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ABSTRACT
Background and aims Intestinal metaplasia (IM) is
a gastric preneoplastic lesion that appears following
Helicobacter pylori infection and confers an increased
risk for development of cancer. It is induced by gastric
expression of the intestine-specific transcription factor
CDX2. The regulatory mechanisms involved in triggering
and maintaining gastric CDX2 expression have not been
fully elucidated. The Cdx2+/� mouse develops intestinal
polyps with gastric differentiation and total loss of Cdx2
expression in the absence of structural loss of the
second allele, suggesting a regulatory defect. This
putative haplo-insufficiency, together with the apparent
stability of IM, led to the hypothesis that CDX2 regulates
its own expression through an autoregulatory loop in
both contexts.
Methods Gastrointestinal cell lines were co-transfected
with wild-type or mutated Cdx2 promoter constructs and
CDX2 expression vector for luciferase assays.
Transfection experiments were also used to assess
endogenous CDX2 autoregulation, evaluated by RT-PCR,
qPCR and western blotting. Chromatin
immunoprecipitation was performed in a cell line, mouse
ileum and human IM.
Results CDX2 binds to and transactivates its own
promoter and positively regulates its expression in
gastrointestinal human carcinoma cell lines. Furthermore,
CDX2 is bound to its promoter in the mouse ileum and in
human gastric IM, providing a major contribution to
understanding the relevance of this autoregulatory
pathway in vivo.
Conclusion The results of this study demonstrate
another layer of complexity in CDX2 regulation by an
effective autoregulatory loop which may have a major
impact on the stability of human IM, possibly resulting in
the inevitable progression of the gastric carcinogenesis
pathway.

INTRODUCTION
Intestinal metaplasia (IM) of the stomach is
a preneoplastic lesion that confers an increased risk
for the development of gastric carcinoma, which
remains the second leading cause of cancer death
worldwide.1 IM occurs most frequently in the
gastric carcinogenic cascade following Helicobacter
pylori infection, which leads to the appearance of
a chronic gastritis, atrophy, progression to IM and,
ultimately, gastric cancer.2 Eighty per cent of
the gastric carcinomas appear in the context
of IM,3 and the presence of this preneoplastic
lesion results in a 2e6-fold increased risk for
subsequent cancer development.3e5 Furthermore,

animal models of H pylori infection and subsequent
lesions or induced gastric IM also show the
progression from IM to gastric cancer.6e9 Under-
standing the mechanisms behind the establish-
ment, maintenance and progression of IM is
therefore of utmost importance.
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Significance of this study

What is already known about this subject?
< The expression of the CDX2 gene does not occur

in the normal stomach, but its ectopic gastric
expression is necessary for intestinal metaplasia
development.

< Regulatory mechanisms for CDX2 are still poorly
understood and fail to explain the stability of the
intestinal metaplasia phenotype.

< Mouse models have suggested a haplo-insuffi-
ciency for Cdx2 and in vitro studies have
suggested a cell type-specific autoregulatory
mechanism.

What are the new findings?
< CDX2 regulates its own promoter in gastric and

intestinal cell lines, and active binding sites
were identified in the proximal promoter.

< CDX2 regulates its own endogenous expression
in different cellular contexts, initiating its own
expression.

< CDX2 is bound to its own promoter in a gastric
cell line, in the mouse ileum and in human
intestinal metaplasia.

How might it impact on clinical practice in the
foreseeable future?
< This study provides a novel mechanism of CDX2

regulation, raising a new hypothesis for under-
standing the stability of this gastric preneo-
plastic lesion. Since the probability of intestinal
metaplasia regression following eradication of H
pylori infection is low, in light of our results it
may be necessary to interfere with the CDX2
autoregulatory loop, in addition to clearing the
infection, in order to reverse intestinal meta-
plasia. This may have major implications when
deciding on treatment for infected patients
already harbouring this premalignant lesion.
Identification of the self-sustainability of CDX2
is a major development in dealing with this and
other cancer preneoplastic lesions that follow
a transdifferentiation process as crucial steps
during carcinogenesis.
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IM consists of the transdifferentiation of the gastric mucosa
to an intestinal phenotype and depends on the expression of the
homeobox transcription factor CDX2, the master gene for
intestinal differentiation.10 11 Under normal conditions CDX2
expression in adults is restricted to the intestine, but it becomes
ectopically expressed in human IM lesions of the stomach,12 13

