers in the liver were consistently identified correctly, and useful information has been obtained contributing to the diagnosis of pancreatic tumours, chronic pancreatitis, cirrhosis of the liver, cancer of the colon, and visceral vascular disease.

Angiography of the abdominal viscera can give diagnostic information in selected patients and the value of percutaneous splenoportography has been well established (Steiner, Sherlock, and Turner, 1957). The diagnostic usefulness of hepatic venography is currently being evaluated at this institution. This procedure has been shown to define diagnostic abnormalities in the presence of cirrhosis or tumour in the human liver (Schlant, Galambos, Shuford, Rawls, Winter, and Edwards, 1963). The hepatic artery has been visualized both by direct needle puncture during laparotomy and also by retrograde catheterization (Farinas, 1946). Ödman (1958, 1959) has shown that selective catheterization of the coeliac artery allowed the visualization not only of the hepatic arterial system but also that of the spleen, stomach, and of the pancreas.

Selective abdominal angiography recently became the subject of studies in several institutions (Boijsen, Ekman, and Olin, 1963; Acker, Galambos, and Weens, 1964; and Glenn, Evans, Halpern, and Thorbjarnarson, 1964). A preliminary report from this institution was based on 19 patients and it described six types of cases in which selective coeliac arteriography was of diagnostic value (Acker et al., 1964). Selective abdominal angiography in the study of vascular diseases of the abdominal viscera was recently reviewed (Galambos, 1965). The present report describes the diagnostic value and the dangers of selective abdominal angiography in 44 studies, and 25 patients not previously described are reported.

TECHNIQUE

The patients were premedicated with hydroxyzine pamoate (Vistaril), 50 mg. intramuscularly, and meperidine (Demerol), 75 mg. intravenously, just before the procedure. Local anaesthesia was used after routine skin preparation over the femoral artery. A flexible spring wire was inserted through a Cournand needle into the femoral artery, and it was passed under television image amplification control into the abdominal aorta. The Cournand needle was removed and a flexible Ödman-Ledin radiopaque polyethylene catheter with a pre-moulded tip was passed over the flexible spring guide wire. Great care was taken not to stretch the distal curvature on the catheter as it was placed on the guide wire and as it was passed through the skin into the arterial lumen. The catheter was advanced to the appropriate level in the aorta depending upon the artery which was to be catheterized. For the coeliac artery, for example, the catheter was advanced to the twelfth thoracic vertebra. The guide wire was gradually withdrawn, the tip of the catheter was rotated anteriorly and turned slightly to the left side and moved down until the tip entered the coeliac artery. On the anterior-posterior view, the orifice of the coeliac artery was usually between the twelfth thoracic and first lumbar vertebrae, the extremes ranging between the bodies of the twelfth thoracic and first lumbar vertebrae. Usually the catheter could not be passed more than 5 cm. into the arterial lumen. The movement of the radiopaque catheter during respiration was greater in the superior mesenteric artery than in the coeliac artery. During the manoeuvring of the catheter and between test injections, the catheter was frequently flushed with heparinized saline to prevent clotting. In order to ascertain the location of the catheter, test injections of 2 ml. diatrizoate sodium and methylglucamide (Renovist) were made repeatedly. Because of these injections a renal pyelogram was usually obtained before angiography.

After the test injections had confirmed the proper location of the catheter, the patient was placed in a supine position on a rapid film changer. Forty ml. of contrast material was injected in three seconds. Transient periumbilical pain was experienced by the patients during the few seconds of rapid injection, but no other side effects were attributable to the rapid injection. (Multiple side perforations in addition to the usual opening at the

