Selective abdominal angiography

M. J. LAURIJSSENS1 AND JOHN T. GALAMBOS

From the Department of Medicine, Section of Gastroenterology, Emory University School of Medicine, and the Medical Service, Grady Memorial Hospital, Atlanta, Georgia, U.S.A.

EDITORIAL SYNOPSIS This paper illustrates the value of carefully siting the tip of the intra-aortic catheter adjacent to the artery supplying the organ about which more information is required. Cancers in the liver were consistently identified correctly, and useful information has been obtained contributing to the diagnosis of pancreatic tumours, chronic pancreatitis, cirrhosis of the liver, cancer of the colon, and visceral vascular disease.

Angiography of the abdominal viscera can give diagnostic information in selected patients and the value of percutaneous splenoportography has been well established (Steiner, Sherlock, and Turner, 1957). The diagnostic usefulness of hepatic venography is currently being evaluated at this institution. This procedure has been shown to define diagnostic abnormalities in the presence of cirrhosis or tumour in the human liver (Schlant, Galambos, Shuford, Rawls, Winter, and Edwards, 1963). The hepatic artery has been visualized both by direct needle puncture during laparotomy and also by retrograde catheterization (Farinas, 1946). Ödman (1958, 1959) has shown that selective catheterization of the coeliac artery allowed the visualization not only of the hepatic arterial system but also that of the spleen, stomach, and of the pancreas.

Selective abdominal angiography recently became the subject of studies in several institutions (Boijsen, Ekman, and Olin, 1963; Acker, Galambos, and Weens, 1964; and Glenn, Evans, Halpern, and Thorbjarnarson, 1964). A preliminary report from this institution was based on 19 patients and it described six types of cases in which selective coeliac arteriography was of diagnostic value (Acker et al., 1964). Selective abdominal angiography in the study of vascular diseases of the abdominal viscera was recently reviewed (Galambos, 1965). The present report describes the diagnostic value and the dangers of selective abdominal angiography in 44 studies, and 25 patients not previously described are reported.

TECHNIQUE

The patients were premedicated with hydroxyzine pamoate (Vistaril), 50 mg. intramuscularly, and meperidine (Demerol), 75 mg. intravenously, just before the procedure. Local anaesthesia was used after routine skin preparation over the femoral artery. A flexible spring wire was inserted through a Cournand needle into the femoral artery, and it was passed under television image amplification control into the abdominal aorta. The Cournand needle was removed and a flexible Odman-Ledin radiopaque polyethylene catheter with a pre-moulded tip was passed over the flexible spring guide wire. Great care was taken not to stretch the distal curvature on the catheter as it was placed on the guide wire and as it was passed through the skin into the arterial lumen. The catheter was advanced to the appropriate level in the aorta depending upon the artery which was to be catheterized. For the coeliac artery, for example, the catheter was advanced to the twelfth thoracic vertebra. The guide wire was gradually withdrawn, the tip of the catheter was rotated anteriorly and turned slightly to the left side and moved down until the tip entered the coeliac artery. On the anterior-posterior view, the orifice of the coeliac artery was usually between the twelfth thoracic and first lumbar vertebrae, the extremes ranging between the bodies of the twelfth thoracic and first lumbar vertebrae. Usually the catheter could not be passed more than 5 cm. into the arterial lumen. The movement of the radiopaque catheter during respiration was greater in the superior mesenteric artery than in the coeliac artery. During the manoeuvering of the catheter and between test injections, the catheter was frequently flushed with heparinized saline to prevent clotting. In order to ascertain the location of the catheter, test injections of 2 ml. diatrizoate sodium and methylglucamide (Renovist) were made repeatedly. Because of these injections a renal pyelogram was usually obtained before angiography.

After the test injections had confirmed the proper location of the catheter, the patient was placed in a supine position on a rapid film changer. Forty ml. of contrast material was injected in three seconds. Transient periumbilical pain was experienced by the patients during the few seconds of rapid injection, but no other side effects were attributable to the rapid injection. (Multiple side perforations in addition to the usual opening at the

1Present address: Vijfstrassen, 162 Sint Niklaas, Waas, Belgium.
The catheter tip of the catheter were essential to prevent the catheter from sliding out of the artery into the aorta during the rapid, forceful injection of the contrast material. The frequency and duration of the exposures varied depending on the purpose of the study. When visualization of only the arterial system was required, 13 seconds total exposure time was adequate. On the other hand, exposures of up to 37 seconds have been used for the visualization of the portal circulation. In general, the exposures were two per second for three seconds, one per second for three additional seconds, and one every other second thereafter. The catheter was retained in its position until the films were developed and repeated injection either in the same artery or in another vessel was made when indicated.

