Hyaluronan impairs vascular function and drug delivery in a mouse model of pancreatic cancer

Michael A Jacobetz,1 Derek S Chan,1,2 Albrecht Neesse,1 Tashina E Bapiro,1,2 Natalie Cook,1,2 Kristopher K Frese,1 Christine Feig,1 Tomoaki Nakagawa,1 Meredith E Caldwell,1 Heather I Zecchini,1 Martijn P Lokkema,1 Ping Jiang,3 Anne Kultti,3 Curtis B Thompson,3 Daniel C Maneval,3 Duncan I Jodrell,1 Gregory I Frost,3 H M Shepard,3 Jeremy N Skepper,4 David A Tuveson1,2

ABSTRACT

Objective Pancreatic ductal adenocarcinoma (PDA) is characterised by stromal desmoplasia and vascular dysfunction, which critically impair drug delivery. This study examines the role of an abundant extracellular matrix component, the megadalton glycosaminoglycan hyaluronan (HA), as a novel therapeutic target in PDA.

Methods Using a genetically engineered mouse model of PDA, the authors enzymatically depleted HA by a clinically formulated PEGylated human recombinant PH20 hyaluronidase (PEGPH20) and examined tumour perfusion, vascular permeability and drug delivery. The preclinical utility of PEGPH20 in combination with gemcitabine was assessed by short-term and survival studies.

Results PEGPH20 rapidly and sustainably depleted HA, inducing the re-expansion of PDA blood vessels and increasing the intratumoral delivery of two chemotherapy agents, doxorubicin and gemcitabine. Moreover, PEGPH20 triggered fenestrations and interendothelial junctional gaps in PDA tumour endothelia and promoted a tumour-specific increase in macromolecular permeability. Finally, combination therapy with PEGPH20 and gemcitabine led to inhibition of PDA tumour growth and prolonged survival over gemcitabine monotherapy, suggesting immediate clinical utility.

Conclusions The authors demonstrate that HA impedes the intratumoral vasculature in PDA and propose that its enzymatic depletion be explored as a means to improve drug delivery and response in patients with pancreatic cancer.

INTRODUCTION

Pancreatic ductal adenocarcinoma (PDA) is a malignancy with a dire prognosis due to aggressive disease on clinical presentation and poor chemotherapeutic response.1 The fluorinated nucleoside analogue gemcitabine (2,2’-difluorodeoxycytidine, dFdC) remains the antineoplastic agent of choice, offering a survival benefit of little more than 5 weeks,2 while gemcitabine-based combination therapies have shown limited progress in advancing survival.3 Understanding of genetic alterations in PDA has allowed the generation of genetically engineered mouse models (GEMMs), bearing autochthonous tumours that recapitulate the human pathology.4–6 A mechanism for intrinsic gemcitabine resistance has recently been reported in one such GEMM, the LSL-Kras^{G12D}+/+,LSL-Trp53^{R172H}+/+,Pdx-t-Cre (KPC) mouse.7 Compared with subcutaneous tumours of syngeneic origin, KPC tumours demonstrated a desmoplastic stroma and lower mean vessel densities, thus limiting the accumulation of the active gemcitabine triphosphate (dFdCTP).7 A similar perfusion deficit has been observed in an
Table 1 Human TMA