1Present address: Vijfstrassen, 162 Sint Niklaas, Waas, Belgium.
TABLE

SUMMARY OF 25 CASES IN PRESENT SERIES

<table>
<thead>
<tr>
<th>Patient and Number</th>
<th>Age</th>
<th>Sex</th>
<th>Clinical History</th>
<th>Diagnosis</th>
<th>Angiographic Findings</th>
<th>Complications</th>
<th>Other Findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. H.J., C11137</td>
<td>77</td>
<td>M</td>
<td>Chronic alcoholic; weakness; anorexia; jaundice; large, hard, tender liver</td>
<td>Hepatoma</td>
<td>Abnormal vascular pattern of liver; tumour staining</td>
<td>None</td>
<td>H.Ph.S. cold nodule in centre of liver</td>
</tr>
<tr>
<td>2. C.J., C50403</td>
<td>67</td>
<td>G</td>
<td>Asymptomatic; abdominal mass</td>
<td>Bile duct hamartoma (cyst)</td>
<td>Unsuccessful<sup>a</sup></td>
<td>Haemotoma</td>
<td>H.Ph.S. cold mass in liver</td>
</tr>
<tr>
<td>3. J.K., C16206</td>
<td>64</td>
<td>M</td>
<td>Weakness; anorexia; weight loss</td>
<td>Metastatic cancer to liver</td>
<td>Unsuccessful</td>
<td>None</td>
<td>Liver biopsy; metastatic adenocarcinoma</td>
</tr>
<tr>
<td>4. R.M., C64841</td>
<td>76</td>
<td>M</td>
<td>Loss of appetite; abdominal pain for three weeks; hepatomegaly</td>
<td>Bronchogenic carcinoma with liver metastasis</td>
<td>Tumour staining in liver; distortion of branches of hepatic arteries</td>
<td>None</td>
<td>Biopsy: metastatic adenocarcinoma; H.Ph.S. normal</td>
</tr>
<tr>
<td>5. R.A., C125689</td>
<td>32</td>
<td>M</td>
<td>Abdominal pain; diarrhoea; diabetes and malabsorption</td>
<td>Chronic pancreatitis; malnutrition</td>
<td>None</td>
<td>Pancreatic calcification</td>
<td></td>
</tr>
<tr>
<td>6. J.S., C11934</td>
<td>64</td>
<td>M</td>
<td>Weakness; anorexia; hepatomegaly</td>
<td>Colonic carcinoma with metastasis to liver</td>
<td>Unsuccessful</td>
<td>None</td>
<td>Biopsy; metastatic adenocarcinoma</td>
</tr>
<tr>
<td>7. G.B., C159941</td>
<td>63</td>
<td>M</td>
<td>Vomiting; abdominal pain; hepatomegaly</td>
<td>Colonic carcinoma with metastasis to liver</td>
<td>Distortion and irregularities of finer branches of hepatic artery</td>
<td>None</td>
<td>Liver biopsy; adenocarcinoma</td>
</tr>
<tr>
<td>8. W.G., W77723</td>
<td>58</td>
<td>M</td>
<td>Chronic alcoholism; portal hypertension with bleeding oesophageal varices; hepatic coma</td>
<td>Cirrhosis</td>
<td>Distortion of third order branches of hepatic artery; opacification of portal vein</td>
<td>None</td>
<td>Liver biopsy; cirrhosis</td>
</tr>
<tr>
<td>9. M.E., C106201</td>
<td>75</td>
<td>F</td>
<td>Vague epigastric discomfort; weight loss; hepatomegaly</td>
<td>Adenocarcinoma of colon with liver metastasis</td>
<td>Displacement of coeliac axis and distortion of finer branches of hepatic artery</td>
<td>None</td>
<td>Liver biopsy; metastatic adenocarcinoma; H.Ph.S.; cold nodules</td>
</tr>
<tr>
<td>10. J.M., C135904</td>
<td>63</td>
<td>M</td>
<td>Increasing weakness; weight loss; anorexia; generalized abdominal pain</td>
<td>Gastric carcinoma</td>
<td>Normal coeliac angiogram</td>
<td>None</td>
<td>Biopsy: normal liver gastric cytology; papillary adenocarcinoma; laparotomy</td>
</tr>
<tr>
<td>11. A.G., C5556</td>
<td>37</td>
<td>F</td>
<td>Chronic alcoholic; abdominal pain; subtotal gastrectomy; pancreatic pseudocyst; cholecystectomy</td>
<td>Chronic relapsing pancreatitis</td>
<td>Abnormal arterial pattern</td>
<td>Arteriospasm of femoral artery</td>
<td>Pancreatic insufficiency by secretin test</td>
</tr>
<tr>
<td>12. J.B., W23223</td>
<td>46</td>
<td>M</td>
<td>Chronic alcoholic; epigastric pain</td>
<td>Subacute hepatic necrosis with post-necrotic cirrhosis</td>
<td>Mechanical failure of x-ray equipment</td>
<td>None</td>
<td>Liver biopsy; subacute hepatic necrosis with early cirrhosis</td>
</tr>
</tbody>
</table>

^aH.Ph.S. = Hepatic photoscans following Au¹⁹⁸ colloidal gold.
^bUnsuccessful = Could not catheterize the coeliac artery.

**tip of the catheter were essential to prevent the catheter from sliding out of the artery into the aorta during the rapid, forceful injection of the contrast material.) The frequency and duration of the exposures varied depending on the purpose of the study. When visualization of only the arterial system was required, 13 seconds total exposure time was adequate. On the other hand, exposures of up to 37 seconds have been used for the visualization of the portal circulation. In general, the exposures were two per second for three seconds, one per second for three additional seconds, and one every other second thereafter. The catheter was retained in its position until the films were developed and repeated injection either in the same artery or in another vessel was made when indicated.