Nineteen patients were reported earlier (Acker et al., 1964). Twenty-five additional patients are briefly described in Table I. Five of these patients had metastatic cancer to the liver, two had primary hepatoma with cirrhosis, four had cirrhosis of the liver, four had chronic pancreatitis with pancreatic insufficiency (one of these also had cirrhosis of the liver), one had pancreatic carcinoma and one had a retroperitoneal mass in the region of the pancreas, two had gastrointestinal bleeding, the source of which in one of these patients was undetermined, one had colonic cancer, one had a small gastric cancer, one had ulcerative colitis, one had a bile duct haematoma, and one had Cruveilhier-Baumgarten

TABLE

SUMMARY OF 25 CASES IN PRESENT SERIES

<table>
<thead>
<tr>
<th>Patient and Number</th>
<th>Age</th>
<th>Sex</th>
<th>Clinical History</th>
<th>Diagnosis</th>
<th>Angiographic Findings</th>
<th>Complications</th>
<th>Other Findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 H.J., C11137</td>
<td>77</td>
<td>M</td>
<td>Chronic alcoholic; weakness; jaundice; large, hard, tender liver</td>
<td>Hepatoma</td>
<td>Abnormal vascular pattern of liver; tumour staining</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>2 C.J., C50403</td>
<td>67</td>
<td>G</td>
<td>Asymptomatic; abdominal mass; weight loss</td>
<td>Bile duct hamartoma (cyst)</td>
<td>Unsuccessful</td>
<td>Haematoma</td>
<td>None</td>
</tr>
<tr>
<td>3 J.K., C163206</td>
<td>64</td>
<td>M</td>
<td>Weakness; anorexia; weight loss</td>
<td>Metastatic cancer to liver</td>
<td>Unsuccessful</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>4 R.M., C64841</td>
<td>76</td>
<td>M</td>
<td>Loss of appetite; abdominal pain for three weeks; hepatomegaly</td>
<td>Bronchogenic carcinoma with liver metastasis</td>
<td>Tumour staining in liver; distortion of branches of hepatic arteries</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>5 R.A., C125689</td>
<td>32</td>
<td>M</td>
<td>Abdominal pain; diarrhoea; diabetes and malabsorption</td>
<td>Chronic pancreatitis; malnutrition</td>
<td>Honeycomb pattern of liver</td>
<td>None</td>
<td>Pancreatic calcification</td>
</tr>
<tr>
<td>6 J.S., C11934</td>
<td>64</td>
<td>M</td>
<td>Weakness; anorexia; hepatomegaly</td>
<td>Colonic carcinoma with metastasis to liver</td>
<td>Unsuccessful</td>
<td>None</td>
<td>Biopsy; metastatic adenocarcinoma</td>
</tr>
<tr>
<td>7 G.B., C159941</td>
<td>63</td>
<td>M</td>
<td>Vomiting; abdominal pain; hepatomegaly</td>
<td>Colonic carcinoma with metastasis to liver</td>
<td>Distortion and irregularities of finer branches of hepatic artery</td>
<td>None</td>
<td>Liver biopsy; adenocarcinoma</td>
</tr>
<tr>
<td>8 W.G., W77723</td>
<td>58</td>
<td>M</td>
<td>Chronic alcoholism; portal hypertension with bleeding oesophageal varices; hepatic coma</td>
<td>Cirrhosis</td>
<td>Distortion of third order branches of hepatic artery; opacification of portal vein</td>
<td>None</td>
<td>Liver biopsy; cirrhosis</td>
</tr>
<tr>
<td>9 M.E., C106201</td>
<td>75</td>
<td>F</td>
<td>Vague epigastric discomfort; weight loss; hepatomegaly</td>
<td>Adenocarcinoma of colon with liver metastasis</td>
<td>Displacement of coeliac axis and distortion of finer branches of hepatic artery</td>
<td>None</td>
<td>Liver biopsy; metastatic adenocarcinoma; H.Ph.S.; cold nodules</td>
</tr>
<tr>
<td>10 J.M., C133904</td>
<td>63</td>
<td>M</td>
<td>Increasing weakness; weight loss; anorexia; generalized abdominal pain</td>
<td>Gastric carcinoma</td>
<td>Normal coeliac angiogram</td>
<td>None</td>
<td>Biopsy: normal liver gastric cytology; papillary adenocarcinoma; laparotomy</td>
</tr>
<tr>
<td>11 A.G., C5556</td>
<td>37</td>
<td>F</td>
<td>Chronic alcoholic; abdominal pain; subtotal gastrectomy; pancreatic pseudocyst; cholecystectomy</td>
<td>Chronic relapsing pancreatitis</td>
<td>Abnormal arterial pattern</td>
<td>Arteriospasm of femoral artery</td>
<td>Pancreatic insufficiency by secretin test</td>
</tr>
<tr>
<td>12 J.B., W23223</td>
<td>46</td>
<td>M</td>
<td>Chronic alcoholic; epigastric pain</td>
<td>Subacute hepatic necrosis with post-necrotic cirrhosis</td>
<td>Mechanical failure of x-ray equipment</td>
<td>None</td>
<td>Liver biopsy; subacute hepatic necrosis with early cirrhosis</td>
</tr>
</tbody>
</table>