oesophagus14 15 and gallbladder.16

Cdx2 homozygotic null mutant mice are not viable because
embryos fail to implant, whereas Cdx2+/e mice develop non-
cancerous polyp-like lesions with focal loss of Cdx2 expression
and development of gastric differentiation.17 18 Conversely,
forced expression of Cdx2 in the stomach of transgenic mice
leads to extensive IM, with subsequent progression to gastric
cancer.9 19 20 Further, CDX2 has been directly implicated in
transcriptional regulation of intestinal terminal differentiation
markers such as MUC2,21 LI-Cadherin22 and Sucrase-Isomal-
tase,23 among others. However, the molecular mechanisms
regulating CDX2 expression in the establishment and mainte-
nance of IM are not completely understood. The evidence so far
suggests a complex regulation with involvement of multiple
regulatory pathways. We recently demonstrated that key
elements of the BMP pathway co-localised with CDX2 in IM
and positively regulated CDX2 in gastric cell lines,24 and we
showed a direct regulation of CDX2 expression by interaction of
H pylori with epithelial cells in an in vitro co-culture model.25

Both mechanisms fail to give any insight into the maintenance
of CDX2 expression and the generally observed low reversibility
of IM, even after eradication of H pylori and clearance of the
inflammatory response.26e28

Xu et al showed that CDX2 is able to transactivate its own
promoter in vitro in a cell type-specific manner,29 suggesting
a positive autoregulatory loop, but the importance of this
process for CDX2 regulation in vivo in IM is yet to be estab-
lished. Furthermore, the phenotype observed in the Cdx2+/e

mice clearly suggests a dose dependence on Cdx2 transcriptional
activity compatible with a self-regulatory mechanism, since the
germline loss of one allele with no structural second hit leads to
total loss of expression of this gene focally.17 These results,
together with the apparent stability of the CDX2-dependent IM
phenotype, led us to hypothesise that CDX2 regulates its own
expression through a positive autoregulatory loop in the gastric
and intestinal contexts.

METHODS
Cell culture, transient transfection and luciferase assays
Human gastric carcinoma cell lines AGS (ATCC), MKN45
(JCRB0254, The RIKEN Cell Bank, Japan), GP202,30 IPA220,30

KatoIII (ATCC) and MKN28 (JCRB0253, The RIKEN Cell Bank,
Japan) and intestinal carcinoma cell lines HCT116 (ATCC), HT-
29 (ATCC), HCT15 (ATCC) and CO11531 were cultured under
standard conditions. The reporter plasmids pCdx2-1Luc and
pCdx2-9Luc containing 1 kb and 9.3 kb of the murine Cdx2
promoter, respectively,32 were used for cell transfection with
Lipofectamine 2000 (Invitrogen, Carlsbad, USA) and luciferase
assays. Cells were co-transfected with an expression vector for
CDX2 or the corresponding empty vector, and a CMV-b-gal
vector (1 mg DNA:1.5 ml Lipofectamine). AGS cells were also co-
transfected with the CDX2 expression vector or the corre-
sponding empty vector, and the pCdx2-1luc wild-type, single
and double mutated. Total extracts were prepared using 13
Reporter Lysis Buffer (Promega, Madison, USA) according to the
manufacturer ’s instructions, and luciferase activity was
measured in a 1450 Microbeta luminescence counter (Wallac,
Perkin Elmer, Massachussets, USA). b-Galactosidase activity was

measured to correct for transfection efficiency. Each experiment
was carried out in triplicate at least twice and the results are
expressed as mean6SD of representative triplicates.
AGS, MKN45, HCT116 and HeLa (ATCC) were transfected

with a CDX2 expression vector containing two FLAG tags at the
N-terminus or the corresponding empty vector for RNA and
protein analysis. MKN45 and HCT116 were also transfected
with the CDX2 expression vector alone or together with
the dominant negative truncated CDX2 form, miniCDX2,33

for RNA expression analysis. The amounts of DNA in each of
these experimental conditions were equalised by adding the
corresponding empty vector.