PATIENTS

Nineteen patients were reported earlier (Acker et al., 1964). Twenty-five additional patients are briefly described in Table I. Five of these patients had metastatic cancer to the liver, two had primary hepatoma with cirrhosis, four had cirrhosis of the liver, four had chronic pancreatitis with pancreatic insufficiency (one of these also had cirrhosis of the liver), one had pancreatic carcinoma and one had a retroperitoneal mass in the region of the pancreas, two had gastrointestinal bleeding, the source of which in one of these patients was undetermined, one had colonic cancer, one had a small gastric cancer, one had ulcerative colitis, one had a bile duct haematoma, and one had Cruveilhier-Baumgarten
Selective abdominal angiography

TABLE continued

SUMMARY OF 25 CASES IN PRESENT SERIES

<table>
<thead>
<tr>
<th>Patient and Number</th>
<th>Age</th>
<th>Sex</th>
<th>Clinical History</th>
<th>Diagnosis</th>
<th>Angiographic Findings</th>
<th>Complications</th>
<th>Other Findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>13 B.B., W22902</td>
<td>72</td>
<td>M</td>
<td>Epigastric pain; weight loss; reflux oesophagitis</td>
<td>Malabsorption due to chronic pancreatitis</td>
<td>Tortuosity of splenic artery; abnormal vascularization of pancreas</td>
<td>None</td>
<td>Normal liver biopsy; normal oesophagography; abnormal fat absorption</td>
</tr>
<tr>
<td>14 G.W., C138371</td>
<td>34</td>
<td>M</td>
<td>Haematemesis; melaena</td>
<td>Gastrointestinal bleeding of undetermined cause</td>
<td>Normal coeliac arteriogram</td>
<td>None</td>
<td>Neocropsy not permitted; uraemia</td>
</tr>
<tr>
<td>15 J.G., W55200</td>
<td>43</td>
<td>M</td>
<td>Chronic alcoholism; jaundice; epigastric pain</td>
<td>Upper gastrointestinal bleeding; gastric ulcer</td>
<td>Normal coeliac arteriogram</td>
<td>None</td>
<td>Liver biopsy; mild, non-specific changes</td>
</tr>
<tr>
<td>16 J.F., C12632</td>
<td>42</td>
<td>F</td>
<td>Chronic alcoholism; ascites; loss of weight; steatorrhoea</td>
<td>Cirrhosis; chronic pancreatitis; malabsorption</td>
<td>Normal coeliac arteriogram</td>
<td>Haematoma</td>
<td>Liver biopsy; septic cirrhosis</td>
</tr>
<tr>
<td>17 E.H., C10080</td>
<td>54</td>
<td>F</td>
<td>Epigastric pain; jaundice</td>
<td>Carcinoma of pancreas</td>
<td>Occlusion of hepatic artery and portal vein</td>
<td>None</td>
<td>Laparotomy and biopsy</td>
</tr>
<tr>
<td>18 V.P., W231239</td>
<td>54</td>
<td>F</td>
<td>Portal hypertension; splenectomy; splenorenal shunt; ascites; hepatic coma; 'cirrhotic' nephropathy and morphologically normal liver. Large, patent umbilical vein</td>
<td>Portal hypertension of unknown aetiology</td>
<td>Distortion and tortuosity of branches of hepatic artery, normal portal vein; normal hepatic vein</td>
<td>None</td>
<td>Biopsy (3 occasions); normal liver; necropsy normal small liver, portal vein—umbilical vein anastomosis</td>
</tr>
<tr>
<td>19 J.T., C30717</td>
<td>59</td>
<td>M</td>
<td>Right flank pain; weight loss; massive hepatomegaly with systemic bruit</td>
<td>Hepatoma</td>
<td>Displacement of hepatic vessels by tumour</td>
<td>None</td>
<td>H.Ph.S.: cold nodules in right lobe of liver, biopsy: hepatoma</td>
</tr>
<tr>
<td>20 P.F., C55505</td>
<td>69</td>
<td>F</td>
<td>Pneumonia; hepatomegaly; anaemia; periumbilical mass</td>
<td>Carcinoma of colon (hepatic flexure)</td>
<td>Superior mesenteric angiogram; tumour staining</td>
<td>None</td>
<td>Biopsy; normal liver, H.Ph.S.: normal</td>
</tr>
<tr>
<td>21 J.B., W60317</td>
<td>50</td>
<td>M</td>
<td>Ten mth. history of diarrhoea; chronic ulcerative colitis</td>
<td>Active ulcerative colitis</td>
<td>Distortion of small vascular pattern of colon</td>
<td>Thrombosis of femoral artery</td>
<td>Ulcerative colitis (granulomatous) by biopsy</td>
</tr>
<tr>
<td>22 A.M., W63070</td>
<td>70</td>
<td>M</td>
<td>Cirrhosis with portal hypertension; hepatic coma precipitated by bleeding varices</td>
<td>Cirrhosis</td>
<td>Abnormally tortuous small hepatic arteries; increased capillary opacity at cholecystectomy site</td>
<td>Haematoma</td>
<td>Biopsy; cirrhosis</td>
</tr>
<tr>
<td>23 E.M., W16459</td>
<td>76</td>
<td>F</td>
<td>Postprandial abdominal pain, malabsorption, weight loss</td>
<td>Suspected abdominal angina</td>
<td>Dissecting aneurysm</td>
<td>?</td>
<td></td>
</tr>
<tr>
<td>24 W.H., W32716</td>
<td>M</td>
<td>Periumbilical attacks of postprandial pain</td>
<td>Suspected mesenteric artery obstruction</td>
<td>Normal superior mesenteric angiogram</td>
<td>None</td>
<td>Large atheroma at orifice of superior mesenteric artery</td>
<td></td>
</tr>
<tr>
<td>25 C.D., C61266</td>
<td>64</td>
<td>M</td>
<td>Weight loss; abdominal pain; hepatomegaly; epigastric mass</td>
<td>Disseminated lymphangitis—lymphangitis pancreato-duodenal artery</td>
<td>Displacement of normal liver biopsy; normal oesophagography; abnormal fat absorption</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