1H.Ph.S. = Hepatic photoscan following Au**198** colloidal gold. 2Unsuccessful = Could not catheterize the coeliac artery.
Selective abdominal angiography

TABLE continued

SUMMARY OF 25 CASES IN PRESENT SERIES

<table>
<thead>
<tr>
<th>Patient and Number</th>
<th>Age</th>
<th>Sex</th>
<th>Clinical History</th>
<th>Diagnosis</th>
<th>Angiographic Findings</th>
<th>Complications</th>
<th>Other Findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>13 B.B. W22902</td>
<td>72</td>
<td>M</td>
<td>Epigastric pain; weight loss; reflux oesophagitis</td>
<td>Malabsorption due to chronic pancreatitis</td>
<td>Tortuosity of splenic artery; abnormal vascularization of pancreas</td>
<td>None</td>
<td>Normal liver biopsy; normal oesophagoscopy; abnormal fat absorption</td>
</tr>
<tr>
<td>14 G.W. C138371</td>
<td>34</td>
<td>M</td>
<td>Haematemesis; melaena</td>
<td>Gastrointestinal bleeding of undetermined cause</td>
<td>Normal coeliac arteriogram</td>
<td>None</td>
<td>Necropsy not permitted; uraemia</td>
</tr>
<tr>
<td>15 J.G. W55200</td>
<td>43</td>
<td>M</td>
<td>Chronic alcoholism; jaundice; epigastric pain</td>
<td>Upper gastrointestinal bleeding; gastric ulcer</td>
<td>Normal coeliac arteriogram</td>
<td>None</td>
<td>Liver biopsy; mild, non-specific changes</td>
</tr>
<tr>
<td>16 J.F. C12632</td>
<td>42</td>
<td>F</td>
<td>Chronic alcoholism; ascites; loss of weight; steatorrhoea</td>
<td>Cirrhosis; chronic pancreatitis; malabsorption</td>
<td>Normal coeliac arteriogram</td>
<td>Haematomata</td>
<td>Liver biopsy; septal cirrhosis</td>
</tr>
<tr>
<td>17 E.H. C10080</td>
<td>54</td>
<td>F</td>
<td>Epigastric pain; jaundice</td>
<td>Portal hypertension of unknown aetiology</td>
<td>Oclusion of hepatic artery and portal vein</td>
<td>None</td>
<td>Laparotomy and biopsy</td>
</tr>
<tr>
<td>18 V.P. W231239</td>
<td>54</td>
<td>F</td>
<td>Portal hypertension; splenectomy; splenorenal shunt; ascites; hepatic coma; 'cirrhotic' nephropathy and morphologically normal liver. Large, patent umbilical vein</td>
<td>Portal hypertension of unknown aetiology</td>
<td>Distortion and tortuosity of branches of hepatic artery, normal portal vein; normal hepatic vein</td>
<td>None</td>
<td>Biopsy (3 occasions): normal liver; necropsy normal small liver, portal vein—umbilical vein anastomosis</td>
</tr>
<tr>
<td>19 J.T. C30717</td>
<td>59</td>
<td>M</td>
<td>Right flank pain; weight loss; massive hepatomegaly with systolic bruit</td>
<td>Hepatoma</td>
<td>Displacement of hepatic vessels by tumour</td>
<td>None</td>
<td>H.Ph.S.; cold nodules in right lobe of liver, biopsy: hepatoma</td>
</tr>
<tr>
<td>20 P.F. C55505</td>
<td>69</td>
<td>F</td>
<td>Pneumonia; hepatomegaly; anaemia; peri-umbilical mass</td>
<td>Carcinoma of colon (hepatic flexure)</td>
<td>Superior mesenteric angiogram; tumour staining</td>
<td>None</td>
<td>Biopsy; normal liver, H.Ph.S.: normal</td>
</tr>
<tr>
<td>21 J.B. W60317</td>
<td>50</td>
<td>M</td>
<td>Ten mth. history of diarrhoea; chronic ulcerative colitis</td>
<td>Active ulcerative colitis</td>
<td>Distortion of small vascular pattern of colon</td>
<td>Thrombosis of femoral artery</td>
<td>Ulcerative colitis (granulomatous) by biopsy</td>
</tr>
<tr>
<td>22 A.M. W63070</td>
<td>70</td>
<td>M</td>
<td>Cirrhosis with portal hypertension; hepatic coma precipitated by bleeding varices</td>
<td>Cirrhosis</td>
<td>Abnormally tortuous small hepatic arteries; increased capillary opacity at cholecysectomy site</td>
<td>Haematomata</td>
<td>Biopsy; cirrhosis</td>
</tr>
<tr>
<td>23 E.M. W16459</td>
<td>76</td>
<td>F</td>
<td>Postprandial abdominal pain, malabsorption, weight loss</td>
<td>Suspected abdominal angina</td>
<td>Dissecting aneurysm</td>
<td>?</td>
<td></td>
</tr>
<tr>
<td>24 W.H. W32716</td>
<td>50</td>
<td>M</td>
<td>Periumbilical attacks of postprandial pain</td>
<td>Suspected mesenteric artery obstruction</td>
<td>Normal superior mesenteric angiogram</td>
<td>None</td>
<td>Large atheroma at orifice of superior mesenteric artery</td>
</tr>
<tr>
<td>25 C.D. C61566</td>
<td>64</td>
<td>M</td>
<td>Weight loss; abdominal pain; hepatomegaly; epigastric mass</td>
<td>Disseminated lymphogranular tuberculosis pancreato-duodenal artery</td>
<td>Displacement of</td>
<td>None</td>
<td>Laparotomy retroperitoneal mass of of casing lymph nodes</td>
</tr>
</tbody>
</table>

