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ABSTRACT
Background and aims Peripancreatic fat necrosis
occurs frequently in necrotising pancreatitis.
Distinguishing markers from mediators of severe acute
pancreatitis (SAP) is important since targeting mediators
may improve outcomes. We evaluated potential agents
in human pancreatic necrotic collections (NCs),
pseudocysts (PCs) and pancreatic cystic neoplasms and
used pancreatic acini, peripheral blood mononuclear cells
(PBMC) and an acute pancreatitis (AP) model to
determine SAP mediators.
Methods We measured acinar and PBMC injury
induced by agents increased in NCs and PCs. Outcomes
of caerulein pancreatitis were studied in lean rats
coadministered interleukin (IL)-1β and keratinocyte
chemoattractant/growth-regulated oncogene, triolein
alone or with the lipase inhibitor orlistat.
Results NCs had higher fatty acids, IL-8 and IL-1β
versus other fluids. Lipolysis of unsaturated triglyceride
and resulting unsaturated fatty acids (UFA) oleic and
linoleic acids induced necro-apoptosis at less than half
the concentration in NCs but other agents did not do so
at more than two times these concentrations. Cytokine
coadministration resulted in higher pancreatic and lung
inflammation than caerulein alone, but only triolein
coadministration caused peripancreatic fat stranding,
higher cytokines, UFAs, multisystem organ failure (MSOF)
and mortality in 97% animals, which were prevented by
orlistat.
Conclusions UFAs, IL-1β and IL-8 are elevated in NCs.
However, UFAs generated via peripancreatic fat lipolysis
causes worse inflammation and MSOF, converting mild
AP to SAP.

INTRODUCTION
Agents elevated in body fluids of patients with severe
acute pancreatitis (SAP) and animal models of acute
pancreatitis (AP)1 2 include adipokines,3 4proteases
like trypsin,5–8 unsaturated fatty acids (UFAs) such as
oleic and linoleic acid (LA)1 9 10 or cytokines includ-
ing interleukin (IL)-1β,11 IL-6,12–15 IL-8,12 15 16

monocyte chemotactic protein-1 (MCP-1)17 and
tumour necrosis factor-alpha (TNF-α).13 Scoring
systems to risk stratify AP include these.17–20

Clinically, however, SAP markers versus mediators are
indistinguishable as causality is difficult to establish
while studying human AP in isolation. Moreover,
human SAP is independent of aetiology21–24 (with the
exception of hypertriglyceridemic AP25–28), and SAP
can occur with minimal pancreatic necrosis.29–31

Significance of this study

What is already known on this subject?
▸ Peripancreatic necrosis may be associated with

severe acute pancreatitis (SAP).
▸ Cytokines and unsaturated fatty acids (UFAs)

are increased in human and animal models of
acute pancreatitis.

▸ It is unclear whether these are markers versus
mediators of SAP.

What are the new findings?
▸ Pancreatic necrotic collections have higher

interleukin (IL)-1β, IL-8 and UFA levels than
pancreatic cystic neoplasms.

▸ UFAs at concentrations less than in necrotic
collections but not IL-1β and IL-8 cause
necro-apoptosis.

▸ Peripancreatic fat lipolysis causes multisystem
injury independent of pancreatic necrosis.

How might it impact on clinical practice in
the foreseeable future?
▸ The distinction between a marker and mediator

of SAP is made clear in this study.
▸ It supports that targeting peripancreatic fat

necrosis independent of pancreatic necrosis
may improve SAP outcomes.

▸ It supports that targeting lipolytic generation of
UFAs, but not cytokines, may improve SAP
outcomes.
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In contrast, severity of animal models of AP is based on the
aetiology (eg, bile salt vs caerulein32 33) causing severe necrosis
alone or with worse outcomes,33 and therapies are considered
relevant based on their efficacy in aetiologically different
models. This rationale and lack of distinction between marker
and mediators may partly explain the limited benefit noted in
several clinical trials of AP, targeting proteases,34–43 reactive
oxygen species44 and inflammatory mediators45 and mixed out-
comes noted in the few case reports of anti-TNF therapy,46–50

though these targets seem scientifically sound based on animal
models of AP. Interestingly, hereditary pancreatitis due to cat-
ionic trypsinogen (PRSS1) gene mutations, despite its high pene-
trance in initiating AP does not cause necrotising pancreatitis
(NP) or AP-related mortality.51 Similarly, while cytokines are ele-
vated in SAP, some studies show cytokines do not induce
SAP-associated outcomes,52–56 and others have shown IL-657

and TNF-α58 to be protective in AP. These controversies
support the need to look for alternate targets, which are media-
tors of SAP rather than its markers.