In two patients primary vascular disease was suspected before the study. One of these had thrombosis of a branch of the inferior mesenteric artery and one patient was suspected of having abdominal angina due to mesenteric artery occlusion.

RESULTS

To date we have performed 44 selective coeliac, superior or inferior mesenteric arteriographies. Nineteen of these coeliac angiograms were reported previously (Acker et al., 1964). Twenty-five additional cases are described in this report. In four patients we have been unable to catheterize the artery of choice. In one case the examination was unsatisfactory because of mechanical failure of the equipment. This compares with about 20% failures noted by Ödman (1958) who performed 61 examinations on 58 patients and was unable to enter the coeliac artery in 12 of these examinations.

Normal coeliac angiograms are illustrated in Figures 1, 2, and 3. During the arterial phase (Fig. 1), the splenic, the left gastric, and the common hepatic arteries were well outlined as they usually originated from the coeliac axis. The gastroduodenal and the right gastric arteries usually originated from the common hepatic artery. The left gastroepiploic artery usually came from the splenic artery, and it anastomosed with the right gastroepiploic artery which was a branch of the gastroduodenal artery.
The cystic artery or arteries came from the right hepatic or the superior pancreatico-duodenal artery, a branch of the gastroduodenal artery.

Variations of the origin of the major branches of these arteries were commonly seen. Often the hepatic artery originated from the superior mesentery rather than from the coeliac axis. Anastomoses between the branches of the coeliac axis and the superior mesenteric artery were often prominent.

During the capillary phase (Fig. 2), the opacification of the mucosa of the stomach, gall bladder, duodenum, or intestine was readily apparent in

FIG. 1a. Normal coeliac angiogram; L. Hep = left hepatic artery; R. Hep = right hepatic artery; Hep. = hepatic artery; C.A. = coeliac axis; L.G. = left gastric artery; Cyst = cystic artery; P-D = pancreatico-duodenal; R.G.-E = right gastroepiploic; L.G.-E = left gastroepiploic; Sp. = splenic.

FIG. 1b. The cystic artery or arteries came from the right hepatic or the superior pancreatico-duodenal artery, a branch of the gastroduodenal artery.

Variations of the origin of the major branches of these arteries were commonly seen. Often the hepatic artery originated from the superior mesentery rather than from the coeliac axis. Anastomoses between the branches of the coeliac axis and the superior mesenteric artery were often prominent.

During the capillary phase (Fig. 2), the opacification of the mucosa of the stomach, gall bladder, duodenum, or intestine was readily apparent in

FIG. 2. Capillary phase of Figure 1. The rugal folds of the gastric mucosa are outlined in the area of the gastric air bubble. The fundus is densely opacified. The gall bladder is well defined and its uniformly thin normal wall is readily seen. The draining veins begin to opacify at this stage.

FIG. 3. The venous phase of Figure 1. The mucosal opacification has faded at this stage though the gastric fundus is still dense. The draining veins are filled now with contrast material. The splenic vein (↓) crosses behind the stomach and is partially obscured by it. The portal vein (↑) is well outlined as it emerges in front of and to the right of the first lumbar vertebra. Its intrahepatic branches can be seen though they are obscured by the diffuse opacification of the liver. The gastroepiploic veins (→) are well outlined.
some but not all cases. The appearance of the viscera at this stage resembled a very fine barium coating of its mucosa.

During the venous phase, the draining veins were opacified. At this stage the portal vein was well defined together with the splenic (Fig. 3) or the superior mesenteric vein (Fig. 4) during selective coeliac or superior mesenteric angiography, respectively. The portal vein usually was better opacified after selective superior mesenteric than coeliac angiography. The inferior mesenteric veins were well visualized after inferior selective mesenteric angiography.

ILLUSTRATIVE EXAMPLES

CASE 9 M.E., a 75-year-old coloured woman, was admitted to hospital because of weight loss, malaise, and increasing anorexia. She had nausea but no vomiting. About one year before admission her bowel habits changed and she developed severe constipation progressively. The liver was enlarged. A rounded, ill-defined mass was palpated in the right lobe of the liver. There was a systolic bruit over this area. The spleen was not palpable.

