Conclusion CE in patients >80 years of age has high DX, but sinister pathology in this cohort is rare. Furthermore, small-bowel CE has limited impact on the final patient outcome in this patient group.

REFERENCES

3 Tsibouris P, et al. Capsule endoscopy findings in patients with occult or overt bleeding older than 80 years. Dig Endosc 2012;24:154–8
4 Sidhu R, McNlndon ME. Age should not be a barrier to performing capsule endoscopy in the elderly with anaemia. Dig Dis Sci 2011;56:2497–8

Disclosure of Interest None Declared.

PTU-018 AUTOMATIC DETECTION OF ‘SUSPICIOUS’ CAPSULE ENDOSCOPY VIDEO SEGMENTS

A Koulaouzidis,5 S Tsevas,6 D T ikouv idis.7 The Royal Infirmary of Edinburgh, Edinburgh, UK; 6 Technological Educational Institute of Central Greece, Lamia, Greece

Introduction Manual review and annotation of a capsule endoscopy (CE) video requires a considerable amount of reviewing time. The diagnostic accuracy of this process may decrease over time due to reviewer tiredness. Recent studies showed an average detection rate – for the clinically significant findings – as low as 40%.1 We present a generic computational framework for automatic detection of abnormalities in CE videos.

Methods A CE video (MirCam®, Intromedic Co Ltd, Seoul, Korea), depicting inflammatory changes (aphthae, mucosal breaks, ulcers, erythema) was reviewed and manually annotated by experienced CE reviewer. A total of 1984 frames, containing any pathology, were thumbnailed. The proposed framework considers video frames as members of a vector space represented by their colour information. An unsupervised data reduction algorithm,2 which does not require any prior knowledge about the data, was then applied on each segment. This algorithm clusters together frames that exhibit similar characteristics e.g., colour distributions. Its output is a subset of video frames extracted from each cluster by applying a threshold to the clustering result. The extracted frames are characteristic of the particular video segment and as a result representative of possible lesions.

Results The evaluation of the proposed framework aimed to determine its accuracy, in terms of the ratio of the neighbourhoods represented by at least one frame in the system’s output and the neighbourhoods that were manually annotated as suspicious for containing lesions. The parameters considered include clustering from 2 to 6 clusters and thresholds varying from 0.004 to 0.6. The obtained accuracy ranged between 76% to 98% depending on the desired sensitivity level of the algorithm, controlled by the threshold. Furthermore, the automatic selection of the representative CE video segments performed by the proposed approach, the number of video frames to be thoroughly examined can be reduced from 30% to 60% of the original video, depending on the clustering and threshold settings.

Conclusion The application of the proposed framework to the evaluation of CE videos may reduce the rate of false negative evaluations by attracting the attention of the reviewer to automatically identified video segments (or single frames) of interest which are likely to contain lesions.

Disclosure of Interest None Declared.

REFERENCES

Disclosure of Interest None Declared.

PTU-019 ANTITHROMBOTIC VS. ULCER EFFECTS IN NON-VARICEAL BLEEDING IN USERS OF ANTITHROMBOTIC DRUGS

1,2AS Taha*, 3MC clo sky , 2T Craigen, 1WJ Angerson. 1School of Medicine, University of Glasgow, Glasgow, UK; 2Gastroenterology, University Hospital Crosshouse, Kilmarnock, UK

Introduction The use of antithrombotic drugs (ATDs) remains a considerable challenge in the aetiology and management of non-variceal upper gastrointestinal bleeding (NVUGIB). In the upper gastrointestinal tract, ATD use may result in bleeding by mucosal damage (ulcer effect) or through its basic antithrombotic effect. The clinical significance of these effects is unclear.

In this controlled analysis, we AIMED to clarify the signiﬁcance of the antithrombotic effect as compared with the ulcer effect in patients with NVUGIB using ATDs.

Methods We previously found that ATD users tended to be older and to have higher comorbidity and different endoscopy findings. To overcome these confounding factors, we compared 202 patients with NVUGIB using ATDs (ATD Group) with 202 patients with NVUGIB but not using ATDs (Controls), having matched both groups in a pairwise manner for age, Charlson comorbidity score and a composite endoscopic score covering the oesophagus, stomach, and duodenum. Antithrombotic drugs included low-dose aspirin, clopidogrel, dipyridamole, warfarin, and heparin. Patients using NSAIDs were excluded. Characteristics of the groups were compared using the Wilcoxon signed rank test and McNemar’s test. Continuous variables are reported as median (IQR).

Results The characteristics of the two matched study groups are shown in Table 1.