Site-directed mutagenesis
To introduce point mutations in the pCdx2-1luc gene promoter
region, the QuickChange Site-directed mutagenesis protocol
(Stratagene, Cedar Creek, USA) was used. The oligos used for this
purpose are listed in table 1. The double mutant was obtained by
introducing the mutation MUT2 in the pCdx2-1luc MUT1. The
PCR cycles were set as follows: 958C for 30 s; 16 cycles of 958C for
30 s, 558C for 1 min, 688C for 5 min. Following PCR reaction, the
products were incubated with DpnI for 1 h at 378C and trans-
formed to E coli competent cells. All the plasmids were checked by
sequencing.

RNA extraction and RT-PCR
Total RNA was extracted using TRI Reagent (Sigma, St Louis,
USA) and reverse transcription was performed with 5 mg total
RNA. PCR amplification was performed using the primer sets
shown in table 1 and the products were separated in 1.5% agarose
gels. GAPDH levels were used as internal control. qPCR was
performed using SYBR Green (endogenous CDX2) or Taqman
(Applied Biosystems, Foster City, USA) reagents. TBP levels
were used for normalisation and relative mRNA levels were
calculated using the DDCt method. The primers and probes used
are listed in table 1. Each experiment was carried out in duplicate
at least twice and the results are expressed as mean6SD.

Protein extraction and western blot analysis
Cells were lysated and the protein content was measured using
standard methods. Protein extracts (50 mg for AGS and HCT116
and 70 mg for MKN45) were analysed by standard SDS-PAGE,
transferred to a nitrocellulose membrane (Amersham Biosci-
ences, Buckinghamshire, UK) and blotted with primary anti-
bodies (anti-CDX2, 1:500, Biogenex; anti-actin, 1:8000, SCBT)
in 5% non-fat milk in 13 Tris buffered saline 0.02% Tween-20
(Sigma). Peroxidase-conjugated secondary antibodies (for CDX2
goat anti-mouse-HRP, 1:2000, and for actin goat anti-rabbit-
HRP, 1:2000, both from SCBT) were used and developed with
the ECL detection kit (BioRad, Hercules, USA). Quantification
of the western blots was performed using Bio-Rad Software
Quantity One.

Chromatin immunoprecipitation in a gastric carcinoma cell line
Chromatin immunoprecipitation (ChIP) was carried out using
90e95% confluency IPA220 cells. Cells were washed with 13
phosphate buffered saline (PBS) and DNA/protein crosslinking
was induced with 1% formaldehyde for 10 min at room
temperature and terminated with glycine at 125 mM final
concentration. After being washed in 13 PBS containing
protease inhibitors (Complete protease inhibitor cocktail;
Sigma), the samples were sonicated in lysis buffer (50 mM Tris
pH 8.0, 10 mM EDTA, 1% SDS). The solubilised chromatin was
incubated with anti-CDX2 antibody (BioGenex, The Hague,
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The Netherlands) or control IgG overnight at 48C. Concomi-
tantly, Protein G-Agarose beads (Roche, Indianapolis, USA) were
blocked with 1% bovine serum albumin (BSA). Immunoprecip-
itated chromatin was then incubated with the beads for 2 h at
48C, washed with low salt buffer (20 mM Tris pH 8.0, 150 mM
NaCl, 2 mM EDTA, 0.1% SDS, 1% Triton X-100), high salt
buffer (20 mM Tris pH 8.0, 0.5 M NaCl, 2 mM EDTA, 0.1% SDS,
1% Triton X-100), LiCl buffer (10 mM Tris pH 8.0, 0.25 M LiCl,
1 mM EDTA, 1% NP-40, 1% NaDOC) and TE buffer, and eluted
with elution buffer (0.1 M Na2CO3, 1% SDS). Reversion of the
crosslink was performed overnight at 658C and DNA was
recovered using GFX DNA purification columns (GE Healthcare,
Buckinghamshire, UK). The DNA was analysed by PCR using
the primer pairs listed in table 1.

Immunohistochemistry in frozen tissue sections
Frozen sections were fixed in cold methanol and hydrated,
followed by immunostaining as previously described.12 The
primary antibody against CDX2 (BioGenex) was diluted 1:50 in
5% BSA.