No other abdominal masses were felt. A moderate amount of ascites was present. Barium enema demonstrated a suspicious lesion in the caecum. Coeliac angiography demonstrated the features of metastatic tumour in the liver (Fig. 5). A hepatic photoscan showed a large 'cold' nodule in the right lobe of the liver, and needle aspiration biopsy of the liver confirmed the presence of metastatic adenocarcinoma.

The characteristic features of vascular abnormalities caused by metastatic carcinoma in the liver were the distortion and displacement of small hepatic vessels, and 'tumour staining' due to opacification of the large number of tortuous small vessels in the tumour nodules.

CASE 2 A.G., a 37-year-old coloured woman, was a heavy consumer of various spirits. She had previously been admitted to hospital on several occasions because of chronic relapsing pancreatitis; for cholecystectomy and sphincterotomy; because of a pseudocyst of the pancreas which was drained into the stomach; and because of a bleeding gastric ulcer which was treated by subtotal gastrectomy. She was admitted on this occasion because of chronic pancreatitis and pancreatic insufficiency.

Physical examination revealed a malnourished woman with no additional significant physical abnormalities other than several healed operative incisions on her abdomen. Selective coeliac angiography was performed to study the vascular pattern of the pancreas in a patient with well-documented episodes of pancreatitis and previous gastric and biliary surgery (Figs. 6a and b).
FIG. 6a and b. Superior mesenteric angiogram. The catheter is in the aorta with its tip in the superior mesenteric artery. The contrast material opacifies the branches of this artery without reflux into the aorta. The first major branch of the superior mesenteric artery is the hepatic artery which communicates via a large anastomotic vessel with the coeliac axis. This anastomotic vessel comes off the hepatic artery and follows the course of the gastroduodenal artery. Behind the hepatic artery this vessel joins a tortuous artery which follows the course of the pancreatic-duodenal artery and runs caudad along the right side of the vertebral column and divides into an abnormal arterial network. The normal pancreatic vessels are not seen. The coeliac axis and its two branches, the splenic artery and the ligated left gastric artery, are well visualized.

This case illustrates an abnormal arterial grouping in the region of the head of the pancreas and non-visualization of the normal pancreatic vessels in a patient with recurrent pancreatitis. It also demonstrates the simultaneous opacification of the superior mesenteric and coeliac arterial branches through the large anastomotic gastroduodenal artery.

FIG. 7. Coeliac angiogram. The coeliac axis is pushed to the left and the course of the gastroduodenal artery (---) is distorted, the hepatic artery is tortuous and is occluded (†). There are several large anastomotic arteries from the splenic and left gastric to the hepatic artery and to some of its branches beyond the point of occlusion. (Subsequent exposures also demonstrated the occlusion of the portal vein without prominent collateral veins.)

CASE 17 H.E., a 54-year-old coloured woman, was admitted to hospital because of vomiting, epigastric pain, weight loss, malaise, and jaundice. She had an enlarged, firm liver, but neither the gall bladder nor the spleen were enlarged. Serum bilirubin was 21 mg. % per 100 ml, and the alkaline phosphatase 40 Bodansky units, thymol turbidity 8-2 units. The serum albumin was 3·5 g. and total globulin 2·8 g. per 100 ml. Selective coeliac angiography was performed to identify the suspected carcinoma in the head of the pancreas (Fig. 7).

At exploratory laparotomy, a tumour mass was found in the head of the pancreas, and a transduodenal needle biopsy confirmed the diagnosis of adenocarcinoma. Vascular invasion was confirmed. A palliative choledochojejunostomy was performed.

Displacement of the gastroduodenal artery is indicative of an enlargement of or a mass in the region of the head of the pancreas. Arterial and venous invasion of a pancreatic carcinoma can be demonstrated by this method. There was no evidence for any ischaemic liver injury despite the occlusion of both the hepatic artery and portal vein. Arterial blood perfused the liver, however. This was indicated by the delayed opacification of the branches of the right and left hepatic arteries. The absence of prominent venous collaterals suggests that the portal vein only recently was occluded.

CASE 25 D.C., a 64-year-old coloured man, was admitted because of epigastric pain, weight loss, and night sweats
CASE 20 P.F., a 69-year-old coloured woman, was admitted to hospital because of acute pneumonia. During routine physical examination the liver was palpated 3 cm. for four months. The anorexia and weight loss were marked. He complained of constant mid-abdominal pain. In the left supraclavicular fossa, a 3 x 3 cm. firm lymph node (Virchow’s node) was found, and he also had a firm, fixed, painless epigastric mass. The haematocrit was 33%, serum albumin 2 g., and globulin 5:3 g. per 100 ml. The serum bilirubin was normal; bromsulphalein retention was 40% in 45 minutes, and alkaline phosphatase was 9.6 Bodansky units. The VDRL was positive. Gastrointestinal radiographs showed a mass which stretched the duodenum and displaced the stomach anteriorly. The coeliac angiogram indicated a mass in the region of the pancreas (Fig. 8). Biopsy of a supraclavicular node and of the liver revealed caseating granuloma with acid fast bacilli.