Several epidemiological studies suggest obesity59–66 or
increased intra-abdominal fat is associated with SAP.63 67–69

These fat depots may undergo necrosis during AP and this has
been linked to SAP for more than a hundred years.70

Peripancreatic fat necrosis is in the spectrum of necrotising pan-
creatitis,71 72 is a part of the revised Atlanta criteria,72 radio-
graphic severity scoring systems (eg, Schroeder and Balthazar
scoring)3 73 and correlates with worse outcomes during AP.74 75

However, it is unknown whether this has a causal role or is a
mere marker of severity.

Triglyceride, which forms the bulk of adipocytes that are
increased in obesity,76–78 is a good substrate for the lipases
released basolaterally during pancreatitis79–82 as noted in human
disease.83 84 In vitro studies by Mossner et al85 more than two
decades ago showed a protective effect of lipase inhibition in vitro
but not in vivo AP models.86 Thus, it remains unclear whether it
is the exaggerated baseline proinflammatory state87–89 or some
other acute mechanism that worsens AP outcomes in obesity.

We recently showed intrapancreatic lipase inhibition reduces
necrosis and improves outcomes of biliary AP exacerbated by
intrapancreatic fat.90 Thus, the observations that (i) AP out-
comes in humans unlike rodent models are independent of aeti-
ology, (ii) AP, associated with peripancreatic necrosis in humans,
is severe for unclear reasons and (iii) cytokines have an unclear
role in SAP outcomes prompted us to study the mechanisms of
worse outcomes in human AP.

To do so, we initially determined the agents that are increased
in human pancreatic necrotic collections (NC) that are known
to have both pancreatic and peripancreatic necrosis.71 72

A PubMed search failed to pull up guidelines or an authoritative
text on criteria that may be used to conclusively prove causality
in human disease. We thus applied Koch’s postulates (http://ocp.
hul.harvard.edu/contagion/koch.html) of causality to determine
mediators of SAP, whereby the mediator should (A) be present
at high levels in an affected source (NC) compared with con-
trols, that is, pancreatic cystic neoplasms (PCN); (B) be isolated
from NCs in pure form; (C) convert mild AP in lean rodents to
SAP when added in a pure form and (D) be re-isolated in this
setting (equivalent to re-isolating the microorganism). We also
went a step further to study the effect of preventing mediator
generation on outcomes of AP.

We chose a pharmacological approach over a genetic
approach since pancreatic lipases have a redundant role,91 dual
lipase knockouts are embryonically lethal92 and us using of the
mildest AP model, that is, caerulein AP in rats, to study

exacerbating factors. Our results highlight the potential role of
acute peripancreatic fat lipolysis in worsening outcomes of AP
and help distinguish markers from mediators of SAP, along
with suggesting a potential approach to improve SAP
outcomes.

METHODS
Human pancreatic fluid collections
Samples were collected as a part of protocols described previ-
ously.90 One of the original 15 NC fluid was too small in
volume for the detailed analysis done in this study. Information
collected included age, gender, body mass index (BMI), primary
diagnosis, disease duration at the time of collection and modal-
ity of collection (ie, surgical or endoscopic). Sample collection
predated the revised Atlanta criteria.72 For purposes of the
study, the clinician classified samples as NCs (collections with
solid debris, n=14) or pseudocysts (PCs) (fluid collections,
n=11). In our study, all PCs were at least 3 months old. We
chose PCN as the non-inflammatory control group (n=10);
these included intra-pancreatic mucinous neoplasm, serous
cystadenomas and mucinous cystic neoplasms. Minimum disease
duration at intervention from the time of diagnosis of AP was
4 weeks, consistent with established guidelines.93 94

Animal work
Wistar rats (Charles River Laboratories, Wilmington,
Massachusetts, USA) were acclimatised for at least two days
prior to use. They were housed with a 12 h light/dark cycle, at
temperatures ranging from 21 to 25°C, fed standard laboratory
chow and allowed to drink ad libitum. Caerulein was pur-
chased from Bachem (King of Prussia, Pennsylvania, USA).
Other agents were procured as mentioned in relevant sections
below.