<table>
<thead>
<tr>
<th>Tissue origin</th>
<th>% Cases with +HA staining</th>
</tr>
</thead>
<tbody>
<tr>
<td>Breast</td>
<td></td>
</tr>
<tr>
<td>Tumour (N=117, 56%)</td>
<td></td>
</tr>
<tr>
<td>Normal (N=13, 23%)</td>
<td></td>
</tr>
<tr>
<td>Prostate</td>
<td></td>
</tr>
<tr>
<td>Tumour (N=110, 46%)</td>
<td></td>
</tr>
<tr>
<td>Normal (N=17, 5.8%)</td>
<td></td>
</tr>
<tr>
<td>Bladder</td>
<td></td>
</tr>
<tr>
<td>Tumour (TCC) (N=106, 43%)</td>
<td></td>
</tr>
<tr>
<td>Normal (N=8, 0%)</td>
<td></td>
</tr>
<tr>
<td>Stomach</td>
<td></td>
</tr>
<tr>
<td>Tumour (adenocarcinoma) (N=95, 42%)</td>
<td></td>
</tr>
<tr>
<td>Normal (N=14, 0%)</td>
<td></td>
</tr>
<tr>
<td>Pleura</td>
<td></td>
</tr>
<tr>
<td>Tumour (mesothelioma) (N=52, 37%)</td>
<td></td>
</tr>
<tr>
<td>Normal (N=15, 0%)</td>
<td></td>
</tr>
<tr>
<td>Lung</td>
<td></td>
</tr>
<tr>
<td>NSCLC (N=106, 29%)</td>
<td></td>
</tr>
<tr>
<td>SCLC (N=21, 10%)</td>
<td></td>
</tr>
<tr>
<td>Normal (N=21, 0%)</td>
<td></td>
</tr>
<tr>
<td>Ovary</td>
<td></td>
</tr>
<tr>
<td>Tumour (N=185, 12%)</td>
<td></td>
</tr>
<tr>
<td>Normal (N=31, 0%)</td>
<td></td>
</tr>
<tr>
<td>Colon</td>
<td></td>
</tr>
<tr>
<td>Tumour (N=136, 28%)</td>
<td></td>
</tr>
<tr>
<td>Normal (N=25, 8%)</td>
<td></td>
</tr>
<tr>
<td>Bone marrow</td>
<td></td>
</tr>
<tr>
<td>Multiple myeloma (N=27, 3.7%)</td>
<td></td>
</tr>
<tr>
<td>Normal (N=35, 0%)</td>
<td></td>
</tr>
<tr>
<td>Pancreas</td>
<td></td>
</tr>
<tr>
<td>Ductal adenocarcinoma (N=99, 90%)</td>
<td></td>
</tr>
<tr>
<td>Acinar cell carcinoma (N=2, 0%)</td>
<td></td>
</tr>
<tr>
<td>Mucinous adenocarcinoma (N=3, 5%)</td>
<td></td>
</tr>
<tr>
<td>Papillary adenocarcinoma (N=14, 25%)</td>
<td></td>
</tr>
<tr>
<td>Squamous cell carcinoma (N=2, 100%)</td>
<td></td>
</tr>
<tr>
<td>Normal (N=25, 4%)</td>
<td></td>
</tr>
</tbody>
</table>

HA staining is most common in pancreatic ductal adenocarcinoma in comparison to other major human tumours. HA, hyaluronan; TMA, tissue microarray; TCC, transitional cell carcinoma; NSCLC, non-small cell lung carcinoma; SCLC, small cell lung carcinoma.

independent study in mice and human FDA.8 9 Stromal depletion by Smoothed inhibition in KPC mice increased perfusion, intratumoral dFdCTP and overall survival, suggesting that therapeutic failure of gemcitabine arises from a potentially reversible impairment in drug delivery.9

Osteochondral angiogenesis is a potent growth factor for myocardial tissue revascularisation.10 11 In contrast to other epithelial cancers, the pathological significance of its rheological and signalling properties has not been fully investigated in this malignancy.12 13 In this study, we sought to investigate the angiogenesis and tumorous vascular compression in the KPC GEMM and identified HA as a critical modality of tumorous vascular function. Its enzymatic depletion by PEGPH20 resulted in an improvement in tumour vascular patency, as well as an unexpected selective change in tumour endothelial ultrastructure and macromolecular permeability. Our data predict hyaluronidase synergism with cytotoxic agents and demonstrate a significant survival benefit with combination therapy, providing HA as a novel stromal therapeutic target to consider for patients with pancreatic cancer.

