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Chemokine-driven lymphocyte infiltration: an early
intratumoural event determining long-term survival in
resectable hepatocellular carcinoma
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ABSTRACT
Objective Hepatocellular carcinoma (HCC) is
a heterogeneous disease with poor prognosis and limited
methods for predicting patient survival. The nature of the
immune cells that infiltrate tumours is known to impact
clinical outcome. However, the molecular events that
regulate this infiltration require further understanding.
Here the ability of immune genes expressed in the
tumour microenvironment to predict disease progression
was investigated.
Methods Using quantitative PCR, the expression of 14
immune genes in resected tumour tissues from 57
Singaporean patients was analysed. The nearest-
template prediction method was used to derive and test
a prognostic signature from this training cohort. The
signature was then validated in an independent cohort of
98 patients from Hong Kong and Zurich. Intratumoural
components expressing these critical immune genes
were identified by in situ labelling. Regulation of these
genes was analysed in vitro using the HCC cell line
SNU-182.
Results The identified 14 immune-gene signature
predicts patient survival in both the training cohort
(p¼0.0004 and HR¼5.2) and the validation cohort
(p¼0.0051 and HR¼2.5) irrespective of patient
ethnicity and disease aetiology. Importantly, it predicts
the survival of patients with early disease (stages
I and II), for whom classical clinical parameters
provide limited information. The lack of predictive
power in late disease stages III and IV emphasises
that a protective immune microenvironment has to be
established early in order to impact disease progression
significantly. This signature includes the chemokine
genes CXCL10, CCL5 and CCL2, whose expression
correlates with markers of T helper 1 (Th1), CD8+ T
and natural killer (NK) cells. Inflammatory cytokines
(tumour necrosis factor a, interferon g) and Toll-like
receptor 3 ligands stimulate intratumoural production
of these chemokines which drive tumour infiltration
by T and NK cells, leading to enhanced cancer
cell death.
Conclusion A 14 immune-gene signature, which
identifies molecular cues driving tumour infiltration by
lymphocytes, accurately predicts survival of patients with
HCC especially in early disease.
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Significance of this study

What is already known about this subject?
< Hepatocellular carcinoma (HCC) is a heteroge-

neous disease with poor prognosis and limited
methods for predicting patient survival.

< The nature of the immune cells that infiltrate
tumours is known to impact clinical outcome.

< In the past decade, several laboratories used
gene expression profiling to define the molecular
nature and identify prognostic signatures for HCC.
However, little consensus was reached from
such efforts and limited attention has so far been
paid to the tumour immune microenvironment.

What are the new findings?
< We identified a 14 immune-gene signature

predictive of HCC patient survival in both the
training cohort from Singapore (n¼57;
p¼0.0004 and HR¼5.2) and the validation
cohort from Hong Kong and Zurich (n¼98;
p¼0.0051 and HR¼2.5) irrespective of patient
ethnicity and disease aetiology.

< The lack of predictive power in late-stage HCC
shows that a protective immune microenviron-
ment has to be established early in order to
impact disease progression significantly.

< Inflammatory cytokines (tumour necrosis factor
a and interferon g) and Toll-like receptor 3 ligands
stimulate intratumoural production of chemokines
especially CXCL10 and CCL5, which drive tumour
infiltration by T and natural killer (NK) cells, hence
leading to enhanced cancer cell death.

How might it impact on clinical practice in the
foreseeable future?
< The ability to make a prognosis in early stages

of HCC will help in disease management such as
in selection of patients with a better prognosis
profile for liver transplantation.

< Improved understanding of the molecular pathways
leading to a protective local immune microenviron-
ment will help in the rational design of new
therapeutic approaches for patients with HCC.
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INTRODUCTION
Hepatocellular carcinoma (HCC) claims >600 000 lives every
year worldwide. HCC incidence is rising in Western countries
partly due to increased hepatitis C virus infection.1 2 Limited
treatments are available for patients with advanced disease.
Curative resection remains the first line of treatment; however,
due to a high recurrence rate, the overall survival of patients
with HCC is poor. Sorafenib, a tyrosine kinase inhibitor recently
approved for advanced HCC, brings only limited improvement
in survival.3 More aggressive treatments, including liver trans-
plantation for suitable patients, improve survival.4 However,
identifying patients with HCC likely to benefit from such
approaches remains challenging.

HCC is a heterogeneous disease comprising distinct molecular
and clinical subgroups.5 6 This is largely due to the different
HCC aetiologies which include hepatitis, and alcohol- and non-
alcohol-induced cirrhosis. Geographical and ethnic variations
further contribute to its heterogeneity.7 In the past decade,
several laboratories used gene expression profiling to define the
molecular nature and identify prognostic signatures for
HCC.8e12 However, little consensus was reached from such
efforts, illustrating the complexity and heterogeneity of this
cancer. Each study focused on different molecular pathways, and
limited attention has so far been paid to the tumour immune
microenvironment.