At laparotomy the ‘pancreatic’ mass proved to be a matted group of caseating retroperitoneal lymph nodes.

Displacement of the anterior pancreaticoduodenal artery is usually associated with pancreatic tumours, but also can be due to retroperitoneal lymphadenopathy.

for four months. The anorexia and weight loss were marked. He complained of constant mid-abdominal pain. In the left supraclavicular fossa, a 3 x 3 cm. firm lymph node (Virchow’s node) was found, and he also had a firm, fixed, painless epigastric mass. The haematocrit was 33%, serum albumin 2 g., and globulin 5:3 g. per 100 ml. The serum bilirubin was normal; bromsulphalein retention was 40% in 45 minutes, and alkaline phosphatase was 9.6 Bodansky units. The VDRL was positive. Gastrointestinal radiographs showed a mass which stretched the duodenum and displaced the stomach anteriorly. The coeliac angiogram indicated a mass in the region of the pancreas (Fig. 8). Biopsy of a supraclavicular node and of the liver revealed caseating granuloma with acid fast bacilli. At laparotomy the ‘pancreatic’ mass proved to be a matted group of caseating retroperitoneal lymph nodes.

Displacement of the anterior pancreaticoduodenal artery is usually associated with pancreatic tumours, but also can be due to retroperitoneal lymphadenopathy.

for four months. The anorexia and weight loss were marked. He complained of constant mid-abdominal pain. In the left supraclavicular fossa, a 3 x 3 cm. firm lymph node (Virchow’s node) was found, and he also had a firm, fixed, painless epigastric mass. The haematocrit was 33%, serum albumin 2 g., and globulin 5:3 g. per 100 ml. The serum bilirubin was normal; bromsulphalein retention was 40% in 45 minutes, and alkaline phosphatase was 9.6 Bodansky units. The VDRL was positive. Gastrointestinal radiographs showed a mass which stretched the duodenum and displaced the stomach anteriorly. The coeliac angiogram indicated a mass in the region of the pancreas (Fig. 8). Biopsy of a supraclavicular node and of the liver revealed caseating granuloma with acid fast bacilli. At laparotomy the ‘pancreatic’ mass proved to be a matted group of caseating retroperitoneal lymph nodes.

Displacement of the anterior pancreaticoduodenal artery is usually associated with pancreatic tumours, but also can be due to retroperitoneal lymphadenopathy.

for four months. The anorexia and weight loss were marked. He complained of constant mid-abdominal pain. In the left supraclavicular fossa, a 3 x 3 cm. firm lymph node (Virchow’s node) was found, and he also had a firm, fixed, painless epigastric mass. The haematocrit was 33%, serum albumin 2 g., and globulin 5:3 g. per 100 ml. The serum bilirubin was normal; bromsulphalein retention was 40% in 45 minutes, and alkaline phosphatase was 9.6 Bodansky units. The VDRL was positive. Gastrointestinal radiographs showed a mass which stretched the duodenum and displaced the stomach anteriorly. The coeliac angiogram indicated a mass in the region of the pancreas (Fig. 8). Biopsy of a supraclavicular node and of the liver revealed caseating granuloma with acid fast bacilli. At laparotomy the ‘pancreatic’ mass proved to be a matted group of caseating retroperitoneal lymph nodes.

Displacement of the anterior pancreaticoduodenal artery is usually associated with pancreatic tumours, but also can be due to retroperitoneal lymphadenopathy.

for four months. The anorexia and weight loss were marked. He complained of constant mid-abdominal pain. In the left supraclavicular fossa, a 3 x 3 cm. firm lymph node (Virchow’s node) was found, and he also had a firm, fixed, painless epigastric mass. The haematocrit was 33%, serum albumin 2 g., and globulin 5:3 g. per 100 ml. The serum bilirubin was normal; bromsulphalein retention was 40% in 45 minutes, and alkaline phosphatase was 9.6 Bodansky units. The VDRL was positive. Gastrointestinal radiographs showed a mass which stretched the duodenum and displaced the stomach anteriorly. The coeliac angiogram indicated a mass in the region of the pancreas (Fig. 8). Biopsy of a supraclavicular node and of the liver revealed caseating granuloma with acid fast bacilli. At laparotomy the ‘pancreatic’ mass proved to be a matted group of caseating retroperitoneal lymph nodes.

Displacement of the anterior pancreaticoduodenal artery is usually associated with pancreatic tumours, but also can be due to retroperitoneal lymphadenopathy.
below the costal margin and a periumbilical mass was thought to be present. Her haematocrit was 36% and stool guaiac was 4+. A barium enema showed a constricting lesion in the transverse colon close to the hepatic flexure. A mesenteric angiogram showed the vascular pattern of a colonic cancer (Figs. 9 and 10). Liver biopsy was not remarkable.