Chromatin immunoprecipitation in mouse ileum and in human
intestinal metaplasia (IM)
For mouse tissue ChIP, a wild-type mouse was killed and the
intestine removed and washed in cold NaCl 9&. The distal
ileum mucosa was scraped using a glass slide and fixed in 1%
formaldehyde. The Magna ChIP Kit (Upstate Biotechnology,
Millipore, Temecula, USA) was then used according to the
manufacturer ’s guidelines. Immunoprecipitation was performed
with 2 mg mouse monoclonal anti-CDX2 antibody (Biogenex)
and normal mouse IgGs (Invitrogen) were used as negative
control. Extracted DNA was then analysed by qPCR with
primers covering the mouse Cdx2 proximal promoter (table 1)
and the values normalised against the IgG negative control.
IM tissue samples were collected from the stomach of three

gastrectomised patients diagnosed with gastric adenocarcinoma
who underwent surgery in Hospital S. João, Porto, Portugal,
authorised by informed consent from the Tumour Bank of
Hospital S. João, Porto, Portugal. The whole surgical specimens
were briefly washed with water for removal of blood. For case 1,
four tissue samples were collected from the proximal and

Table 1 Sequences of the oligonucleotides used for site-directed mutagenesis, RT-PCR, qPCR and
chromatin immunoprecipitation (ChIP)