Conclusion After matching for age, comorbidity, and composite endoscopy score, patients with NVUGIB and using ATDs had significantly lower haemoglobin level, higher Blatchford risk score, and were 1.5 times more likely to be transfused. These effects are most likely to be due to the antithrombotic activity of

<table>
<thead>
<tr>
<th>Abstract PTU-019 Table 1</th>
<th>The characteristics of patients with NVUGIB using antithrombotic drugs as compared with matched controls not using these drugs</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATD (n = 202)</td>
<td>Control (n = 202)</td>
</tr>
<tr>
<td>Age, years, median (IQR)</td>
<td>72 (60–79) 71 (60–79) Equal by design</td>
</tr>
<tr>
<td>Charlson comorbidity score</td>
<td>1 (1–2) 1 (1–2) Equal by design</td>
</tr>
<tr>
<td>Endoscopy score</td>
<td>1 (0–2) 1 (0–2) Equal by design</td>
</tr>
<tr>
<td>Males</td>
<td>125/202 (62%) 105/202 (52%) 0.06</td>
</tr>
<tr>
<td>Smoking</td>
<td>53/200 (27%) 55/199 (28%) 1.00</td>
</tr>
<tr>
<td>Haemoglobin, g/dl</td>
<td>10.3 (8.0–12.8) 12.2 (9.4–13.8) 0.02</td>
</tr>
<tr>
<td>Urea, mmol/l</td>
<td>9.8 (6.1–14.2) 7.9 (5.5–12.5) 0.04</td>
</tr>
<tr>
<td>Blatchford score</td>
<td>8 (4–11) 5 (2–9) <0.001</td>
</tr>
<tr>
<td>Transfusion</td>
<td>79 (200) (40%) 52/198 (26%) 0.006</td>
</tr>
</tbody>
</table>

Disclosure of Interest None Declared.

None Declared.
ANTITHROMBOTIC DRUGS AND NON-VARICEAL BLEEDING OUTCOMES AND RISK SCORING SYSTEMS – COMPARISON OF BLATCHFORD, ROCKALL, AND CHARLSON SCORES

Introduction Antithrombotic drugs (ATDs) commonly cause non-variceal upper gastrointestinal bleeding (NVUGIB). Established risk scoring systems have not been validated in users of these drugs. We aimed to compare Blatchford, Rockall, and Charlson scores in predicting the outcomes of NVUGIB in ATD users and controls.

Methods A total of 2071 patients with NVUGIB, 2005–2011, were grouped into ATD users (n = 851) and controls (n = 1220). ATDs included low-dose aspirin, clopidogrel, dipyridamole, warfarin, and low-molecular weight heparin. Outcomes included length of hospital admission, the need for blood transfusion, re-bleeding requiring surgery, and 30-day mortality. Results were expressed as Spearman rank correlation coefficients (Rs) for length of admission and area-under-the-curve (AUC) values for the receiver operating characteristic curves (ROC) for binary outcomes, and were compared using z-tests, after Fisher’s transformation in the case of Rs values.

Results (1) The LENGTH OF ADMISSION correlated with all three scores in non-ATD patients (controls), but these correlations were significantly weaker in ATD users. Rs in control vs. ATD: 0.45 vs. 0.20 for Blatchford; 0.48 vs. 0.32 for Rockall; and 0.42 vs. 0.26 for Charlson, all P < 0.001. Rockall had the strongest correlation with duration of admission and Blatchford the weakest (P < 0.01 vs. Rockall in ATD users). (2) The NEED FOR TRANSFUSION was best predicted by Blatchford (P < 0.001 vs. Rockall and Charlson in both ATD users and controls) followed by Rockall (P < 0.001 vs. Charlson in controls). All scores performed less well in ATD users than controls. AUC in control vs. ATD: 0.90 vs. 0.85 for Blatchford; 0.74 vs. 0.59 for Rockall; and 0.64 vs. 0.54 for Charlson, all P < 0.005. (3) In predicting the NEED FOR SURGERY, only Rockall performed significantly better than by chance. AUC in control vs. ATD: 0.62 vs. 0.59 for Blatchford; 0.73 vs. 0.74 for Rockall; and 0.53 vs. 0.50 for Charlson. (4) In predicting MORTALITY, the Charlson score performed best by a small margin, and there was a trend towards weaker relationships in ATD users. AUC in control vs. ATD: 0.71 vs. 0.61 for Blatchford; 0.74 vs. 0.71 for Rockall; and 0.81 vs. 0.72 for Charlson.

Conclusion (1) In both ATD users and controls, the Blatchford score was the strongest predictor of the need for blood transfusion, Rockall had the strongest correlation with duration of admission and with re-bleeding requiring surgery, and Charlson was best in predicting 30-day mortality. (2) There was a consistent trend for all scoring systems to be less effective in predicting outcomes in ATD users than in controls. (3) Modifications of risk scoring systems should be explored to improve their efficiency in users of antithrombotic drugs.

PTU-019 Antithrombotic Vs. Ulcer Effects In Non-variceal Bleeding In Users Of Antithrombotic Drugs

AS Taha, C McCloskey, T Craigen and WJ Angerson

Gut 2014 63: A45-A46
doi: 10.1136/gutjnl-2014-307263.93

Updated information and services can be found at:
http://gut.bmj.com/content/63/Suppl_1/A45.2

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Topic Collections
Articles on similar topics can be found in the following collections
Stomach and duodenum (1689)

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/