In two patients primary vascular disease was suspected before the study. One of these had thrombosis of a branch of the inferior mesenteric artery and one patient was suspected of having abdominal angina due to mesenteric artery occlusion.

RESULTS

To date we have performed 44 selective coeliac, superior or inferior mesenteric arteriographies. Nineteen of these coeliac arteriograms were reported previously (Acker et al., 1964). Twenty-five additional cases are described in this report. In four patients we have been unable to catheterize the artery of choice. In one case the examination was unsatisfactory because of mechanical failure of the equipment. This compares with about 20% failures noted by Ödman (1958) who performed 61 examinations on 58 patients and was unable to enter the coeliac artery in 12 of these examinations.

Normal coeliac angiograms are illustrated in Figures 1, 2, and 3. During the arterial phase (Fig. 1), the splenic, the left gastric, and the common hepatic arteries were well outlined as they usually originated from the coeliac axis. The gastroduodenal and the right gastric arteries usually originated from the common hepatic artery. The left gastroepiploic artery usually came from the splenic artery, and it anastomosed with the right gastroepiploic artery which was a branch of the gastroduodenal artery.
The cystic artery or arteries came from the right hepatic or the superior pancreatico-duodenal artery, a branch of the gastroduodenal artery.

Variations of the origin of the major branches of these arteries were commonly seen. Often the hepatic artery originated from the superior mesentery rather than from the coeliac axis. Anastomoses between the branches of the coeliac axis and the superior mesenteric artery were often prominent.

During the capillary phase (Fig. 2), the opacification of the mucosa of the stomach, gall bladder, duodenum, or intestine was readily apparent in

FIG. 1. Normal coeliac angiogram; L. Hep = left hepatic artery; R. Hep = right hepatic artery; Hep. = hepatic artery; C.A. = coeliac axis; L.G. = left gastric artery; Cyst = cystic artery; P-D = pancreatico-duodenal; R.G.-E = right gastroepiploic; L.G.-E = left gastroepiploic; Sp. = splenic.

FIG. 2. Capillary phase of Figure 1. The rugal folds of the gastric mucosa are outlined in the area of the gastric air bubble. The fundus is densely opacified. The gall bladder is well defined and its uniformly thin normal wall is readily seen. The draining veins begin to opacify at this stage.