It is now recognised that cancer progression is regulated by
both cancer cell-intrinsic and microenvironmental factors.
Among the latter, the nature and localisation of immune cells
infiltrating the tumour play a central role. While tumour infil-
tration by myeloid cells is often associated with a poor prog-
nosis,13 14 the presence of T helper 1 (Th1) or cytotoxic T cells
correlates with a reduced risk of relapse in several cancers.15

We previously found that a proinflammatory tumour
microenvironment correlates with prolonged survival in a cohort
of Singaporean patients with HCC.16 In the current study, we
identified a 14 immune-gene signature able to predict patient
survival from this cohort and validated it in an independent
cohort of patients from Hong Kong and Zurich. By combining
transcriptome analysis, in situ labelling and in vitro experiments,
we identified the cellular sources of the molecules corresponding
to the gene signature. This approach revealed (1) a paracrine
loop involving CXCL10, Toll-like receptor 3 (TLR3), tumour
necrosis factor a (TNFa), and interferon g (IFN-g); and (2) an
autocrine loop controlling CCL5 production. These two
loops shape the immune milieu and recruit a potent antitumoral

lymphoid infiltrate to the tumour of patients with longer
survival. Our study shows that features derived from the tumour
immune microenvironment are of general predictive value irre-
spective of HCC heterogeneity. Importantly, they determine the
clinical outcome of patients with early-stage HCC for whom
clinical parameters provide limited survival information. The lack
of predictive power in late stages shows, for the first time in
HCC, that the protective immune microenvironment has to be
established early to promote long-term survival.

MATERIALS AND METHODS
Patients
One hundred and seventy-two resected HCC mRNA samples
(one from each patient) were obtained from the National Cancer
Centre (NCC), Singapore, Sg (n¼61), the Queen Mary Hospital
(QMH), Hong Kong, HK (n¼56), and the University Hospital
Zurich, Switzerland (n¼55). All samples were obtained with
Ethics Committee approval from patients who underwent
curative resection from 1991 to 2009. After censoring patients
with poor-quality gene expression profiles, data from Sg patients
(n¼57) were used as a training cohort to derive and test the
survival prediction model, while HK (n¼43) and Zurich (n¼55)
patients were used as an independent validation cohort. A total
of 49 paraffin-embedded HCC samples (Sg, n¼20; HK, n¼23;
Zurich, n¼6) were obtained for immunohistochemistry or
immunofluorescence labelling.
Clinical and demographic characteristics of the training and

validation cohorts are summarised in table 1.

Analysis of gene expression
Quantitative PCR (qPCR) analysis was performed on a total of
172 resected HCC mRNA samples. Primers were designed using
Primer3 and qPCR was performed using iTaq SYBR Green
Supermix with ROX (Bio-Rad Laboratories, Berkeley, California,
USA), as described previously.16 Sixteen immune genes were
selected for expression analysis, including the 11 previously
published survival-related immune genes and five additional
immune genes showing a strong trend of association with
prolonged survival. Two of the genes, LTA and CCL22, were
omitted from the gene list due to very low/undetectable
expression in many of the validation cohorts. The relative gene
expression level was calculated by normalisation to the house-
keeping gene ACTB using MxPro software (Stratagene, Santa
Clara, CA, USA).

Table 1 Comparison of clinical and demographic characteristics of patients with hepatocellular carcinoma in the training (Singapore) and validation
(HK+Zurich) cohorts

Variables
Training cohort
(n[57)

Validation cohort
(n[98) p Value

Sex, F/M n (%) 7/50 (12/88) 21/77 (21/79) NS*

Age, years Median (range) 59 (31e84) 60 (20e83) NSy
Race, Asian/European n (%) 57/0 (100/0) 46/52 (47/53) <0.0001*

Viral status, non-infected/HepB, C, D n (%) 12/43 (21/75) 32/66 (33/67) NS*

Grade, 1+2/3+4 n (%) 33/21 (58/37) 61/24 (62/24) NS*z
TMN staging, I/II+III+IV n (%) 34/23 (60/40) 21/77 (21/79) <0.0001*

a-Fetoprotein, ng/ml Median (range) 19 (1.5e>70 000) 50 (1e468 600) NSy
Tumour size, cm Median (range) 6 (0.7e23) 5 (1.2e23.5) NSy
Survival, years Median (25th/75th %) 3.94 (0.9/5.5) 3.8 (1.6/7.8) NSx
*Fisher exact test.
yManneWhitney.
zGood/poor differentiation; different classification system for the HK cohort.
xKaplaneMeier.
F, female; Hep, hepatitis; HK, Hong Kong; M, male; NS, non-significant.