MATERIALS AND METHODS

Mice

Experiments were carried out within the Cancer Research UK Cambridge Research Institute’s Biological Resources Unit, under the terms of the Home Office Project Licenses PPL50/2072 and 80/2539 and subject to Cancer Research UK ethical review. The generation of tumour-bearing KPC (LSL-Tp53R172H/+;LSL-KrasG12D/+;Pdx-1-Cre) mice has previously been described.5 Where appropriate, PC (LSL-Tp53R172H/+;Pdx-1-Cre) littermates, which did not develop any pancreatic lesions within the experimental time frame, served as healthy controls. KPC mice were enrolled onto studies once tumour volume reached 270±100 mm3, as assessed by three-dimensional ultrasonography.7

Vascular function studies

At least four mice were evaluated for each experimental arm. One hour after the final dose of PEGPH20, mice received an intravenous infusion of fluoro-phore-labelled lectin only (vascular patency assay) or of fluoro-phore-labelled lectin and dextran (permeability assay). Thirty minutes later, mice were terminally perfused with 50 ml of 4% paraformaldehyde/phosphate buffered saline (pH 7.4). Perfused tissues were harvested, fixed for 16–24 h in paraformaldehyde and transferred to 70% ethanol before paraffin embedding. Sections were deparaffinised, rehydrated and, for vascular patency assays, immunostained for MECA-32 (see Immunostaining and HA histochemistry section). All sections were counterstained with 4’,6-diamidino-2-phenylindole (DAPI). Visualisation was performed on a Leica SP5 confocal microscope (Leica Microsystems, Wetzlar, Germany) using standardised settings, and background signal intensities were established against unlabelled terminally perfused samples. Mean vessel densities were quantified as the average number of CD31+ vessels in a minimum of 10 non-adjacent 40× fields.

Pharmacodelivery studies

For the doxorubicin delivery assay, a minimum of five mice from each arm were included for analysis. Mice received an intravenous infusion of doxorubicin 1 h after the final dose of PEGPH20. Mice were then terminally perfused with paraformaldehyde, and tissues processed as above. Sections were deparaffinised, rehydrated and counterstained with DAPI. Doxorubicin fluorescence was quantified with the CompuCyte iCys Research Imaging Cytometer and iNovator software (CompuCyte Westwood, MA, USA), as previously described.7

Correspondence

I.C. is supported by a Medical Research Council Career Development Fellowship (G0800709). J.R. is supported by the wellcome trust (095080), the Leverhulme Trust (RPG-2013-237) and Astellas. Any views expressed here are those of the authors and not necessarily those of the funding agencies.
For the gemcitabine delivery assay, a minimum of five mice from each arm were included for analysis. Mice received intravenous gemcitabine 8 h after a single dose of PEGPH20 or vehicle. Plasma was obtained by cardiac puncture under terminal isoflurane anaesthesia, 2 h after gemcitabine administration, and tissues were harvested shortly thereafter. All samples were frozen in liquid nitrogen and processed as described for liquid chromatography-tandem mass spectrometry analysis of fluorinated metabolites.

Survival study

KPC mice bearing tumours of 270±100 mm³ were assigned to one of four arms—vehicle, intraperitoneal gemcitabine, PEGPH20 or PEGPH20/intraperitoneal gemcitabine in combination (dosed 30 min apart)—and treatments were administered accordingly. Once enrolled onto a survival study, mice were monitored by three-dimensional ultrasonography every 3 days to allow calculation of tumour volumes. Endpoint criteria were defined as 20% body weight loss in addition to general morbidity, lethargy, lack of social interaction or development of ascites.

Immunostaining and HA histochemistry

Samples at study end point were fixed in 4% paraformaldehyde or in 10% neutral buffered formalin for 16–24 h and transferred to 70% ethanol before paraffin embedding. Three-micrometre sections were generated, and one section from each sample was stained with H&E for analysis of morphological integrity. Where appropriate, stained sections were scanned at 20× magnification using Aperio ScanScope CS instrument and were analysed in Spectrum (Aperio Vista, CA, USA).

For immunostaining with most antibodies, sections were deparaffinised, rehydrated and antigen retrieval performed with citric acid (pH 6.0) in an 850 W microwave. For CD31 immunostaining, antigen retrieval was performed with proteinase K at 37°C. Non-specific protein binding was blocked with 10% goat serum (Sigma St Louis, MA, USA) for immunohistochemistry and 10% donkey serum (Sigma) for immunofluorescence. Sections were incubated with primary antibodies for 1 h at room temperature or overnight at 4°C. The primary antibodies used were against PV-1 (MECA-32, 1:50; Santa Cruz Biotechnology, Santa Cruz, CA, USA) and CD31 (MEC 13.3, 1:50; BD Biosciences, Franklin Lakes, NJ, USA). For immunohistochemistry, remaining steps were carried out using appropriate Vectastain Elite ABC kits (Vector Laboratories, Burlingame, CA, USA) and DAB Peroxidase Substrate (Vector Laboratories), with haematoxylin counterstaining. For immunofluorescence, sections were incubated with appropriate AlexaFluor-conjugated secondary antibodies for 1 h at room temperature and counterstained with DAPI.