Site-directed mutagenesis 59 / 39

Mutation 1* S: CGATTGTTTAATGTAATAGTTTGGCAAAATGAATTGCTTTCC
AS: GGAAAGCAATTCATTTTGCCAAACTATTACATTAAACAATCG

Mutation 2* S: TCTTGTAAACACTCGTTCCTCACGGAAGGCCGCCG
AS: CGGCGGCCTTCCGTGAGGAACGAGTGTTTACAAGA

RT-PCR 59 / 39

Endogenous CDX2 F: CCAGGACGAAAGACAAATATCGA
R: GACTCTGCTAGACTCCTCAG

Exogenous CDX2 F: CCAGGACGAAAGACAAATATCGA
R: CGACAAGCTTGACATTGAAGC

GAPDH F: ACCATCTTCCAGGAGCGAG
R: GGATGACCTTGCCCACAG

qPCR 59 / 39

Endogenous CDX2 F: GTGCTAAACCCCACCGTCAC
R: GACTCTGCTAGACTCCTCAG

LI-Cadherin TaqMan Gene Expression Assay CDH17 Hs00184865_m1

MUC2 TaqManGene Expression Assay MUC2, Hs03005094_m1

TBP TaqMan Gene Expression Assay TBP, Hs99999910_m1

human ChIP 59 / 39

pCDX2 region 1 F: GCATTAGCAGAAATTCTCTTTTC
R:GCATGTGGTAGAAGTTAGGCT

pCDX2 region 2 F: CTAACTTCTACCACATGCCCA
R: GCATCTCTGACTTCATCTTACA

pCDX2 region 3 F: GAGTTTCTTGACCGCCCTCTT
R: CCTCCAATCACAGGTTCAAAGA

pCDX2 region 4 F: CTTTGAACCTGTGATTGGAGGT
R: CTCTACGCACAACCCCTCGAA

pCDX2 region 5 F: CGAGGGGTTGTGCGTAGAGT
R: ACAGGCTGGCGTGCGGA

pSucrase-Isomaltase F: GGCTGGTAAGGGTGCAATAA
R: GCCTGTTCTCTTTGCTATGTTG

mouse ChIP 59 / 39

pCdx2 region 1 F: CAACGGTGGATTCATTCCG
R: GGAAGTATTTGTGCTGACACC

pCdx2 region 2 F: GGTGTCAGCACAAATACTTCC
R: GTAATTAGTGGATGGCTGGG

pCdx2 region 3 F: CCCAGCCATCCACTAATTAC
R: GAAAAGACGATTCTACCTCCAG

pCdx2 region 4 F: CGTTTCCAAACCCAGCTTCC
R: CCCCCAGAAACACGATTTGC

pCdx2 region 5 F: GCAAATCGTGTTTCTGGGGG
R: GCGGCCTTACGTGATTAACG

pSucrase-Isomaltase F: GATAGGCTTGTGAAAGTGCAAT
R: CCTGTAGTATCTGCTGTGTTG

*Mutated nucleotides are underlined.
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distal areas adjacent to the tumour and, for cases 2 and 3, two
samples were collected from each. The mucosa was separated
from the muscle layer, washed in cold 13 PBS with Complete
protease inhibitor cocktail (Roche). The tissue segment was
then cut into smaller pieces to facilitate fixation and fixed in
1% formaldehyde and fast frozen in liquid nitrogen. Without
thawing, the tissue was pulverised using a Biopulverizer
(Biospec Products, Bartlesville, USA) to facilitate posterior lysis.
Following this step, the EZ Magna ChIP Kit (Upstate Biotech-
nology, Millipore) was used according to the manufacturer ’s
recommendations. Immunoprecipitation was performed using
the same antibody and control as above. Extracted DNA was
then analysed by qPCR with primers covering the human CDX2
proximal promoter (table 1) and the values normalised against
the IgG negative control. A second sample was collected
adjacent to each of the previous samples, frozen in OCT and
stained with haematoxylin and eosin to check for the presence
of IM.

RESULTS
CDX2 regulates its own promoter in gastric and intestinal
carcinoma cell lines
To determine whether CDX2 is able to activate transcriptionally
its own promoter, the reporter plasmids pCdx2-1Luc and
pCdx2e9Luc containing a 1 kb and a 9.3 kb promoter fragment
of the murine Cdx2 gene were used for transfection and lucif-
erase assays in a panel of gastric and intestinal carcinoma cell
lines in combination with a CDX2 expression vector or the
corresponding control empty vector. The cell lines used were
AGS, MKN45, GP202, KatoIII and MKN28 (gastric) and
HCT116, HT-29, HCT15 and CO115 (intestinal). CDX2 trans-
activates its own promoter at different levels, depending on the
cellular context. Transcriptional inductions of the 9.3 kb
promoter ranged from 1.4-fold in CO115 up to about 9-fold in
MKN45, KatoIII and HCT116, and for the 1 kb promoter they
ranged from 1.4-fold in MKN28 up to about 7-fold in KatoIII
and HCT116 (figure 1). Using a series of deletion mutants

Figure 1 Regulation of a 1 kb and
a 9.3 kb Cdx2 promoter by CDX2.
Co-transfection experiments were
performed in the presence of a 1 kb or
9.3 kb Cdx2 promoter construct and
a CDX2 expression vector in a panel of
five gastric and four intestinal
carcinoma cell lines. The values
obtained were corrected for transfection
efficiency with b-galactosidase activity
and the luciferase activities obtained
with transfection of the empty
expression vector were referred to as 1.

Figure 2 Active CDX2 cis-elements on
the CDX2 promoter. (A) Chromatin
immunoprecipitation was performed
with an isotype control immunoglobulin
G (IgG) and with an anti-CDX2 antibody.
PCR amplification of five regions within
the proximal CDX2 promoter was
performed to detect CDX2-bound DNA.
A fraction of the chromatin preparation
(1%) was used as input in the reaction.
(B) Site-directed mutagenesis was used
to introduce mutations 1 and 2, alone or
together, in a construct of 1 kb of the
mCdx2 proximal promoter.
Co-transfection experiments were then
performed in the presence of the 1 kb
promoter construct, wild-type, single or
double mutated, and a CDX2 expression
vector in AGS cells. The values obtained
were corrected for transfection
efficiency with b-galactosidase activity
and the luciferase activities obtained
with transfection of the empty
expression vector were referred to as 1.
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comprising 2 kb up to 8 kb of the Cdx2 promoter, we found
CDX2 transactivation of its own promoter in all the constructs.
There was no obvious pattern of increasing transactivation
along increasing promoter lengths that could contribute to
mapping potential CDX2 binding sites. The levels of trans-
activation varied among cell lines independently of basal CDX2
expression, as already found for the 1 kb and 9.3 kb promoters
(data not shown).

Identification of active CDX2 cis-elements within the CDX2
promoter
In order to demonstrate that the CDX2 transcription factor
binds directly to its own promoter, ChIP was performed in
IPA220 cells, which is the cell line with the highest CDX2
expression.24 Since CDX2 was able to transactivate its own
promoter in the 1 kb construct, we studied the most proximal
region of the CDX2 promoter and found several putative
binding sequences for CDX2, more or less conserved relative to
the consensus CDX2 binding sequence.34 Five regions within the
first 1200 nucleotides were evaluated in the precipitated DNA.
The results show that CDX2 protein is present in three of the
regionsdthe most proximal and the two most distal ones
(figure 2A). To examine the functional role of these CDX2
binding sites, we chose two sequences conserved between mouse
and human to mutate by site-directed mutagenesis. These two
sites (�954/�952 and �293/�292) were mutated independently
and together in the �1 kb mouse Cdx2 promoter construct. The
wild-type and the three mutated Cdx2 promoter constructs
were co-transfected with CDX2 in AGS cells and promoter
activity was evaluated by a luciferase assay. The results show
that each independent mutation of the putative CDX2 binding

sites located within the positive binding regions identified by
ChIP leads to decreased promoter activity of about 40%, whereas
the double mutant leads to complete abrogation of promoter
activation (figure 2B).