428 Gut 2012;61:427e438. doi:10.1136/gutjnl-2011-300509

Hepatology

 on A
pril 10, 2024 by guest. P

rotected by copyright.
http://gut.bm

j.com
/

G
ut: first published as 10.1136/gutjnl-2011-300509 on 19 S

eptem
ber 2011. D

ow
nloaded from

 

http://gut.bmj.com/


Figure 1 Identification and validation of a 14 immune-gene signature predictive of overall survival in patients with hepatocellular carcinoma (HCC).
(A) Study design for the identification of a 14 immune-gene signature derived from the training cohort (Sg, n¼57) and validated in an independent
cohort of patients from HK (n¼43) and Zurich (n¼55). NTP, nearest-template prediction; qPCR, quantitative PCR. (B and C) Heat maps showing the
expression profile of the 14 immune genes (log values) in (B) the training cohort and (C) the validation cohort. Patients are classified as good or poor
prognosis according to prediction by the immune-gene signature. FDR, p value of the t test adjusted for false discovery rate (multiple testing).
KaplaneMeier analyses for survival in (D) the training cohort, based on leave-one-out cross-validation testing and in (E) the independent validation
cohort. Good and poor prognosis refers to the outcome predicted by the immune signature. p, log rank test p value.
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Statistical analyses
Survival prediction was performed using the nearest-template
prediction (NTP) method. The Cox score for each gene, which
reflects the correlation between gene expression level and patient
survival, was calculated as described previously.10 The prognosis
prediction for each sample was made based on the proximity of
its gene expression level to either of the templates of poor or
good prognosis as defined by the vectors of weighted Cox scores.
The survival predictor was evaluated in the training cohort (Sg,
n¼57) using a leave-one-out cross-validation, and tested on the
independent validation cohort (HK, n¼43 and Zurich, n¼55).
NTP was also validated by the bootstrap method as described
previously.17 Two-class differential expression analysis was
performed using GEPAS version 4.0 (http://gepas.bioinfo.cipf.es/).

KaplaneMeier univariate survival analysis was performed
using GraphPad Prism. Survival prediction is classified as ‘good
prognosis’ or ‘poor prognosis’ according to the gene signature or
as ‘low’ or ‘high’ as compared with the median of the relevant
parameters. Patients who are still alive at last follow-up or are
deceased due to causes unrelated to HCC were censored. Reported
p values are obtained from the log-rank (ManteleCox) test.

Multivariate analysis by the Cox proportional hazards model
was used to examine the gene signature in the context of clinical
variables.

The NTP method and multivariate analyses were performed
with the use of the R statistical package (http://www.r-project.org).

Immunohistochemistry (IHC) and immunofluorescence (IF)
IHC or IF labelling were performed on paraffin-embedded HCC
samples as described before.16 The list of primary and secondary
antibodies used is given in Supplementary table 1. IHC images
were captured with an Olympus DP20 camera attached to
a CX31 microscope. For IF, an Olympus FlourView FV1000
confocal microscope was used.

Quantification of positive cells was performed with ImagePro
Software from 5e10 random fields at 3100 magnification for
IHC, or 10e15 random fields at 3200 magnification for IF. The

average value from all quantified fields was determined for each
patient. Statistical analysis was performed with GraphPad
Prism.

Isolation of tumour-infiltrating leukocytes (TILs)
Tumour tissues from patients with HCC (n¼3) were obtained
from Singapore General Hospital with Ethics Committee
approval.
Tissues were homogenised using a Dispomix Drive (Xiril AG,

Hombrechtikon, Switzerland). Tumour (T) and TILs were
separated by a series of low speed centrifugations and filtration
through a 100 mm filter (Millipore, Santa Clara, CA, USA) to
remove large debris. A total of 13106 cells were resuspended in
Trizol (Invitrogen, Santa Clara, CA, USA) and RNA was
converted to DNA using Taqman Reverse Transcriptase reagent
(Applied Biosystems, Foster City, CA, USA) for qPCR analysis.
Fraction purity assessed by flow cytometry was w90%.

In vitro chemokine production and transwell migration assays
The HCC cell line SNU-182 was obtained from the Korean Cell
bank and cultured in complete RPMI medium. Cells were treated
with 100 U/ml IFNg (ImmunoTools, Friesoythe, Germany),
10 ng/ml TNFa, 50 mg/ml poly(I:C) (InvivoGen, SanDiego, CA,
USA) or with a combination of IFNg and TNFa, or IFNg and
poly(I:C). After 24 h, culture supernatants were collected for
ELISA and cells were harvested for RNA isolation. RNA isola-
tion, cDNA conversion and qPCR for CXCL10, CCL5 and CCL2
were performed as described above. ELISAs were performed to
detect CXCL10, CCL5 and CCL2 using kits from R&D Systems
(CXCL10 and CCL5; R&D Systems, Inc., Minneapolis, USA) and
eBiosciences (CCL2; eBioscience, San Diego, CA, USA) according
to the manufacturers’ instructions. Absorbance intensity was
analysed using a Tecan microplate reader.
For transwell migration assay, SNU-182 cells unstimulated or

stimulated with IFNg and poly(I:C) as described above were
seeded into 24-well plates. After 24 h, 13106 peripheral blood
monocytes (PBMCs) from healthy donors (n¼3) untreated or

Table 2 Multivariate analysis of the 14 immune-gene signature

Variable

Univariate analysisy Multivariate analysisz
HR (95% CI) p Value HR (95% CI) p Value