Rat acinar cells were prepared fresh and used as described
previously.95–97 Results reported for in vitro studies are from
five experiments carried out in duplicates. For these in
vitro studies, fatty acids were dissolved as described previously1

and cytokines (IL-1β and keratinocyte chemoattractant
(KC)/growth-regulated oncogene (GRO); Peprotech Rocky Hill,
New Jersey, USA) were dissolved as per the manufacturer’s
instructions. Caerulein pancreatitis was induced in rats with two
doses of 20 mg/kg of caerulein administered intraperitoneally,
for three consecutive days as described previously.97 98 This
dose has been shown to reliably cause hyperamylasemia and
induce oedema and inflammation of the pancreas.97 98

Equivalent doses to this have been used by different
groups.99 100 Rats were sacrificed 3 days after the induction of
pancreatitis. For caerulein pancreatitis with IL-1β and KC/GRO
(the rat homologue of IL-8), these cytokines were dissolved as
per the manufacturer’s instruction and a total of six doses were
administered at 200 ng/kg/dose and 6.0 mg/kg/dose, respect-
ively, two times per day by tail vein for three consecutive days.
These were given along with the caerulein injections (20 mg/
kg/dose of caerulein administered intraperitoneally, two times
per day, for 3 days). The daily doses are based on the mean
serum concentrations of IL-1β (367 ng/L) and IL-8 (12 μg/L)
in the severe glyceryl trilinoleate (GTL) model published pre-
viously.90 These doses cumulatively (ie, 1200 ng/kg and
36 μg/kg) exceed the median concentrations accumulated
over several weeks in the NCs, which are 729 and 497 ng/L,
respectively. Doses in these ranges have been used previously
in rats53 101–103 These animals were sacrificed 2–4 h after the
last injection. For caerulein pancreatitis in rats coadminis-
tered triolein or triolein+orlistat, a single dose of 3 mL (3%
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body weight) triolein (TCI, Philadelphia, Pennsylvania, USA)
or triolein+orlistat (Cayman Chemical, Ann Arbor,
Michigan, USA, 50 mg/kg dissolved in the triolein) was given
intraperitoneally 2 h after the first dose of caerulein.
Preliminary triolein dosing studies using 2% and 1% body
weight were done on five animals per group (see online
supplementary figure S3). Studies for this article had 8–12
animals in each group for the lung lavages and histology,
with a total of 16–28 for mortality studies. All experiments
were approved by the Institutional Animal Care and Use
Committee of the University of Pittsburgh (Pittsburgh,
Pennsylvania, USA) and the Mayo Clinic (Scottsdale,
Arizona, USA).

Graphical depiction
Box and whisker plots were used unless there were <8 samples/
group, in which case bar graphs were used. Box and whisker
plots show the mean (dotted line), median (solid line), 25th and
75th centiles (two boxes) and 10th and 90th centiles (whiskers).
Tukey–Kramer test when significant is depicted as ‘*’ in human
studies. Summary statistics includes means±SEM or 95% CIs
and/or medians and IQRs. All significance levels were evaluated
at the two-tailed, p<0.05 level. For animal studies, all groups
were compared by analysis of variance (ANOVA) to control. An
‘*’ indicates p<0.05 versus controls (Con) groups. † indicates
p<0.05 between treatments with and without the lipase inhibi-
tor orlistat. Other methods are detailed in the online supple-
mentary section.

RESULTS
NCs occur in obese patients and are enriched in UFAs,
IL-1β and IL-8
Patients with NCs had a higher BMI than those with PCs
(figure 1A). Biliary pancreatitis accounted for 13 of the 14
NCs. NCs had the highest DNA concentration (a marker of
dead or exfoliated cells; figure 1B), UFAs (figure 1C, D) and
SFAs (figure 1C, F). Of these, oleic (C18:1, 1235±412 μM),
palmitic (C16:0, 613±214 μM), linoleic (C18:2, 586±185 μM)
and stearic (C18:0, 170±46 μM) acids (figure 1E) were the
main non-esterified fatty acid (NEFA). NCs also had the highest
IL-1β and IL-8 (figure 2A, B), and resistin was higher in both
NCs and PCs compared with PCNs (figure 2C). However, IL-6,
MCP-1, nerve growth factor and HGF were similar among all
groups (see online supplementary figure S1). The same agents as
those increased in NCs (except IL-8) were elevated on combining
all inflammatory collections (NCs and PCs) in comparison to non-
inflammatory ones (PCNs) (see online supplementary figure S2).