For HA histochemistry, biotinylated HA binding protein (bHABP, Calbiochem catalogue number 385911; Merck KGaA, Darmstadt, Germany) was used. Sections were deparaffinised, rehydrated and blocked with 3% bovine serum albumin (BSA)
prior to incubation with bHABP (1:200 in 1% BSA) overnight at 4°C. Remaining steps were carried out using Vectastain Elite ABC kit Standard (Vector Laboratories) and DAB Peroxidase Substrate (Vector Laboratories), with haematoxylin counterstaining.

HA tissue microarray

Tissue microarrays were purchased from US Biomax Inc Rockville, MD, USA and stained with bHABP as described above. The slides were scanned at 20× magnification using Aperio ScanScope CS instrument and analysed in Spectrum automated slide analysis software (Aperio) using the positive pixel count algorithm. A ratio of strong positive stain area to the sum of total stained area was calculated and scored as 3+, 2+, 1+ or 0 when the ratio was more than 25%, 10%–25%, less than 10% or 0, respectively. See Supplemental Methods for further information.

Statistical analysis

GraphPad Prism 5 was used for all statistical analyses. The log-rank test was performed on the Kaplan–Meier survival curves, and the Mann–Whitney U test was performed for all other analyses.

RESULTS

HA accumulates in PDA and may be rapidly and sustainably degraded by PEGPH20

Using a modified histochemical method with bHABP and computer-assisted analysis, we examined the HA content in 204 normal and 1130 malignant human tissue samples. While a minority of normal epithelia demonstrated 1+ staining, HA was more frequently and abundantly detected in epithelial malignancies (table 1). Human PDA had the highest incidence of detectable HA content, and the majority of PDA samples was scored 2+ (figure 1A and data not shown). Notably, HA staining was predominantly associated with the desmoplastic stroma rather than with tumour cells. These histopathological observations were recapitulated in the tumours of KPC mice, where 2+ HA staining was observed in the stroma of most ductal tumours (figure 1B). This confirmed the suitability of the...
Figure 3 Depletion of hyaluronan increases macromolecular permeability and induces ultrastructural changes in tumour endothelia. (A) Representative fluorescent images of KPC tumour from vehicle-treated (top panel) and PEGPH20-treated (bottom panel) mice (n=4 mice for each cohort). Mice terminally treated with either low (40 kDa) or high (2 MDa) molecular weight dextrans with biotinylated lectin demonstrate a considerable increase in stromal and vessel permeability at the tumour core in PEGPH20-treated tumours. Arrows denote functional vessels in the field. Scale bar = 500 µm. (B) Scanning electron microscopy images of pancreatic blood vessels in PC (LSL-Trp53^{fl/fl};Pdx-1-Cre) (upper two panels) and KPC (LSL-Kras^{G12D/+};LSL-Trp53^{fl/fl};Pdx-1-Cre) (lower two panels) mice following treatment with either vehicle or PEGPH20 (n=4 mice for each cohort) reveal endothelial fenestrations (white arrowheads) only in PEGPH20-treated KPC mice. (C) Quantification of density of fenestrae in intratumoral KPC blood vessels (n=3 mice for each cohort, four random vessels per mouse) revealed a significant increase following treatment with PEGPH20 (**p<0.0001). (D) Representative transmission electron micrographs from vehicle-treated (left panels) and PEGPH20-treated (right panels) tumours (n=4 mice for each cohort). Vehicle-treated tumours demonstrate juxtaposed endothelial cell membranes (red arrowheads), while prominent interendothelial gaps are present following treatment with PEGPH20 (designated by white diamonds, endothelial cell membranes denoted by blue arrowheads).
To determine whether HA could be depleted from primary pancreatic tumours, PEGPH20 was intravenously administered to KPC mice and tumours collected over a 3-day time course. A single dose of PEGPH20 at 4.5 mg/kg depleted intratumoral HA in a heterogeneous pattern within hours of administration, with little detectable HA remaining up to 72 h later (figure 1B).