Training cohort

All patients; n¼57

Immune-gene signature 4.9 (1.9 to 12.8) 0.001* 3.8 (1.4 to 10.1) 0.008*

TMN stage (I/II/III) 2.2 (1.4 to 3.5) 0.001* 1.9 (1.2 to 3.0) 0.010*

Validation cohort

All patients; n¼98

Immune-gene signature 2.3 (1.3 to 4.3) 0.007* 2.0 (1.1 to 3.8) 0.032*

TMN stage (I/II/III/IV) 1.8 (1.2 to 2.6) 0.003* 1.6 (1.1 to 2.4) 0.019*

Stage I/II/III patients; n¼91

Immune-gene signature 2.4 (1.2 to 4.7) 0.009* 2.2 (1.1 to 4.4) 0.022*

TMN stage (I/II/III) 1.4 (0.9 to 2.2) 0.120 1.2 (0.8 to 1.9) 0.331

Training+validation cohort

All patients; n¼155

Immune gene signature 3.0 (1.8 to 5.1) 2.18E-05 2.7 (1.4 to 5.2) 0.004*

Grade (1/2/3/4) 1.4 (0.9 to 2.0) 0.137 1.4 (0.9 to 2.4) 0.157

TMN stage (I/II/III/IV) 1.8 (1.4 to 2.4) 2.14E-05 1.8 (1.2 to 2.8) 0.005*

Tumour size (<median/$median) 1.4 (0.8 to 2.5) 0.253 0.6 (0.3 to 1.2) 0.158

AFP (<median/$median) 1.4 (0.8 to 2.3) 0.207 1.2 (0.6 to 2.2) 0.649

Age (<median/$median) 1.4 (0.8 to 2.2) 0.236 1.6 (0.9 to 3.0) 0.144

Median values: tumour size¼5.4 cm; a-fetoprotein (AFP)¼25 ng/ml; age¼60.
*Significant (p<0.05).
yUnivariate analysis, Cox proportional hazard regression.
zMultivariate analysis, Cox proportional hazard regression.
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pretreated with anti-CXCR3 (25 mg/ml; clone 1C6, BD Phar-
mingen) or anti-CCR5 (10 mg/ml; clone 2D7, BD Pharmingen,
San Diego, CA, USA) neutralising antibodies at 378C for 1.5 h
were added onto the transwell filter inserts (3 mm pore size, BD
Falcon, San Diego, CA, USA). Transmigration was assessed after
3 h.

RESULTS
Identification and validation of an immune-gene signature
predicting overall survival of patients with HCC
We previously characterised the expression profile of 49 immune-
related genes in 61 resected HCC tumour samples from
Singapore, and found 11 immune genes whose expression was
associated with superior patient survival.16 In the current study,
we analysed the RNA expression of 14 immune genes: TNF, IL6,
CCL2, NCR3, CCR2, TLR4, FCGR1A, CEACAM8, TLR3, CXCL10,

CCL5, TBX21, CD8A and IFNG. We used NTP to identify and
cross-validate (by the leave-one-out method) a 14 immune-gene
signature predictive of overall survival in 57 Singaporean
patients with resectable HCC (as a training cohort). The NTP
method was chosen because it allows independent prediction for
each sample and is less sensitive to differences in sample
processing and analysis.18 The signature was then validated in
an independent cohort of patients from Hong Kong (n¼43) and
Zurich (n¼55) (figure 1A). Bootstrapping analysis also showed
similar results (Supplementary figure 1).
In general, the 14 immune genes display higher expression in

patients with good prognosis in both the training (figure 1B) and
the validation cohort (figure 1C). The relative importance
of each gene was assessed using its Cox score (Supplementary
table 1). Despite the differences in patient ethnicity and disease
stage (table 1), the herein presented 14-gene signature accurately

Figure 2 Superior prognostic power
of the 14 immune-gene signature
compared with clinical parameters.
KaplaneMeier analyses for survival of
(A) stage I patients (n¼55, training and
validation cohort) according to the
immune-gene signature accurately
predicts patient survival; (B) stage I
patients according to grade (n¼50);
(C) stage II patients (n¼46, training and
validation cohort) according to the
immune gene signature accurately
predicts patient survival and (D) stage II
patients according to grade (n¼45).
p, log rank test p value. (E) The plot
shows HRs with 95% CI for subgroups
of patients according to clinical and
demographic characteristics. Age,
median¼61; AFP conc (a-fetoprotein
concentration), median¼20 ng/ml;
tumour size, median¼4.3 cm.
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Figure 3 CXCL10, CCL5 and CCL2 expression correlates with tumour infiltration by T and natural killer (NK) cells. (A) In patients with hepatocellular
carcinoma (HCC; training and validation cohort, n¼172), CXCL10, CCL5 and CCL2 RNA positively correlate with TBX21, CD8A and NCR3 (marked in
red) but not with CD14, CD68, CD19, CD83, IL13, IL17, FOXP3 or IL10 (marked in blue). Graphs show p values against Pearson correlation coefficients
r. The dotted line shows the limit of significance (p<0.05). (B) Representative immunofluorescence images showing higher density of CXCL10-
expressing cells (red) in a tumour sample with high (left) versus low (right) density of infiltrating CD8+ and CD56+ cells as quantified by
immunohistochemistry (IHC). The area in the rectangle is magnified in the left inset. Bar¼50 mm; 3400 magnification. (C) Correlation of CXCL10
protein expression with the density of CD8+ (left) and CD56+ (right) immune cells. CXCL10 expression was determined by quantification of the
CXCL10-labelled area, and CD8+ and CD56+ cell densities were measured by IHC in tumour fields of patient samples (CD8+, n¼27; CD56+, n¼19,
training and validation cohort). p Values and correlation coefficients (r) were calculated using the Spearman correlation test. DAPI, 49,6-diamidino-2-
phenylindole.