UFAs, but not other agents, enriched in NCs or PCs induce
necrosis
Lipolysis of triglycerides by pancreatic lipases was measured by
glycerol generation after incubating acini with glyceryl tripalmi-
tate (GTP), a saturated triglyceride, or the unsaturated triglycer-
ides (UTGs), GTL or glyceryl trioleate (GTO) alone, or with the
lipase inhibitor orlistat. Despite glycerol generation from GTL,
GTO and GTP (figure 3A), significantly increased cell injury
quantified by lactate dehydrogenase (LDH) leakage was only

Figure 1 Necrotic collections (NCs) occur in obese patients and are enriched in DNA and unsaturated fatty acids (UFAs). (A) Table showing
biometric data, disease duration at the time of intervention and aetiology of pancreatic fluid collections. Patients with pancreatic cystic neoplasms
(PCNs) were older than and those with NCs had higher body mass index (BMI) than those with pseudocysts (PCs). p Values for age and BMI
(one-way analysis of variance) and gender (two-tailed Fisher’s exact test) are mentioned. * indicates groups significantly different (p<0.05) from
each other. Box plots showing (B) DNA, (C) proportion of UFAs, (D) amounts of UFA, (E) non-esterified fatty acid (NEFA), (F) SFAs in NC, PC and
PCN. * indicates groups significantly different (p<0.05), and ‘NS’ those not significantly different from each other.
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noted in the presence of GTL and GTO (figure 3B). Both lipoly-
sis and cell injury were prevented by orlistat. To identify agents
mediating acinar injury, we incubated pancreatic acini with agents
increased in NCs or PCs at relevant concentrations and quantified
LDH leakage or propidium iodide (PI, figure 3C, D) uptake after
5 h. The UFAs oleic acid (OA) and LA, at half the concentrations
noted in NCs, caused acinar necrosis, while SFAs (palmitic acid
(1.2 mM) and stearic acid (1.2 mM)), cytokines IL-1β and KC/
GRO (the rat homologue of IL-8) alone or in combination, all of
which were more than twofold concentrations in NCs, did not.
The same was shown to be true for resistin recently.104

Peripancreatic UTG lipolysis, unlike cytokines increased in
NCs, worsens AP independent of pancreatic necrosis and
acute inflammatory cell infiltration
We have recently shown intrapancreatic UTG lipolysis to cause
severe pancreatic necrosis.90 To understand the role of

peripancreatic fat and discriminate the role of this acute lipo-
toxicity from that of cytokines in AP outcomes, we compared
caerulein pancreatitis outcomes in lean rats coadministered
IL-1β and KC/GRO with those coadministered triolein alone or
with orlistat. The triolein dose (3% body weight) was based on
(A) fat exceeding 30% body weight in obesity,105 (B) visceral fat
averaging >3% body weight in obese humans106 107 and (C)
preliminary dosing studies on mortality and organ failure (see
online supplementary figure S3). The cytokine doses chosen, as
detailed in the methods, are relevant to those in NCs and the
serum cytokine concentrations found in the severe GTL model
published previously.90

Administration of IL-1β and KC/GRO with caerulein caused a
febrile response (38.5±0.5°C vs37.2±0.4°C in controls,
p<0.001) consistent with the effects of IL-1β described previ-
ously.53 102 103 The parameters of induction of pancreatitis, that
is, increase in serum amylase or lipase more than threefold

Figure 2 Necrotic collections (NCs) are enriched in interleukin (IL)-1β, IL-8 and resistin. Box plots showing (A) IL-1β, (B) IL-8 and (C) resistin levels
in log scale being elevated in NC and pseudocysts (PC) compared with pancreatic cystic neoplasms (PCN). * indicates groups significantly different
(p<0.05), and ‘NS’ those not significantly different from each other.