FIG. 3. The venous phase of Figure 1. The mucosal opacification has faded at this stage though the gastric fundus is still dense. The draining veins are filled now with contrast material. The splenic vein (↓) crosses behind the stomach and it is partially obscured by it. The portal vein (↑) is well outlined as it emerges in front of and to the right of the first lumbar vertebra. Its intrahepatic branches can be seen though they are obscured by the diffuse opacification of the liver. The gastroepiploic veins (→) are well outlined.
some but not all cases. The appearance of the viscera at this stage resembled a very fine barium coating of its mucosa.

During the venous phase, the draining veins were opacified. At this stage the portal vein was well defined together with the splenic (Fig. 3) or the superior mesenteric vein (Fig. 4) during selective coeliac or superior mesenteric angiography, respectively. The portal vein usually was better opacified after selective superior mesenteric than coeliac angiography. The inferior mesenteric veins were well visualized after inferior selective mesenteric angiography.

ILLUSTRATIVE EXAMPLES

CASE 9 M.E., a 75-year-old coloured woman, was admitted to hospital because of weight loss, malaise, and increasing anorexia. She had nausea but no vomiting. About one year before admission her bowel habits changed and she developed severe constipation progressively. The liver was enlarged. A rounded, ill-defined mass was palpated in the right lobe of the liver. There was a systolic bruit over this area. The spleen was not palpable.

No other abdominal masses were felt. A moderate amount of ascites was present. Barium enema demonstrated a suspicious lesion in the caecum. Coeliac angiography demonstrated the features of metastatic tumour in the liver (Fig. 5). A hepatic photoscan showed a large 'cold' nodule in the right lobe of the liver, and needle aspiration biopsy of the liver confirmed the presence of metastatic adenocarcinoma.

The characteristic features of vascular abnormalities caused by metastatic carcinoma in the liver were the distortion and displacement of small hepatic vessels, and 'tumour staining' due to opacification of the large number of tortuous small vessels in the tumour nodules.

CASE 2 A.G., a 37-year-old coloured woman, was a heavy consumer of various spirits. She had previously been admitted to hospital on several occasions because of chronic relapsing pancreatitis; for cholecystectomy and sphincterotomy; because of a pseudocyst of the pancreas which was drained into the stomach; and because of a bleeding gastric ulcer which was treated by subtotal gastrectomy. She was admitted on this occasion because of chronic pancreatitis and pancreatic insufficiency.

Physical examination revealed a malnourished woman with no additional significant physical abnormalities other than several healed operative incisions on her abdomen. Selective coeliac angiography was performed to study the vascular pattern of the pancreas in a patient with well-documented episodes of pancreatitis and previous gastric and biliary surgery (Figs. 6a and b).
FIG. 6a and b. Superior mesenteric angiogram. The catheter is in the aorta with its tip in the superior mesenteric artery. The contrast material opacifies the branches of this artery without reflux into the aorta. The first major branch of the superior mesenteric artery is the hepatic artery which communicates via a large anastomotic vessel with the coeliac axis. This anastomotic vessel comes off the hepatic artery and follows the course of the gastroduodenal artery. Behind the hepatic artery this vessel joins a tortuous artery which follows the course of the pancreatico-duodenal artery and runs caudad along the right side of the vertebral column and divides into an abnormal arterial network. The normal pancreatic vessels are not seen. The coeliac axis and its two branches, the splenic artery and the ligated left gastric artery, are well visualized.

This case illustrates an abnormal arterial grouping in the region of the head of the pancreas and non-visualization of the normal pancreatic vessels in a patient with recurrent pancreatitis. It also demonstrates the simultaneous opacification of the superior mesenteric and coeliac arterial branches through the large anastomotic gastroduodenal artery.

FIG. 7. Coeliac angiogram. The coeliac axis is pushed to the left and the course of the gastroduodenal artery (←) is distorted, the hepatic artery is tortuous and occluded (↑). There are several large anastomotic arteries from the splenic and left gastric to the hepatic artery and to some of its branches beyond the point of occlusion. (Subsequent exposures also demonstrated the occlusion of the portal vein without prominent collateral veins.)

CASE 17 H.E., a 54-year-old coloured woman, was admitted to hospital because of vomiting, epigastric pain, weight loss, malaise, and jaundice. She had an enlarged, firm liver, but neither the gall bladder nor the spleen were enlarged. Serum bilirubin was 21 mg. % per 100 ml., and the alkaline phosphatase 40 Bodansky units, thymol turbidity 8.2 units. The serum albumin was 3.5 g. and total globulin 2.8 g. per 100 ml. Selective coeliac angiography was performed to identify the suspected carcinoma in the head of the pancreas (Fig. 7).