Selective catheterization of the superior mesenteric artery allowed the visualization of the distorted vascular pattern of cancer of the colon. At operation an adenocarcinoma of the colon was found in this region of the hepatic flexure. No metastasis was detectable. A curative resection of the tumour was performed.

CASE 23 E.M., a 76-year-old white woman, was studied because abdominal angina was suspected. Arteriography was attempted and the catheter was introduced into the abdominal aorta from both femoral arteries. Contrast material appeared each time in the aortic wall, demonstrating a dissecting aneurysm. Whether this lesion existed before the examination or was caused by the examination could not be determined with certainty.

DISCUSSION

The clinical use of selective abdominal angiography for the diagnosis of visceral diseases is still in its infancy, but selective catheterization of the major intra-abdominal branches of the aorta can be performed with safety and dispatch. The availability of new and non-irritating iodinated compounds permits the injection of large amounts of contrast material in the catheterized arteries with sufficient speed to visualize their branches and opacify the capillaries of the viscera which they supply as well as their venous drainage systems. Other than transient pain, no untoward reaction was observed after the repeated injections of sodium and methylglucamine (Renovist) totalling 100 ml. during a single examination.

The splenic artery is usually tortuous in patients with portal hypertension. However, we have found marked tortuosity of the splenic artery in patients with chronic pancreatitis in whom the spleen was not enlarged and liver function tests and liver biopsy showed no evidence of liver disease.

In the cirrhotic human liver post-mortem injection of contrast material in the portal or in the hepatic veins demonstrated abnormalities of hepatic venous pattern without significant abnormalities in the portal venous pattern (Galambos and Schlant, 1962), confirming previously reported observations that vascular abnormalities in the cirrhotic liver are confined primarily to the tributaries of the hepatic vein (Schlant et al., 1963). In this study the intrahepatic branches of the hepatic arterial system did not show a uniform pattern in the patients who had cirrhosis without hepatoma. Tortuosity and attenuation of the intrahepatic branches of the hepatic artery have been seen in some of these patients. The number of examinations of cirrhotic patients is not sufficient to give a reliable percentage figure. Tortuosity and attenuation of the intrahepatic branches of the hepatic artery were marked in one other patient with Cruveilhier-Baumgarten disease who had no morphological abnormality of the liver on three liver biopsies and at necropsy but had portal hypertension.

The visualization of the portal venous system in patients with portal hypertension may be of great clinical value. Many of the patients who would be candidates for percutaneous splenoportography cannot be examined either because of an increased bleeding tendency as a result of their liver disease, or because of previous splenectomy. In such patients it is possible to obtain delayed films after the injection of contrast material in the superior mesenteric artery or the coeliac axis in order to visualize the portal venous system. Selective splenic arteriography was recently shown to opacify adequately the portal vein (Pollard and Nebesar, 1964). The visualization of the portal vein through the splenic and superior mesenteric veins following the coeliac and superior mesenteric arteriography respectively is illustrated in Figures 3 and 4. In the latter case (Fig. 4), previous splenectomy and splenorenal anastomosis would have precluded percutaneous splenoportography.

Intrahepatic cancer has an arterial blood supply (Breedis and Young, 1949). Primary or metastatic carcinomas of the liver were consistently associated with distortion and tortuosity of the small hepatic arteries and showed increased vascularity in areas presumably containing tumour nodules. During the late capillary phase, the contrast material remained visible in small nodular areas giving rise to the descriptive term of 'tumour staining', which was not seen in the absence of intrahepatic cancer. Displacement of larger hepatic arterial branches was also associated with intrahepatic cancer.

Angiographic demonstration of an islet cell tumour and of a cystadenoma of the pancreas has been reported (Olsson, 1963; Swanson, 1963). Usually the gastroduodenal artery supplies the superior pancreatico-duodenal branch which divides into the inferior and posterior pancreatico-duodenal arteries. The corresponding inferior pancreatico-duodenal artery usually originates from the superior mesenteric artery; thus, a rich anastomosis exists between the coeliac axis and the superior mesenteric
artery in the pancreatic bed. A vascular arcade is formed between these arterial branches, and numerous interlobular arteries arise from it to form the intra-pancreatic plexus (Michels, 1955). Tumour of the pancreas is characterized by displacement of one or several of the arteries and/or veins which run close to the pancreas, and invasion of arteries or veins by tumour of the pancreas was observed in case 17 (Fig. 7). Displacement of the gastroduodenal or pancreatico-duodenal artery may be due to pancreatic tumour; however, a mass of caseating retroperitoneal lymph nodes did likewise; therefore, such displacement, however characteristic, is not pathognomonic of pancreatic cancer.