Depletion of HA improves vascular patency and increases chemotherapeutic delivery

Consistent with previous reports,7 8 less than one-third of the untreated KPC tumour vasculature is patent as delineated by Lycopersicon esculentum lectin perfusion (figure 2A). To evaluate vascular patency following complete depletion of HA, KPC mice were treated for 3 days with PEGPH20 prior to lectin perfusion and were killed. The hyaluronidase regimen resulted in an increased patency of the tumour vasculature (70% vs 30%, p=0.0286, figure 2A). Moreover, the majority of intratumoral vessels were noted to be prominently open, and, when measured, the mean vessel luminal area was found to be significantly increased (p=0.0085, figure 2B). Since treatment with PEGPH20 did not affect mean vessel density (figure S1), we reasoned that any increased perfusion could be attributed to decompression of existing intratumoral vessels.

We asked if vascular re-expansion might translate to an improvement in drug delivery. Exploiting the autofluorescence of anthracyclines, a significant increase in tumorous doxorubicin uptake was detected following pretreatment with the hyaluronidase (p=0.026, figure 2C). Similarly, mice receiving gemcitabine after a single dose of PEGPH20 demonstrated...
significantly increased intratumoral dFdCTP concentrations when compared with vehicle-pretreated counterparts (p = 0.0053, figure 2D). Of note, PEGPH20 did not alter the plasma pharmacokinetic properties of gemcitabine in control mice (figure S2).

Depletion of HA increases macromolecular permeability and induces ultrastructural changes in tumour endothelia

To further characterise the KPC vasculature following HA depletion, fluorophore-conjugated high-molecular-weight dextrans (40 kDa and 2 MDa) were infused 30 min prior to tissue collection. Dextran extravasation was minimal in untreated tumour tissue but increased dramatically following PEGPH20 treatment (figure 3A). Notably, macromolecular penetration was not improved in any healthy tissues tested (figure S3), even among those of high HA content such as cardiac muscle, suggestive of selective permeabilisation of the tumour vasculature.

The rapid and extensive intratumoral accumulation of 2 MDa dextran after PEGPH20 administration was unexpected, given
its large Stoke’s radius. This prompted an examination of the
homeostatic network of the tumour endothelial ultrastructure for vascular integrity and
markers of induced hyperpermeability, which include fenestrae and intercellular gaps.26–29 Notably, scanning electron microscopy
revealed few fenestrations in the untreated tumour, comparable to endothelia in the healthy pancreata of control mice (figure 2B). Moreover, treatment-naïve vasculature showed
intact interendothelial junctions by transmission electron microscopy (figure 3D). By contrast, PEGPH20 induced a significant
increase in fenestrae (p<0.0001, figure 3B,C) and more prominent interendothelial gaps (figure 3D), a hyperpermeability-associated
phenotype reminiscent of VEGF-activated vasculature.27–29

Combination therapy with PEGPH20 and gemcitabine inhibits
tumour growth and significantly extends survival

Given the improvement in pharmacodelivery, we evaluated
whether PEGPH20 provided any therapeutic benefit to KPC mice either alone or in combination with gemcitabine. While
gemcitabine monotherapy decreased tumour growth only
modestly, the combination of PEGPH20 and gemcitabine
significantly inhibited growth over 5 days of treatment
(p<0.001, figure 4A). During the same period, PEGPH20
monotherapy had no effect on tumour growth (figure 4A).
Growth inhibition was accompanied by a decrease in intra-
tumoral proliferation as assessed by phospho-histone H3 staining (p=0.043, figure 4B).

To determine whether these findings impacted upon the
lethality of PDA, KPC mice were subsequently treated for an
extended period with each agent as monotherapy, with a vehicle or with the gemcitabine/PEGPH20 combination. Similar to the
5-day analysis, treatment with PEGPH20 or gemcitabine alone
had insignificant effects on the survival of KPC mice in comparison to vehicle-treated mice (figure 4C). However, extended treatment with the gemcitabine/PEGPH20 combination
significantly improved median survival over gemcitabine
monotherapy (28.5 vs 15 days, p=0.002, figure 4C). Most mice in the
gemcitabine/PEGPH20 combination cohort experienced
stable tumour growth (figure S4) and hyaluronidase activity
persisted up to study end point (figure S5).