Transfection of CDX2 increases the endogenous level of
CDX2 in a panel of cell lines
In order to study the ability of CDX2 to regulate its own
expression in the endogenous context of cell lines, the gastric
AGS and MKN45 and the intestinal HCT116 cell lines were
transfected with CDX2 expression vector or the corresponding
empty vector and endogenous CDX2 levels were evaluated at
the mRNA and protein levels. The endogenous and vector
mRNA gene products are distinguished using specific primer
pairs, and corresponding proteins are discriminated by molecular
weight which differs due to the two FLAG tags encoded by the
expression vector. The results show that there was a clear
increase in endogenous CDX2 mRNA expression on CDX2
transfection in MKN45 and HCT116, with a smaller effect in
AGS (figure 3A). The same results were observed at the protein
level where endogenous CDX2 increased by 2.2, 2.7 and 3.7
times in AGS, HCT116 and MKN45 cells, respectively
(figure 3B). To determine whether this effect was cell context-
specific, the same transfection experiment was performed in the
non-gastrointestinal HeLa cell line which does not express
CDX2 endogenously. RT-PCR results show that CDX2 trans-
fection activates the endogenous expression of CDX2 in these
cells (figure 3A).

A dominant-negative form of CDX2 abrogates its
own regulation
To confirm the positive effect of CDX2 in regulating its own
endogenous expression, we set up an experimental context using
a dominant negative form of CDX2.33 This is a truncated form
of the CDX2 protein (miniCDX2) which competes for the DNA
binding with its wild-type counterpart but lacks the
transactivation activity. When transfecting miniCDX2 together
with the wild-type form in two cell lines (MKN45 and
HCT116), we found almost complete abrogation of the inducing
activity of CDX2 on its targets MUC2 (figure 4A) and LI-
Cadherin (figure 4B), thus confirming its dominant negative
activity, and on endogenous CDX2 (figure 4C) in accordance
with the previous results.

Cdx2 is bound to its own promoter in the mouse ileum
and in human intestinal metaplasia
In order to confirm the relevance of the autoregulatory mecha-
nism in vivo, ChIP was performed against Cdx2 in the mouse
distal ileum, which is one of the intestinal segments with
highest Cdx2 expression.32 A series of primer pairs covering
about 1200 nucleotides of the Cdx2 proximal promoter region
was designed, together with one encompassing the Cdx2
binding site on the Sucrase-Isomaltase promoter32 as a positive
control. The results show that Cdx2 is bound to the promoter
region detected with the primer pair 5 (figure 5A), which covers
a region corresponding to the more distal positive region
detected by ChIP in the human cell line. As expected, Cdx2 was
also bound to Sucrase-Isomaltase promoter.
We further aimed to confirm the relevance of this regulatory

pathway in human IM by performing a ChIP experiment in
samples of IM. Since CDX2 is exclusively present in the stomach
in foci of IM, ChIP was performed using the whole mucosa
fragment containing both normal and metaplastic glands. As
shown in figure 5B for case 1, we collected four mucosa samples

Figure 3 Effect of CDX2 transfection on endogenous CDX2 levels in
gastrointestinal and non-gastrointestinal cell lines. (A) Endogenous and
exogenous CDX2 mRNA level in AGS, MKN45, HCT116 and HeLa cell
lines upon transfection with either an empty vector or a vector
expressing CDX2. GAPDH was used as mRNA level control. (B) Western
blots showing endogenous levels of CDX2 in AGS, MKN45 and HCT116
cell lines upon transfection with either an empty vector or a vector
expressing CDX2. b-actin was used as loading control. The lower part of
(B) shows quantification of the western blots.
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(numbered 1e4) from different areas surrounding the tumour.
After observation of samples immediately adjacent to them,
samples 1 and 2 were excluded because they did not have clear
foci of IM and ChIP was performed on samples 3 and 4, both of
which contained several foci of IM (figure 5C,D). We confirmed,
as previously described,12 that CDX2 protein is only present in
areas of IM (figure 5C3,D3). The results obtained from the
immunoprecipitated DNA in sample 3 show that CDX2 is
bound to its promoter in two regions, one more proximal and
one further upstream, separated by a region with no binding
(figure 5E). The regions that were positive in IM correspond to