Figure 4 CXCL10, CCL5 and CCL2 are produced by both immune and cancer cells within hepatocellular carcinoma (HCC) tumours. (A) Quantitative
PCR (qPCR) analysis of CXCL10, CCL5 and CCL2 RNA expression in purified tumour cells (Tumour), tumour-infiltrating leucocytes (TIL) and
unfractionated HCC nodules (HCC) from freshly resected tumours. The chemokines are expressed in all three compartments. Graphs show means and
SD normalised to Tumour. (B) Representative immunohistochemistry images of CXCL10 (left) and CCL5 (right) showing expression in cells with cancer
cell morphology. Bar¼50 mm; 3200 magnification. (C) Representative immunofluorescence (IF) images showing co-localisation of CXCL10 (red) and
CD68 (green). Bar¼20 mm; 3800 magnification. (D) Representative IF images showing co-localisation of CCL5 (red) with either CD68 or CD3 (green).
Bar¼20 mm; 3800 magnification. DAPI, 49,6-diamidino-2-phenylindole.
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predicts patient survival in both the training cohort (p¼0.0004
and HR¼5.2; figure 1D) and the validation cohort (p¼0.0051
and HR¼2.5; figure 1E). Multivariate analysis showed that this
gene signature is an independent predictor of survival together
with stage when six parameters are analysed (table 2). Strik-
ingly, when stage IV patients were excluded, the immune
signature was the only predictor of survival (table 2).

Superior predictive power of the 14 immune-gene signature in
early-stage patients
In the Singapore cohort, 60% of patients presented with stage I
disease at diagnosis (table 1). We therefore measured the
performance of the identified immune signature in patients with
early (stages I and II) disease and compared it with clinical
parameters generally used for prognosis of such patients. First,
we noted that stage I (n¼55) and II (n¼46) patients (from both
the training and validation cohorts) present a wide range of
survival times, from a few months to >15 years (Supplementary
figure 2). The immune signature accurately predicted the overall
survival of these patients in KaplaneMeier analyses (stage I,
p¼0.009, HR¼5.8; stage II, p<0.0001, HR¼11.8) (figure 2A,C).
In contrast, clinical parameters such as grade (figure 2B,D),
serum a-fetoprotein (AFP) concentration or tumour size
(Supplementary figure 2) did not predict overall survival of these
patients. Similar results were obtained from bootstrapping
analysis (Supplementary figure 1).

The predictive power of the 14-gene signature was also tested
in various subgroups of patients (figure 2E). Interestingly, it did
not predict the survival of stage III or IV patients. Therefore, the
immune signature allows a robust and reliable prediction of
overall survival in patients with early HCC for whom classical
clinical parameters are not significant.

CXCL10, CCL5 and CCL2 expression correlates with
intratumoural infiltration of Th1, CD8+ T and NK cells
Chemokine and chemokine receptor genes such as CXCL10,
CCL5, CCL2 and CCR2 constitute a prominent group in the
immune signature identified. Since chemokines are critical for
attracting immune cells,19 we predicted that expression of these
chemokines would correlate with tumour infiltration by defined
immune cell subsets. To investigate this, we searched for corre-
lations at the transcriptional level in 172 patient samples from
both the training and validation cohorts. RNA expression of
CXCL10, CCL5 and CCL2 correlated with markers of Th1 cells
(TBX21), CD8+ T (CD8A) and NK (NCR3) cells (marked in red,
figure 3A). Interestingly, TBX21, CD8A and NCR3 are also
among the genes present in the signature. There was no corre-
lation between expression of these chemokines and markers of
other immune cell subsets such as macrophages (CD14 and
CD68), Th2 (IL13), Th17 (IL17), Treg (FoxP3 and IL10), B (CD19)
or dendritic (CD83) cells (marked in blue, figure 3A). This shows
that CXCL10, CCL5 and CCL2 are associated with, and likely to

Figure 4 Continued.
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attract specifically, Th1, CD8+ T and NK cells into HCC
tumours.

To support this further, we measured the surface expression of
CXCR3, CCR5 and CCR2 (the main receptors for CXCL10,
CCL5 and CCL2, respectively) on PBMCs from healthy donors
and patients with HCC, as well as on infiltrating leucocytes
isolated from freshly resected tumours (TILs) or adjacent non-
tumoural tissues (non-tumour-infiltrating lymphocytes or
NILs). Flow cytometry analysis showed that T and NK cells
represent the majority of the immune subsets expressing
CXCR3 and CCR5 (Supplementary figure 3A). Furthermore,
a greater percentage of T and NK cells express CCR5 and CCR2
in the PBMCs, TILs and NILs of patients as compared with
healthy donor PBMCs (Supplementary figure 3A). This obser-
vation may indicate an increased propensity of T and NK cells
from HCC patients to be attracted by CCL5 and CCL2.