DISCUSSION

We recently proposed that microenvironmental impairment in
drug delivery may contribute towards the intrinsic chemoresistance of pancreatic cancer and used the Smoothened
inhibitor IPI-926 to augment the response to gemcitabine in
KPC mice.7 However, since hedgehog signalling is implicated in
the survival and propagation of stem-like cancer cells and
cancer-associated fibroblasts,10–12 an additional anti-tumour
effect by IPI-926 could not be excluded. The current study with
PEGPH20 supports the hypothesis that improvement of pharma-
decivery through depletion of select stromal components
may be sufficient for the therapeutic response previously reported.7

The scarcity of endothelial fenestrations and open inter-
endothelial junctions in treatment-naïve KPC tumours stands in
contrast to observations in xenografts, allografts and some
spontaneous tumour models. A defective endothelial monolayer,
characterised by abundant diaphragmed fenestrae and intercel-
ular openings, is associated with VEGF-induced hyper-
permeability28 29 and underlies the vascular leakiness seen in these models.29 33 Since these ultrastructural changes may
permit access to therapeutic agents,29 their absence may
contribute towards delivery inefficiency in the KPC tumour and
explain the differential chemotherapeutic sensitivities between
spontaneous tumours and other models.7 Moreover, the observation
points to relative inactivity of VEGF in the tumour and is
suggestive of signalling antagonism from the abundant angio-
static factors in KPC stroma.34 Such an antiangiogenic milieu is
generated by complex tumour–fibroblast interactions in PDA35
and is frequently absent or lost in the pathogenesis of other
tumour models.36 Furthermore, the persistence of negative
regulators of angiogenesis would explain the hypovascular
phenotype and the failure of anti-VEGF agents in human PDA
and its GEMMs.8 37–39

The unanticipated induction of fenestrations and impairment of
junctional integrity following PEGPH20 may reflect the role of
HA signalling in maintaining the PDA intratumoral vascular
endothelium in a quiescent state. HA has been shown to impart
increased barrier integrity and resistance to lipopolysaccharide-
induced hyperpermeability through CD44-dependent reorga-
nisation of the endothelial actin cytoskeleton.40 Consistent with
this finding, disruption of the HA–CD44 interaction in vivo by
systemic administration of an anti-CD44 monoclonal results in a
rapid permeability increase.51 The generation of low-molec-
ular-weight HA fragments (including oligosaccharides) in large
quantities from intratumoral HA could antagonise existing
HA–CD44 interactions52 53 and may explain for the tumour
specificity of PEGPH20-induced hyperpermeability.

The ultrastructural changes and the vascular re-expansion
from IFP reduction have a multiplicative effect on intra-
tumoral diffusion and convection by increasing both compo-
nents of the permeability-surface area product.42 Furthermore,
IFP reduction results in a favourable hydrostatic pressure
gradient for convective solute delivery. The specificity of this
effect to the tumour suggests utility as an adjunct to agents of
larger hydrodynamic size, such as polymeric drugs, mono-
clonal antibodies and albumin conjugates. Nonetheless, as
prior work in xenografts suggested monotherapy activity of
PEGPH20,20 we cannot exclude the possibility that HA
depletion also sensitises neoplastic cells to gemcitabine
toxicity by removing various survival cues. Finally, the
synergism of PEGPH20 and gemcitabine demonstrated in this
study is of immediate clinical significance and provides
support for investigational trials with this therapeutic
combination (NCT01453153).

Acknowledgements We thank the members of the Tuveson’s laboratory for
assistance and advice, and the animal care staff, histology and microscopy cores at Cambridge Research Institute, specifically F Connor, P Mackin, L Young,
L Shebourne, S Kupczak, M Cronshaw, Y Cheng, M Pryor, E Pryor, B Wilson,
L McDiffus, J Atkinson, J Miller, W Howat and S Reichelt. We also thank E
Milejewska for assisting with SEM.