The distorted vascular pattern of a colonic cancer was documented in case 20 during superior mesenteric angiography (Figs. 9 and 10). Such a distortion of the vascular pattern has been described by Margulis and Heinbecker (1961). There was increase in the number of tortuous small vessels in the area of the tumour, branching usually at right angles instead of at the usual acute angles. There was also destruction of the normal vascular arcades in the tumour. Tumour staining was also observed in this colonic carcinoma. This term described the persistent opacification of the area of the tumour after the capillary phase faded in the normal, uninvolved colon.

In a few cases mesenteric arteriography has been performed in patients with ulcerative colitis, either just before colectomy or after the removal of the colon. Brown, Rankin, Meaney, and Turnbull (1964) found no specific vascular abnormalities in ulcerative colitis during selective mesenteric angiography. Margulis and Heinbecker (1961), on the other hand, observed tortuosity of the smaller vessels during pre-operative mesenteric angiography or on direct injection of the artery of surgical specimens. We have observed such distortion of the normal arcades supplying the rectosigmoid and sigmoid colon in a patient with chronic ulcerative colitis (case 2) on a selective inferior mesenteric angiogram.

Mesenteric arterial occlusion either by embolus or thrombosis can be demonstrated with selective angiography. However, the selective superior mesenteric angiogram appeared normal in a patient in whom a lateral aortogram demonstrated narrowing of the orifice of the superior mesenteric artery (Galambo, 1965). At surgery a large atheromatous plaque occluded partially the first 2 cm. of the lumen of the superior mesenteric artery. Selective arteriography cannot outline the most proximal portion of the artery in which the catheter is inserted but narrowing of the arterial orifice can best be documented by placing the catheter in the aorta just proximal to the arterial orifice during the rapid injection of contrast material and making lateral exposures.

It has been claimed that selective intra-abdominal angiography is capable of localizing gastrointestinal bleeding sites (Margulis, Heinbecker, and Bernard, 1960), which have been observed by Baum, Nusbaum Clearfield, and Tumer (1964) in patients with the Mallory-Weiss syndrome, bleeding gastric ulcer, and incomplete rupture of the spleen. In our study the bleeding site has not been identified with selective coeliac angiography in the two patients who were examined because of gastrointestinal bleeding. One of the patients had a gastric ulcer, but no demonstrable gastrointestinal pathology was found on radiological and endoscopic examinations of the other. In some patients intense mucosal opacification was seen in the gastric fundus, antrum, small intestine, and/or gall bladder. The physiological mechanism responsible for these findings in some but not in most of our patients is currently under investigation.

DANGEROUS SIDE EFFECTS OF THE PROCEDURE

The equipment must be examined carefully before it is used for selective angiography. Guides and catheters must be repeatedly autoclaved. We found it preferable to discard these after a few examinations in order to avoid their breaking in the aorta and the necessity for subsequent surgical exploration to remove fragments of guide or catheter. Such accidents did not occur during the examination of the 44 patients who are reported in this paper, but have been observed by others.

In selected patients selective intra-abdominal angiography may give valuable information. The performance of this procedure, however, must not be taken lightly as femoral artery thrombosis occurred twice in these 44 patients. Though it might be a coincidence, both of these patients had ulcerative colitis. One of these patients had intermittent claudication and decreased femoral arterial pulsation before the angiography, and despite two operative interventions, gangrene of the foot ensued. In the second case thrombectomy was successful in re-establishing normal femoral blood flow. Bleeding from the arterial puncture site can occur after the procedure and haematomata formed in three patients. The pain that was produced by the rapid injection of contrast material in the catheterized artery was transient and persisted no more than a few seconds. There was no untoward reaction attributable to the injection of large amounts of contrast material.

SUMMARY

Selective abdominal angiography has been performed
in 44 patients, in several of them giving more than one arterial injection. Thrombosis of the femoral artery occurred in two patients and haematoma developed in three. The artery could not be entered in four and the examination was unsatisfactory because of mechanical failure of the equipment in one case.

This procedure was well tolerated by clinically ill patients. Cancers in the liver were consistently identified correctly. The procedure has demonstrated mass formation in the pancreas, distorted arterial pattern associated with chronic pancreatitis, with cancer of the colon and with cirrhosis of the liver, and primary vascular lesions of the abdominal viscera. During the venous phase the mesenteric or splenic and portal veins were satisfactorily visualized. Patients with decreased or absent femoral pulsation should not be candidates for this procedure.

Since the completion of this manuscript, Nebesar, Pollard, Edmunds, and McKhann (1964) reported their experience with selective abdominal angiography which was similar to that reported in this communication.

We wish to express our thanks for the art work to Dr. McClaren Johnson, Jr., and to Dr. H. Stephen Weens and Dr. Wade Shuford for their guidance.

This study was supported in part by United States Public Health Service Training Grant 2A-5151 and American Cancer Society Research Grant T308.

REFERENCES