We also analysed CXCL10 expression in tumour sections using
IF. We first verified that CXCL10-specific IF correlated
with mRNA expression (Supplementary figure 3B). We next
showed that higher CXCL10-specific IF (figure 3B) was
observed in samples with a higher density of CD8+ and CD56+

cells, as determined by IHC. Further quantification showed that
the CXCL10 IF correlated with the density of CD8+ T cells
and CD56+ NK cells (CD8, n¼27, p¼0.028, r¼0.42; and
CD56, n¼19, p¼0.042, r¼0.47) (figure 3C) and also with
patient survival (n¼25, p¼0.024, HR¼ 3.5) (Supplementary
figure 3C).

Taken together, these data strongly suggest that CXCL10,
CCL5 and CCL2 are the main chemokines attracting Th1 Tcells,
CD8+ T cells and NK cells into the tumour microenvironment.

Chemokines associated with patient survival are produced by
both cancer cells and TILs
To understand the molecular interactions taking place within
the tumour, we sought to identify the source of CXCL10, CCL5
and CCL2 within HCC. Single-cell suspensions from fresh
tumour samples were separated into tumour cells and TILs,
followed by chemokine expression analysis using qPCR. The
three chemokine genes were transcribed in both tumour cells
and TILs (figure 4A). Furthermore, when CXCL10 and CCL5
expression was analysed in situ by IHC, many chemokine-
producing cells exhibited cancer cell morphology (figure 4B).
CXCL10 was also expressed by TILs. IF on tumour sections,
combining labelling for CXCL10 and immune cell markers
(CD68, CD3 and CD20), revealed that most of the CXCL10-
producing immune cells co-expressed CD68 (figure 4C) but not
T or B cell markers (data not shown). Similarly, we found co-
localisation of CCL5 and CD68 (figure 4D). Hence, macrophages
within HCC tumours express both CXCL10 and CCL5.
Besides macrophages, CCL5 was also produced by CD3+ T

cells (figure 4D). Given the ability of CCL5 to attract Tcells, this
suggests an autocrine loop in which CCL5 produced by macro-
phages and/or cancer cells attracts T cells, which produce more
CCL5 to amplify T cell infiltration further.

TNFa, IFNg and TLR3 ligands induce expression of CXCL10,
CCL5 and CCL2 by HCC cells and induce transmigration of T and
NK cells
TNFa, IFNg and TLR agonists stimulate CXCL10, CCL2 and
CCL5 secretion by monocytes/macrophages,20e22 but little is
known about the regulation of these chemokines in cancer cells.

Figure 5 The production of CXCL10, CCL5 and CCL2 by HCC cell lines is induced by interferon g (IFNg), tumour necrosis factor a (TNFa) and Toll-like
receptor 3 (TLR3) ligands. ELISA for (A) CXCL10, (B) CCL5 and (C) CCL2 concentration in culture supernatants from the SNU-182 hepatocellular
carcinoma (HCC) cell line 24 h after stimulation with IFNg, TNFa and/or poly(I:C). Two-tailed Student unpaired t test; *p<0.05; **p<0.01; ***p<0.001
compared with unstimulated control. Graphs show the means and SD from three independent experiments. (D) CXCL10, CCL5 and CCL2 RNA are
positively correlated with IFNG, TNF and TLR3 in patients with HCC (training and validation cohort, n¼172). Graphs show the p value against Pearson
correlation coefficients r. Dotted lines show limits of significance for r (r¼0.15) and p (p¼0.05). (E) Transmigration assay with peripheral blood
mononuclear cells (PBMCs) isolated from healthy donors (n¼3) towards unstimulated or stimulated SNU-182 cells with IFNg and poly(I:C) 24 h prior to
transmigration. In blocking experiments, PBMCs were pretreated with anti-CXCR3 or anti-CCR5 neutralising antibodies at 378C for 1.5 h. Graphs show
means and SEM. p Values were calculated using paired t test against basal transmigration towards unstimulated HCC. *p<0.05. NK, natural killer.
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Figure 6 High chemokine expression levels, hence tumour infiltration by T and natural killer (NK) cells, are associated with superior patient survival.
(A) Representative immunohistochemistry (IHC) images of CD8 and CD56 labelling (in red) showing higher density of CD8+ T and CD56+ NK cells in
tumours from patients with longer survival (median survival >3.9 years). Bar¼50 mm; 3200 magnification. (B) KaplaneMeier analysis showing that
high density of intratumoural CD8+ and CD56+ immune cells is associated with superior patient survival. A subset of patients was chosen for immune
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We used the HCC cell line SNU-182 to address this question.
SNU-182 cells were treated with IFNg, TNFa and the TLR3
ligand poly(I:C) separately or in combination, and culture
supernatants were analysed. While IFNg or TNFa alone had
little effect, CXCL10 was strongly induced by the combination
of IFNg and TNFa (figure 5A). Poly(I:C) alone significantly
induced CXCL10 expression, and this effect was further
enhanced by addition of IFNg (figure 5A). Poly(I:C) also induced
CCL5 expression, while IFNg or TNFa alone or in combination
had no detectable effect (figure 5B). All three factors induced
CCL2 expression, but no synergistic effect was observed (figure
5C). Chemokine gene induction could be observed by qPCR
already 6 h after treatment (data not shown).

