Table 2 *HLA-C* type of HCV genotype 1 and 3 responders and non-responders

Genotype	Response	HLA-C1/C1 homozygous	HLA-C1/C2 homozygous	HLA-C2/C2 homozygous
HCV genotype 1	Responders	19	15	0
	Non-responders	19	11	7
HCV genotype 3	Responders	13	26	5
	Non-responders	13	9	1

Aims/Background This study investigated associations between host genetic variation and treatment response to standard therapy in HCV genotype 1 and 3 (G3) infected patients. The genetic markers investigated comprised four IL28B SNPs (G1 n=89; G3 n=82): rs12979860, rs8099917, rs4803221, rs7248668; and HLA-C alleles (G1 n=71; G3 n=67): C1/C1, C1/C2 or C2/C2.

Method Nucleic acids were extracted from serum and plasma and SNP typing was performed by allelic discrimination real-time PCR, PCR-SSP and sequencing approaches.

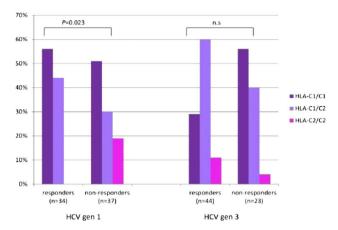
Results For HCV genotype 1 infections, the IL28B SNP rs12979860 was the most significant genetic marker for predicting non-response to treatment, with a positive predictive value of 81.3% in patients homozygous for the Tallele. HLA-C2 homozygosity was found to be significantly associated with non-response in genotype 1 infections (p=0.023). 19% (7/37) of non-responders were HLA-C2/C2 homozygoytes compared to no patients (0/34) with this genotype who achieved SVR. All HCV genotype 1 patients homozygous for HLA-C2, who did not achieve SVR, were rs12979860 heterozygotes (C/T). For HCV genotype 3 patients, no significant association was observed between HLA-C and non-response to treatment (p=0.09).

Prediction measures were calculated using non-response as the outcome of interest, and each genetic variant as the "test" for non-response. The * notation refers to all genotypes containing that allele.

Conclusion A combination of IL28B rs12979860 and HLA-C host genotype may better predict treatment outcomes to standard therapy for HCV genotype 1 infections.

10 **H**

HOMOZYGOSITY FOR HLA-C2 ALLELES IS NEGATIVELY ASSOCIATED WITH TREATMENT RESPONSE WITH PEGLYATED INTERFERON-γ AND RIBAVIRIN IN HEPATITIS C GENOTYPE 1 INFECTED INDIVIDUALS


M Collison, ¹ J L Chin, ² A Abu Shanab, ² R MacNicholas, ² J Connell, ¹ M Carr, ¹ W Hall, ¹ P A McCormick ² ¹ National Virus Reference Laboratory, University College Dublin, Belfield, Dublin 4, Ireland; ²Liver Unit, St Vincent's University Hospital, Dublin 4, Ireland

10.1136/gutjnl-2013-305143.10

Introduction Standard therapy for chronic hepatitis C virus (HCV) infection consists of pegylated interferon-? and ribavirin. This treatment is only effective in 40-50% of patients with HCV genotype 1 (G1) infections. The IL28B single nucleotide polymorphism (SNP) is well described but other host genetic factors may influence treatment response.

Table 1 Predictive values of the *IL28B* genetic variants in HCV genotype 1 and HCV genotype 3-infected individuals receiving standard therapy.

Viral Genotype	Host marker	Reference variant	Risk variant	Specificity%	Sensitivity%	PPV%	NPV%
Gen 1	rs12979860	C*	TT	93.5	30.2	81.3	58.9
		CC	T*	52.2	83.7	62.1	77.4
	rs4803221	C*	GG	95.7	14.0	75.0	54.3
		CC	G*	63.0	69.8	63.8	69.0
	rs8099917	T*	GG	95.7	14.0	75.0	54.3
		TT	G*	63.0	67.4	63.0	67.4
	rs7248668	G*	AA	95.7	14.0	75.0	54.3
		GG	A*	60.9	65.1	60.9	65.1
Gen 3	rs12979860	C*	TT	91.2	4.0	16.7	68.4
		CC	T*	47.4	52.0	30.2	69.2
	rs4803221	C*	GG	98.2	0.0	0.0	69.1
		CC	G*	61.4	44.0	33.3	71.4
	rs8099917	T*	GG	98.2	0.0	0.0	69.1
		TT	G*	61.4	44.0	33.3	71.4
	rs7248668	G*	AA	98.2	4.0	50.0	70.0
		GG	A*	63.2	44.0	34.4	72.0

Figure 1 Frequency of *HLA-C1/C2* in HCV genotype 1 and 3 responders versus non-responders.

Corrections

Collison M, Chin JL, Abu Shanab A, *et al.* Homozygosity for hla-c2 alleles is negatively associated with treatment response with peglyated interferon-γ and ribavirin in hepatitis c genotype 1 infected individuals. Gut 2013;62(Suppl 2):A5. doi: 10.1136/gutjnl-2013-305143.10.

There was an atypographical error in the title, which reads "peglyated" instead of "pegy-lated". In addition, we have noticed two further errors, one in the title and one in the Introduction of the abstract. In the title, 'interferon- γ ' should read 'interferon- α '. In the Introduction, 'interferon-?' should read 'interferon- α '.

Gut 2013;62:1432. doi:10.1136/gutjnl-2013-305143.10corr1