those found in the human cell line IPA220. The most distal
regions found in human cells correspond to the region found
positive in the mouse ileum. Furthermore, CDX2 is bound to the
human Sucrase-Isomaltase promoter which may also be used as
a positive control in IM (figure 5E). The results for sample 4
were similar, although promoter region 3, which was negative in
sample 3, showed positive binding but at a much lower level
than in the other regions (figure 5F).
The results for cases 2 and 3 were in line with those for

case 1 (see online supplement), showing an enrichment in
immunoprecipitated DNA in IM samples and, as expected,
negative results for the normal gastric mucosa which contains
no CDX2.

DISCUSSION
In the present study we show that CDX2 is autoregulated in
vivo and behaves as its own transcriptional target in the gastric
and intestinal context. Our results confirm and extend the
previously shown CDX2 transactivation of its own promoter in
a pancreatic and an intestinal cell line.29 35 In this study, CDX2
was shown to transactivate a 9.3 kb Cdx2 promoter which
better mimics the endogenous promoter by covering a much
more extensive regulatory region in a panel of gastrointestinal
cell lines. Nevertheless, we were able to demonstrate trans-
activation in the same panel of cell lines from the much shorter
1 kb Cdx2 promoter, indicating that the activity of CDX2 on its
own promoter occurs in the most proximal sequences. The levels
of transactivation varied among cell lines, so we cannot exclude
the possibility that context-specific co-factorsdeither activators
or repressorsdmay intervene in the autoregulatory process.
CDX1, which is also autoregulated,36 was shown to depend on
direct interaction with LEF1 and subsequent complex binding to
LEF/TCF response elements on the CDX1 promoter for autor-
egulation to occur.37

CDX2 usually binds AT-rich sequences, more or less conserved
with the consensus TTTAT, which are often in close proximity
to the TATA box in many CDX2 target genes. We used this
criterion to define the putative CDX2 binding sites within the
regions showing CDX2 binding as assessed by ChIP, which were
selected for posterior mutational analysis. Our results show that
the two selected sites had some degree of redundancy in CDX2
autoregulation since mutation of each of them alone led to
a reduction in CDX2 transactivation of its own promoter of
only about 40%. However, when mutating both sites together,
we were able to abrogate the positive activity of CDX2 on its
own promoter, thus showing that CDX2 binds to its promoter
and also directly transactivates it in vitro.
We further studied this autoregulation by assessing CDX2

activity on its endogenous levels. In addition to increasing its
own endogenous expression in gastric and intestinal cell lines,
CDX2 also initiated its own mRNA expression in the non-
CDX2-expressing cervical HeLa cell line. Analysing the results
obtained for the gastrointestinal cell lines, it is worth noting
that the lower the starting endogenous CDX2 level, the greater
is the effect. This is in agreement with previous reports38 that
cell lines cannot cope with too high an expression of CDX2,
possibly owing to induction of proliferation arrest and
apoptosis.11 On the other hand, the results with the HeLa cell
line show that CDX2 is able to initiate its own expression in
a non-gastrointestinal setting and without further stimulus,
which suggests that the autoregulatory mechanism is sufficient
to maintain its expression. The results obtained with miniCDX2
reinforce this observation, showing that CDX2 behaves like its
other targets.

Figure 4 Effect of a dominant negative form of CDX2 on CDX2 targets
and its endogenous expression. Fold increase of (A) MUC2,
(B) LI-Cadherin and (C) endogeneous CDX2 mRNA in MKN45 and
HCT116 cells transfected with CDX2 alone or together with a dominant
negative form, evaluated by qPCR. The values obtained with mock-
transfected cells were referred to as 1. mRNA levels were normalised to
the corresponding TBP mRNA level.