At exploratory laparotomy, a tumour mass was found in the head of the pancreas, and a transduodenal needle biopsy confirmed the diagnosis of adenocarcinoma. Vascular invasion was confirmed. A palliative cholecysto-jejunostomy was performed.

Displacement of the gastroduodenal artery is indicative of an enlargement of or a mass in the region of the head of the pancreas. Arterial and venous invasion of a pancreatic carcinoma can be demonstrated by this method. There was no evidence for any ischaemic liver injury despite the occlusion of both the hepatic artery and portal vein. Arterial blood perfused the liver, however. This was indicated by the delayed opacification of the branches of the right and left hepatic arteries. The absence of prominent venous collaterals suggests that the portal vein only recently was occluded.

CASE 25 D.C., a 64-year-old coloured man, was admitted because of epigastric pain, weight loss, and night sweats
for four months. The anorexia and weight loss were marked. He complained of constant mid-abdominal pain. In the left supraclavicular fossa, a 3 × 3 cm. firm lymph node (Virchow’s node) was found, and he also had a firm, fixed, painless epigastric mass. The haematocrit was 33%, serum albumin 2 g., and globulin 5.3 g. per 100 ml. The serum bilirubin was normal; bromsulphalein retention was 40% in 45 minutes, and alkaline phosphatase was 9.6 Bodansky units. The VDRL was positive. Gastrointestinal radiographs showed a mass which stretched the duodenum and displaced the stomach anteriorly. The coeliac angiogram indicated a mass in the region of the pancreas (Fig. 8). Biopsy of a supraclavicular node and of the liver revealed caseating granuloma with acid fast bacilli.

At laparotomy the ‘pancreatic’ mass proved to be a matted group of caseating retroperitoneal lymph nodes.

Displacement of the anterior pancreaticoduodenal artery is usually associated with pancreatic tumours, but also can be due to retroperitoneal lymphadenopathy.

Case 20

P.F., a 69-year-old coloured woman, was admitted to hospital because of acute pneumonia. During routine physical examination the liver was palpated 3 cm.

FIG. 8. Coeliac angiogram. The catheter is in the aorta with its tip in the coeliac axis which divides into the splenic and hepatic arteries. The first major branch of the hepatic artery is the gastroduodenal artery which runs caudal to the right of the eleventh and twelfth thoracic vertebrae and divides into several branches just above the first lumbar vertebra (L1). One of these branches, the anterior pancreaticoduodenal artery (\(\uparrow\)) is displaced to the right by a mass in the region of the head of the pancreas.

FIG. 9. Superior mesenteric angiogram. The catheter is in the aorta and its distal 5 cm. is in the superior mesenteric artery. The first branch of this artery is the hepatic artery. The branches to the small intestine are coming off on the left crossing the radio-opaque catheter. The second major branch on the right is the right coeliac artery which supplies the hepatic flexure of the colon and gives off a large branch which anastomosed with the ileocolic artery (\(\leftarrow\rightarrow\)). The carcinoma of the colon overlies the lower pole of the right kidney. During the arterial phase the marked distortion of the arcuate branches is prominent near the cancer (\(\uparrow\)).

FIG. 10. Closer view of Figure 9 during the late capillary phase demonstrating the intense tumour staining of the colonic cancer. (Dotted line describes the lower pole of the right kidney.) The draining veins begin to opacify (\(\downarrow\)). Tumour staining in the area of regional lymph nodes is not observed. The renal pelvis and ureter are well outlined.
below the costal margin and a periumbilical mass was thought to be present. Her haematocrit was 36% and stool guaiac was 4+. A barium enema showed a constricting lesion in the transverse colon close to the hepatic flexure. A mesenteric angiogram showed the vascular pattern of a colonic cancer (Figs. 9 and 10). Liver biopsy was not remarkable.

Selective catheterization of the superior mesenteric artery allowed the visualization of the distorted vascular pattern of cancer of the colon. At operation an adenocarcinoma of the colon was found in this region of the hepatic flexure. No metastasis was detectable. A curative resection of the tumour was performed.

CASE 23 E.M., a 76-year-old white woman, was studied because abdominal angina was suspected. Arteriography was attempted and the catheter was introduced into the abdominal aorta from both femoral arteries. Contrast material appeared each time in the aortic wall, demonstrating a dissecting aneurysm. Whether this lesion existed before the examination or was caused by the examination could not be determined with certainty.