To validate these observations in patient samples, we
compared RNA expression of CXCL10, CCL5 and CCL2 and that
of IFNG, TNF and TLR3within tumours. Expression of the three
chemokines correlated with that of IFNG, TNF and TLR3
(n¼172 patients from both the training and validation cohorts;
figure 5D).

A transwell migration assay was performed using stimulated
SNU-182 cells and healthy donor PBMCs. The induction of
chemokines in stimulated SNU-182 cells induced transmigration
of T (fivefold increase) and NK cells (2.5-fold increase), without
affecting other leucocytes (data not shown). Transmigration of
T and NK cells was abolished when PBMCs were pretreated
with anti-CXCR3 (CXCL10) or anti-CCR5 (CCL5) neutralising
antibodies (figure 5E).

Taken together, these data indicate that IFNg, TNFa and
TLR3 ligands are potent inducers of the survival-associated
chemokines CXCL10, CCL5 and CCL2. These chemokines
attract T and NK cells which, upon activation, produce more
IFNg, triggering a paracrine loop leading to further amplification
of chemokine production and lymphocyte infiltration.

Lymphocyte-attracting chemokines are associated with
enhanced cancer cell death
CD8A and NCR3, two genes specific for CD8+ T cells and NK
cells, respectively, are present in our gene signature and globally
more expressed in long-term survivors. This is indeed reflected by
enhanced infiltration of CD8+ Tand CD56+ NK cells within the
tumour samples from patients with longer survival (figure 6A,
a subset of patients chosen for validation n¼36 or 46).
KaplaneMeier analyses showed that a higher density of infil-
trating CD8+ T (n¼46, p<0.0001, HR¼7.9) and CD56+ NK cells
(n¼36, p¼0.016, HR¼3.7) correlated with patient survival
(figure 6B). Importantly, this was not observed for CD68+

macrophages (Supplementary figure 4). In this subset of patients,
the current immune signature was superior at predicting patient
survival compared with tumour infiltration by Tcells or NK cells.

We previously reported that the density of CD8+ T cells and
CD56+ NK cells in HCC tumours correlates with cancer cell
apoptosis detected by activated caspase-3 staining.16 Since
CXCL10 and TLR3 activation play a major role in recruiting

these cells, we examined if CXCL10 and TLR3 expression
correlates with cancer cell apoptosis. Indeed, protein expression
of CXCL10 (n¼26, p¼0.02, r¼0.45; figure 6C) and TLR3 (n¼39,
p¼0.04, r¼0.33; figure 6D), an important inducer of CXCL10,
CCL5 and CCL2, correlated with activated caspase-3 expression
in cancer cells. Taken together, these correlations suggest
a model in which chemokines expressed by cancer cells recruit
lymphocytes that kill cancer cells, thereby contributing to
prolonged patient survival. Such a model would predict that
during the course of disease progression, cancer cells with
reduced chemokines and TLR3 expression will be selected.
Indeed, tumours from patients with more advanced HCC
(stages IIeIV; n¼114) exhibit significantly lower RNA expres-
sion of CXCL10, CCL5, CCL2 and TLR3 than those from stage I
patients (n¼57) (figure 6E). This further confirms the crucial role
of chemokines in shaping a protective immune environment
early in disease development.

DISCUSSION
In the present study we identified an immune signature which
predicts the survival in resectable HCC irrespective of patient
ethnicity or disease aetiology. Interestingly, it predicts the
survival of early-stage patients for whom classical clinical
parameters provide limited or no survival information. This
signature, derived from resected HCC, comprises 14 genes
coding for chemokines, inflammatory cytokines and lymphocyte
markers. By combining transcriptome analysis, in situ staining
and in vitro experiments, we identified regulatory circuits that
shape and maintain a protective immune milieu within the
tumour, leading to prolonged patient survival (figure 6F).
The immune signature was derived and tested using Singa-

porean patients and further validated in an independent cohort
from Hong Kong and Zurich. The predictive value of the signa-
ture was also verified separately in various subgroups of patients
(figure 2E). This consistency across different subsets of patients
indicates that immune parameters determining disease progres-
sion are conserved irrespective of HCC heterogeneity. This is
remarkable since HCC is known to be derived from multiple cell
types (including hepatocytes or adult stem/progenitor cells)23