Figure 3 Unsaturated fatty acids generated via triglyceride lipolysis induce acinar cell death: (A) glycerol concentrations in medium from acini
incubated with saturated ( glyceryl tripalmitate (GTP)) and unsaturated triglycerides (glyceryl trilinoleate (GTL)), glyceryl trioleate (GTO)) are reduced
by orlistat. Only GTL and GTO cause cell injury quantified as (B)% lactate dehydrogenase (LDH) leakage, which is prevented by orlistat (50 μM).
Acinar necrosis measured at 5 h as %LDH leakage (C) or as propidium iodide uptake (D) induced by various agents elevated in necrotic collections
(NCs) and pseudocysts. Only oleic (OA) and linoleic (LA) acids induced necrosis at half their concentrations in NCs. Palmitic acid, stearic acid (SA)
and inflammatory cytokines (10 ng/mL each) did not cause necrosis. These are more than two times the concentrations in NCs. * indicates groups
significantly different (p<0.05) from control, and † indicates significant reduction of measured parameter upon lipase inhibition by orlistat versus
without orlistat. Numbers on X-axis represent micromolar amounts.
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above controls used in humans108 were similar in all groups
(figure 4A, B). However, lipase activity in the ascites of rats with
pancreatitis was increased, which was prevented in the orlistat-
treated group (see online supplementary figure S4), supporting a
local effect on peripancreatic lipolysis. At the time of necropsy,
the triolein-treated group had strands of saponified fat in the
peritoneal cavity and around the pancreas (figure 4C, D), while
those coadministered triolein with orlistat had a thick whitish
fluid coating, consistent with the appearance of unhydrolysed
triolein. On histology, there was no evidence of pancreatic
necrosis histologically among any of the pancreatitis groups
(figure 4E). While cytokine coadministration did increase infil-
tration of myeloperoxidase (MPO)-positive cells into the pan-
creas (figure 5A3, A6) and lungs (figure 5B3, B6) compared
with caerulein alone (figure 5A2, B2), it did not cause mortality
in caerulein AP (figure 6A). In contrast rats coadministered trio-
lein had 97% mortality, increased serum oleate, IL-1β and KC/
GRO (Figure 6A–D). All these were dramatically improved in

the group coadministered orlistat along with the triolein.
Triolein administration alone did not result in induction of pan-
creatitis or any of the changes described above (see online sup-
plementary figure S5).

Lipotoxic cell death mediated by UFAs results in
multisystem organ failure
Mortality from SAP in humans can occur with multisystem
organ failure (MSOF) independent of necrosis.72 74 Thus, we
looked for evidence of kidney failure and lung injury. Rats with
pancreatitis coadministered triolein had respiratory failure evi-
denced by a reduction of oxygen saturation from 97±1% at
baseline to 89.3±0.9% (p<0.01) 2 h prior to sacrifice. This was
associated with an increase in terminal deoxynucleotidyl trans-
ferase dUTP nick end labelling (TUNEL)-positive cells in the
lungs (figure 7A–F), as previously shown in lipotoxic acute
respiratory distress syndrome.1 109–112 The bronchoalveolar
lavage of the triolein coadministered group had an increase in

Figure 4 During caerulein pancreatitis, coadministration of interleukin (IL)-1β with keratinocyte chemoattractant (KC)/growth-regulated oncogene
(GRO), or intraperitoneal triolein alone or with orlistat does not affect pancreatitis initiation or cause pancreatic necrosis: serum amylase (A) and
lipase (B) were similarly increased more than threefold above normal in all groups with caerulein pancreatitis at 1 day. Fat stranding in the
peritoneal cavity (C) and surface of pancreata (D) in animals coadministered triolein with caerulein (CER) was prevented by orlistat, with remnant
unhydrolysed triolein appearing as a thick whitish liquid coating. (E) Histologically there was no evidence of necrosis in any group. Please note
ductal metaplasia-like appearance in survivors up to 3 days.
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fluorescein isothiocyanate leakage dextran, LDH leakage,
protein and PI-positive cells (* in figure 7G–J). All these detri-
mental changes in parameters of lung function and lung injury
were absent in all other groups and completely prevented in the
rats coadministered orlistat († in figure 7E–J). The kidneys of the
caerulein+GTO group had kidney injury evidenced by
TUNEL-positive tubular cells, loss of tubular cells (boxes in figure
8D), kidney injury molecule-1 (KIM-1) positivity in the renal
tubules (figure 8D1) and a higher serum blood urea nitrogen
(figure 8F), consistent with renal failure. These adverse out-
comes were prevented by orlistat (figure 8E, E1, F [†]). The
administration of triolein alone (see online supplementary figure
S5) or the cytokines along with caerulein (figures 7C and 8C,
C1 and graphs in figures 7 and 8) did not result in these adverse
outcomes. Peripheral blood mononuclear cells (PBMCs) treated

with a fraction of serum OA concentrations (10 μM, figure 8I, J)
had a large increase in apoptosis initially, which progressed to
predominantly necro-apoptosis. IL-1β and KC/GRO at more
than two times serum concentrations did not cause this (figure
8H). These observations suggest that acute lipolytic generation
of UFAs from peripancreatic fat worsens outcomes of AP by
UFA-mediated necro-apoptotic distant organ injury.