DISCUSSION

The clinical use of selective abdominal angiography for the diagnosis of visceral diseases is still in its infancy, but selective catheterization of the major intra-abdominal branches of the aorta can be performed with safety and dispatch. The availability of new and non-irritating iodinated compounds permits the injection of large amounts of contrast material in the catheterized arteries with sufficient speed to visualize their branches and opacify the capillaries of the viscera which they supply as well as their venous drainage systems. Other than transient pain, no untoward reaction was observed after the repeated injections of sodium and methylglucamine (Renovist) totalling 100 ml. during a single examination.

The splenic artery is usually tortuous in patients with portal hypertension. However, we have found marked tortuosity of the splenic artery in patients with chronic pancreatitis in whom the spleen was not enlarged and liver function tests and liver biopsy showed no evidence of liver disease.

In the cirrhotic human liver post-mortem injection of contrast material in the portal or in the hepatic veins demonstrated abnormalities of hepatic venous pattern with significant abnormalities in the portal venous pattern (Galambos and Schlant, 1962), confirming previously reported observations that vascular abnormalities in the cirrhotic liver are confined primarily to the tributaries of the hepatic vein (Schlant et al., 1963). In this study the intrahepatic branches of the hepatic arterial system did not show a uniform pattern in the patients who had cirrhosis without hepatoma. Tortuosity and attenuation of the intrahepatic branches of the hepatic artery have been seen in some of these patients. The number of examinations of cirrhotic patients is not sufficient to give a reliable percentage figure. Tortuosity and attenuation of the intrahepatic branches of the hepatic artery were marked in one other patient with Cruveilhier-Baumgarten disease who had no morphological abnormality of the liver on three liver biopsies and at necropsy but had portal hypertension.

The visualization of the portal venous system in patients with portal hypertension may be of great clinical value. Many of the patients who would be candidates for percutaneous splenoportography cannot be examined either because of an increased bleeding tendency as a result of their liver disease, or because of previous splenectomy. In such patients it is possible to obtain delayed films after the injection of contrast material in the superior mesenteric artery or the coeliac axis in order to visualize the portal venous system. Selective splenic arteriography was recently shown to opacify adequately the portal vein (Pollard and Nebesar, 1964). The visualization of the portal vein through the splenic and superior mesenteric veins following the coeliac and superior mesenteric arteriography respectively is illustrated in Figures 3 and 4. In the latter case (Fig. 4), previous splenectomy and splenorenal anastomosis would have precluded percutaneous splenoportography.

Intrahepatic cancer has an arterial blood supply (Breedis and Young, 1949). Primary or metastatic carcinomas of the liver were consistently associated with distortion and tortuosity of the small hepatic arteries and showed increased vascularity in areas presumably containing tumour nodules. During the late capillary phase, the contrast material remained visible in small nodular areas giving rise to the descriptive term of ‘tumour staining’, which was not seen in the absence of intrahepatic cancer. Displacement of larger hepatic arterial branches was also associated with intrahepatic cancer.

Angiographic demonstration of an islet cell tumour and of a cystadenoma of the pancreas has been reported (Olsson, 1963; Swanson, 1963). Usually the gastroduodenal artery supplies the superior pancreatico-duodenal branch which divides into the inferior and posterior pancreatico-duodenal arteries. The corresponding inferior pancreatico-duodenal artery usually originates from the superior mesenteric artery; thus, a rich anastomosis exists between the coeliac axis and the superior mesenteric
Selectively abdominal angiography

485

artery in the pancreatic bed. A vascular arcade is
formed between these arterial branches, and numer-
ous interlobular arteries arise from it to form the
intra-pancreatic plexus (Michels, 1955). Tumour of
the pancreas is characterized by displacement of
one or several of the arteries and/or veins which
run close to the pancreas, and invasion of arteries
or veins by tumour of the pancreas was observed in
case 17 (Fig. 7). Displacement of the gastroduodenal
or pancreatico-duodenal artery may be due to
pancreatic tumour; however, a mass of casing orifical nodes did likewise; therefore,
such displacement, however characteristic, is not
pathognomonic of pancreatic cancer.

The distorted vascular pattern of a colonic cancer
was documented in case 20 during superior mesen-
teric angiography (Figs. 9 and 10). Such a distortion of the vascular pattern has been described by
Margulis and Heinbecker (1961). There was
increase in the number of tortuous small vessels in
the area of the tumour, branching usually at right
angles instead of at the usual acute angles. There
was also destruction of the normal vascular arcades
in the tumour. Tumour staining was also observed
in this colonic carcinoma. This term described the
persistent opacification of the area of the tumour
after the capillary phase faded in the normal,
uninvolved colon.