Gut 2011;60:290e298. doi:10.1136/gut.2010.222323 295

Stomach

 on M
arch 20, 2024 by guest. P

rotected by copyright.
http://gut.bm

j.com
/

G
ut: first published as 10.1136/gut.2010.222323 on 9 D

ecem
ber 2010. D

ow
nloaded from

 

http://gut.bmj.com/


Figure 5 CDX2 binding to its own promoter in mouse ileum and human intestinal metaplasia. Chromatin immunoprecipitation was carried out with an
isotype control immunoglobulin G (IgG) and with an anti-CDX2 antibody in DNA from (A) mouse ileum and two samples of human intestinal metaplasia
(E and F). Purified DNA was analysed by qPCR using specific primers covering five regions of the proximal mouse and human CDX2 promoters. Fold
enrichments are expressed as ratios of the IP:CDX2 signal to that of the IP:IgG signal and calculated by extrapolation from a standard curve of input
DNA dilutions. (B) Whole gastrectomised stomach showing the samples taken for analysis (1e4) and the adenocarcinoma (T). (C) H&E stain and (D)
immunohistochemical detection of CDX2 in fragments 3 and 4, respectively: (C1,D1) H&E stain of the whole fragments (magnification 34); (C2, D2)
foci of intestinal metaplasia (magnification 320); (C3,D3) CDX2 immunostaining in the same areas.
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Furthermore, we found that Cdx2 binds its own promoter in
the mouse intestine and in human IM, which suggests that
autoregulation of CDX2 occurs in vivo and may have a role in
the maintenance of this lesion.

The first suggestion that CDX2 autoregulation could be rele-
vant in vivo came from heterozygous Cdx2 null mice.18 While
absent in the intestinal polyps, Cdx2 expression from one single
allele is retained in the surrounding normal intestinal epithe-
lium. These observations suggest that the combination of
a single functional allele lacking some external signal/co-factor
might result in failure to reach a certain threshold of expression
leading to complete loss of Cdx2 and polyp development, which
is in line with a self-regulatory mechanism. Moreover, the
extent, time and location of the defects varied among animals,
suggesting that a critical threshold may have to be reached for
autoregulation to take place. In this study we show that Cdx2 is
autoregulated in the intestine, which is in line with these
observations.

It has been well demonstrated over the years that CDX2 plays
a crucial role in the determination of the intestinal phenotype
during embryogenesis and its maintenance postnatally. More-
over, focal gains and losses of CDX2 expression induce a shift in
phenotype from gastric/oesophagus to intestinal and vice versa.
One well documented example is IM of the stomach which is
triggered by CDX2. Gastric IM is a preneoplastic lesion associ-
ated with a higher risk of gastric cancer development.3e5 Despite
ongoing controversy, once present, gastric IM rarely seems to
regress.26e28 39 This remains true even after conditions favouring
its appearancedsuch as H pylori infection and the concomitant
inflammationdhave been treated, and has been shown in
studies by Asfeldt et al26 and by Wong et al,27 in addition to ours.
It is, in fact, impossible to follow the fate of a particular IM
focus after H pylori eradication and inflammation clearance, but
the abovementioned studies show that IM persists in most
individuals after eradication therapy. The present study provides
a putative explanation for this, based on the maintenance of
CDX2 expression through an autoregulatory loop which is
independent of the initial trigger, thus maintaining the intestinal
phenotype. It is tempting to speculate that, in addition to
clearing the infection and inflammation, it is probably necessary
to interfere with the CDX2 autoregulatory loop in order to
reverse IM.

In the apparently rare setting of loss of CDX2 by the meta-
plastic glands and their disappearance from the gastric mucosa,
further studies will be needed to show if the cells trans-
differentiate back to the gastric phenotype or rather are over-
grown by the surrounding normal gastric glands.40 From the
mechanistic and developmental point of view, it would be
interesting to discriminate fully between these two processes.
However, from the clinical point of view, the major interest is to
be able to interfere with the maintenance of IM and therefore to
interrupt the gastric carcinogenic pathway.

Together, the results presented in this study clearly show that
CDX2 regulates its own expression in the gastrointestinal
context and is bound to its own promoter in the mouse intestine
and in human IM. This regulatory mechanism may have an
impact on the stability of human IM and, possibly, on the
inevitable progression of the gastric carcinogenesis pathway.
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