and caused by several aetiologies. Therefore, molecular features
derived from the intratumoural immune response may be of
better prognostic value than those relying on cancer cell char-
acteristics. The loss of predictive power in female patients might
be explained by the known gender disparity in the risk for HCC
which is linked to oestrogen-mediated inhibition of interleukin 6
(IL-6)24 25 as IL6 is one of the genes in our signature.
Previously, several studies using genomic approaches identified

gene signatures that stratify HCC patients according to clinical
prognosis.8e12 These signatures were derived either from the
adjacent non-tumour tissue or from the tumour itself. Signa-
tures derived from the adjacent tissues emphasise risk factors for
developing de novo tumours and support the ‘field defect’
hypothesis.10 Interestingly, immune characteristics of the

cell quantification by IHC (CD8, n¼46, median¼74 cells per field; CD56, n¼36, median¼ 42 cells per field; training and validation cohort). p, log rank p
value. (C) CXCL10 (n¼26) immunofluorescence and (D) Toll-like receptor 3 (TLR3) (n¼39) IHC staining area positively correlated with the density of
activated caspase-3-positive tumour cells. r, Spearman (CXCL10) or Pearson (TLR3) correlation coefficient. (E) Downregulation of CXCL10, CCL5, CCL2
and TLR3 RNA expression in stages IIeIV (n¼114) compared with stage I patients with hepatocellular carcinoma (HCC) (n¼57). Graphs show means
and SEM. p Values were calculated using two-tailed ManneWhitney U test. *p<0.05; **p<0.01; ***p<0.001. (F) Model showing that the
inflammatory cytokines tumour necrosis factor a (TNFa), interferon g (IFNg) and Toll receptor-like (TLR) ligands stimulate cancer cells or macrophages
to produce the key chemokines CXCL10, CCL5 and CCL2. These chemokines induce tumour infiltration by T helper 1 (Th1), CD8+ T and NK cells which
induce cancer cell killing and tumour control. Positive feedback loops result from the production of IFNg by activated T or NK cells that further enhance
CXCL10 production (red arrow) and CCL5 by activated T cells that can attract more T cells (blue arrow).

Figure 6 (Continued)
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adjacent liver tissues have also been shown to impact patient
survival.9 10 On the other hand, signatures derived from the
tumour itself focus on genes involved in proliferation and the
cell cycle8 11 26 or on the identity of tumour-initiating cells.27 28

The current study is the first to focus exclusively on immune
genes expressed within the tumour, and to show that the HCC
immune milieu has an impact on disease outcome.

It may seem paradoxical that inflammation, an established
risk factor for developing HCC, could play a protective role in
HCC progression.29 30 For instance, IL-6 and TNFa were shown
to promote HCC tumourigenesis.31e33 However, we found that
these two cytokines correlate with longer patient survival in the
present study. The beneficial impact of an active immune
response within the tumour microenvironment is well estab-
lished for non-small cell lung cancer (NSCLC),34 colorectal
cancer35 36 and other malignancies.37 IL-6 and IL-8 were also
reported to have a protective role in human colon adenomas.38

Similarly, depending on the mouse model, nuclear factor-kB (NF-
kB), a major regulator of inflammation, suppresses or promotes
HCC development.39 40 Additionally, expression of the same
biomarker, for example, IL-6, in the serum or within the tumour
may also reflect different biological processes.16 41 These
apparent contradictions indicate that the effect of inflammation
is context dependent and that the same cytokine may have
opposite effects on HCC tumourigenesis and progression.42

In our model, inflammatory cytokines (TNFa and IFNg) and
TLR ligands (probably released from necrotic cells) induce
chemokine expression within the tumour microenvironment.
These chemokines (CXCL10, CCL5 and CCL2) could recruit
immune cells, which display antitumour activity reflected by
enhanced activated caspase-3 expression in cancer cells.
Furthermore, infiltrating immune cells augment chemokine
production (possibly through secretion of IFNg or TNFa upon
activation43) or directly secrete chemokines (CCL5), further
stabilising the protective immune microenvironment. Such
paracrine or autocrine loops are typical of complex biological
systems as they provide efficient ways of amplifying signals and
maintaining a particular immune status.44 Interestingly, no
single cell type or molecular cue plays a unique role in shaping
the immune microenvironment. Chemokines are produced by
both cancer cells and TILs, while IFNg is produced by Th1 and
NK cells. Such redundancy also participates in the robustness of
the protective environment, which has to be maintained for
years in order to impact patient survival. The current immune
signature predicts survival in patients in stages I and II but not
in those in stages III and IV. This shows that a protective
immune response has to be established early enough to be
effective. Hence we propose that once the tumour has been
established for prolonged periods of time, multiple layers of
immune tolerance may prevent the efficacy of antitumour
responses.45 46 It was therefore predictable and also shown in
this study that cancer progression would be associated with
downregulation of chemokines critically involved in the shaping
of a protective immune microenvironment.

In summary, our study reveals extensive cross-talk between
cancer cells and tumour-infiltrating immune cells in establishing
a protective immune milieu able to delay HCC progression.
Improved understanding of the molecular pathways leading to
a protective immune microenvironment will help in the rational
design of new therapeutic approaches for patients with HCC.
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