In a few cases mesenteric arteriography has been
performed in patients with ulcerative colitis, either
just before colectomy or after the removal of the
colon. Brown, Rankin, Meaney, and Turnbull
(1964) found no specific vascular abnormalities in
ulcerative colitis during selective mesenteric angi-
ography. Margulis and Heinbecker (1961), on the
other hand, observed tortuosity of the smaller
vessels during pre-operative mesenteric angiography
or on direct injection of the artery of surgical
specimens. We have observed such distortion of the
normal arcades supplying the rectosigmoid and
sigmoid colon in a patient with chronic ulcerative
colitis (case 2) on a selective inferior mesenteric
angiogram.

Mesenteric arterial occlusion either by embolus
or thrombosis can be demonstrated with selective
angiography. However, the selective superior mesen-
teric angiogram appeared normal in a patient in
whom a lateral aortogram demonstrated narrowing of
the orifice of the superior mesenteric artery (Galam-
bose, 1965). At surgery a large atheromatous plaque
occluded partially the first 2 cm. of the lumen of the
superior mesenteric artery. Selective arteriogra-
phy cannot outline the most proximal portion of the
artery in which the catheter is inserted but narrow-
ing of the arterial orifice can best be documented by
placing the catheter in the aorta just proximal to
the arterial orifice during the rapid injection of
contrast material and making lateral exposures.

It has been claimed that selective intra-abdominal
angiography is capable of localizing gastrointestinal
bleeding sites (Margulis, Heinbecker, and Bernard,
1960), which have been observed by Baum, Nusbaum
Clearfield, and Tumer (1964) in patients with the
Mallory-Weiss syndrome, bleeding gastric ulcer,
and incomplete rupture of the spleen. In our study
the bleeding site has not been identified with
selective coeliac angiography in the two patients who
were examined because of gastrointestinal bleeding.
One of the patients had a gastric ulcer, but no
demonstrable gastrointestinal pathology was found
radiologically and endoscopic examinations of the
other. In some patients intense mucosal opacification
was seen in the gastric fundus, antrum, small
intestine, and/or gall bladder. The physiological
mechanism responsible for these findings in some but
not in most of our patients is currently under
investigation.

DANGEROUS SIDE EFFECTS OF THE PROCEDURE

The equipment must be examined carefully before
it is used for selective angiography. Guides and
catheters must be repeatedly autoclaved. We found
it preferable to discard these after a few examina-
tions in order to avoid their breaking in the aorta
and the necessity for subsequent surgical exploration
to remove fragments of guide or catheter. Such
accidents did not occur during the examination of
the 44 patients who are reported in this paper, but
have been observed by others.

In selected patients selective intra-abdominal
angiography may give valuable information. The
performance of this procedure, however, must not
be taken lightly as femoral artery thrombosis occurred
twice in these 44 patients. Though it might be a
coincidence, both of these patients had ulcerative
colitis. One of these patients had intermittent
claudication and decreased femoral arterial pulsation
before the angiography, and despite two operative
interventions, gangrene of the foot ensued. In the
second case thrombectomy was successful in re-
establishing normal femoral blood flow. Bleeding
from the arterial puncture site can occur after the
procedure and haematoma formed in three patients.
The pain that was produced by the rapid injection of
contrast material in the catheterized artery was
transient and persisted no more than a few seconds.
There was no untoward reaction attributable to the
injection of large amounts of contrast material.

SUMMARY

Selective abdominal angiography has been performed
in 44 patients, in several of them giving more than one arterial injection. Thrombosis of the femoral artery occurred in two patients and haematoma developed in three. The artery could not be entered in four and the examination was unsatisfactory because of mechanical failure of the equipment in one case.

This procedure was well tolerated by clinically ill patients. Cancers in the liver were consistently identified correctly. The procedure has demonstrated mass formation in the pancreas, distorted arterial pattern associated with chronic pancreatitis, with cancer of the colon and with cirrhosis of the liver, and primary vascular lesions of the abdominal viscera. During the venous phase the mesenteric or splenic and portal veins were satisfactorily visualized. Patients with decreased or absent femoral pulsation should not be candidates for this procedure.

Since the completion of this manuscript, Nebesar, Pollard, Edmunds, and McKhann (1964) reported their experience with selective abdominal angiography which was similar to that reported in this communication.

We wish to express our thanks for the art work to Dr. McClaren Johnson, Jr., and to Dr. H. Stephen Weens and Dr. Wade Shuford for their guidance.

This study was supported in part by United States Public Health Service Training Grant 2A-5151 and American Cancer Society Research Grant T308.

REFERENCES