Contributors MAJ, DSC, AN, NC, CF, TN, MPL and KKF performed in vivo
experiments. MAJ, DSC, AN, HC, AK, PJ and JNS performed microscopy
experiments. MAJ, DSC, AN, TEB, NC, KKF, DCM, CBT and DIJ designed the study and
collected the data. MAJ, DSC, AN, NC, CF, TN, MPL and KKF performed in vivo
experiments. MAJ, DSC, AN, TEB, NC, KKF, DCM, CBT and DIJ designed the study and
collected the data. MAJ, DSC, AN, NC, CF, TN, MPL and KKF performed in vivo
experiments. MAJ, DSC, AN, TEB, NC, KKF, DCM, CBT and DIJ designed the study and
collected the data.

Funding This research was supported by the University of Cambridge and Cancer
Research UK, the Li Ka Shing Foundation and Hutchison Whampoa Limited, the
National Institute for Health Research Cambridge Biomedical Research Centre and the
European Commission Seventh Framework Programme (R7 Health 2010 2.4.1-8,
contract number 256974). AN was supported by the Mildred Scheel Postdoctoral
Fellowship by the Deutsche Krebshilfe. NC was supported by a Cancer Research UK
Clinician Fellowship. CF was supported by the EMBO long-term fellowship and by
a Marie Curie Intra European Fellowship within the Seventh European Community
Framework Programme. MPL has received a Dutch Cancer Foundation Fellowship
grant (UW2008-4380) to support this work. DT and DIJ are group leaders in the Cancer
Research UK Cambridge Research Institute.

Competing interests DCM, CBT, PJ, AK, HIMS and GFT are employees of Halozyme.

Provenance and peer review Not commissioned; externally peer reviewed.

Pancreas
Open access

This is an open access article distributed under the terms of the Creative Commons Attribution Non-commercial, Non-Derivatives License, which permits use, distribution, and reproduction as is in any medium, provided the original work is properly cited, the work is not altered, the use is non-commercial and is otherwise in compliance with the license. See: http://creativecommons.org/licenses/by-nc-nd/3.0/ and http://creativecommons.org/licenses/by-nc-nd/3.0/legalcode.

REFERENCES

120 Gut January 2013 Vol 62 No 1

Downloaded from http://gut.bmj.com/ on June 21, 2017 - Published by group.bmj.com
Hyaluronan impairs vascular function and drug delivery in a mouse model of pancreatic cancer

Michael A Jacobetz, Derek S Chan, Albrecht Neesse, Tashagina E Bapiro, Natalie Cook, Kristopher K Frese, Christine Feig, Tomoaki Nakagawa, Meredith E Caldwell, Heather I Zecchini, Martijn P Lolkema, Ping Jiang, Anne Kultti, Curtis B Thompson, Daniel C Maneval, Duncan I Jodrell, Meredith E Caldwell, Heather I Zecchini, Martijn P Lolkema, Ping Jiang, Anne Kultti, Curtis B Thompson, Daniel C Maneval, Duncan I Jodrell, Gregory I Frost, H M Shepard, Jeremy N Skepper and David A Tuveson

Gut 2013 62: 112-120 originally published online March 30, 2012
doi: 10.1136/gutjnl-2012-302529

Updated information and services can be found at:
http://gut.bmj.com/content/62/1/112

These include:

Supplementary Material
Supplementary material can be found at:
http://gut.bmj.com/content/suppl/2012/03/29/gutjnl-2012-302529.DC1

References
This article cites 43 articles, 23 of which you can access for free at:
http://gut.bmj.com/content/62/1/112#BIBL

Open Access
This is an open-access article distributed under the terms of the Creative Commons Attribution Non-commercial License, which permits use, distribution, and reproduction in any medium, provided the original work is properly cited, the use is non commercial and is otherwise in compliance with the license. See: http://creativecommons.org/licenses/by-nc/3.0/ and http://creativecommons.org/licenses/by-nc/3.0/legalcode

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Topic Collections
Articles on similar topics can be found in the following collections

- Open access (353)
- Pancreas and biliary tract (1949)
- Pancreatic cancer (660)

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/