DISCUSSION
In this study, we initially found NCs to have high levels of
UFAs, IL-1β, IL-8 and resistin, which remained significant after
adjusting for age, gender and BMI. Peripancreatic necrosis is a
part of necrotising pancreatitis.71 72 Having previously shown
that intrapancreatic UTG lipolysis worsens pancreatic necrosis,90

in this study we tested whether lipolysis of extra-pancreatic

Figure 5 Interleukin (IL)-1β+keratinocyte chemoattractant (KC)/growth-regulated oncogene (GRO) and triolein coadministration results in worse
local and systemic inflammation during caerulein (CER) pancreatitis. Immunohistochemistry images for myeloperoxidase (MPO) in the pancreas
(A1–5) and lungs (B1–5), with each group mentioned at the bottom of the image. While caerulein pancreatitis increased MPO-positive cells
compared with controls (A2, A6*), IL-1β+KC/GRO coadministration caused a further increase (A3, A6 †), compared with caerulein alone.
Systemically, in the lungs, IL-1β+KC/GRO coadministration (B3) and triolein coadministration (B4) significantly increased MPO-positive cells
compared with caerulein pancreatitis alone (B2) or other groups (B1,4,5). Orlistat treatment significantly reduced (B6, †) the lung MPO increased
noted in the CER+ triolein group.
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UTG or cytokines caused MSOF independent of pancreatic
necrosis. Applying Koch’s postulates to sort out which agent
most closely fulfils these by worsening AP to SAP, we identified
UFAs (with oleate as the prototype, online supplementary figure
S6) as being the best candidates for being SAP mediators. The
acute conversion of caerulein AP to lethal disease by peripan-
creatic UTG lipolysis in lean rats suggests acute UFA toxicity
worsens AP and not the baseline or exaggerated proinflamma-
tory response of obesity. Using the mild caerulein model, we
also learn that like in human disease,21–24 outcomes of AP can
be unrelated to aetiology, with a modifier such as lipotoxicity.
Lastly, we learn that peripancreatic fat necrosis can worsen out-
comes independent of pancreatic necrosis by distant organ
injury. Recent clinical literature 3 74 75 113 and the revised
Atlanta criteria72 accept peripancreatic necrosis as a risk factor
for SAP. These parallels we note have mechanistic, translational
and therapeutic relevance, and are discussed below.

Peripancreatic fat necrosis causes SAP in the absence of
pancreatic necrosis
Early mortality in human SAP may occur with minimal pancre-
atic necrosis.29 30 31 Traditional animal models such as the
taurocholate model however relate severity to local necrosis.33

Similarly, the mouse caerulein AP is regarded as severe com-
pared with rat AP114 since mice have more necrosis.33 In the

current study, we note peripancreatic lipolysis of triolein to
cause mortality in caerulein pancreatitis without pancreatic
necrosis. This phenomenon, which replicates the picture in
human SAP, is prevented by lipase inhibition.

Unsaturated fatty acid lipotoxicity due to visceral fat
lipolysis mediates MSOF in SAP
We note the UFA OA to be the most abundant fatty acid in NCs.
UFAs inhibit mitochondrial complexes I and V.1 While we noted
early caspase 3/7 activation in acini, this was not sustained
(results not shown), perhaps due to concurrent ATP deple-
tion104 115 116 triggering the necrosis noted at 5 h. Noting this,
and the dual annexin V and PI staining of PBMCs, TUNEL posi-
tivity in lungs and renal tubules (which are also KIM-1 positive),
the likely mode of injury induced by UFAs is necro-apoptotic.

Serum oleate concentrations in rats coadministered triolein
and caerulein (350±294 μM) are similar to patients with SAP
with complications (614±146 μM).117 An increase in serum
C18 UFAs (mainly oleate), similar to what we note, was
reported in dogs with AP.118 Patients with SAP with complica-
tions also had serum free fatty acid >1400 μM,117 which is
similar to what we noted in our study (1421±851 μM). We have
previously shown elevated UFAs in biliary SAP90 and IL-12, 18
induced AP.1 UFAs cause organ failure including acute lung
injury,109–112 renal tubular toxicity,119 120 renal failure110 121 and

Figure 6 Lipolysis of triolein unlike interleukin (IL)-1β+keratinocyte chemoattractant (KC)/growth-regulated oncogene (GRO) coadministration
results in a worse cytokine response and mortality in caerulein (CER) pancreatitis. (A) Kaplan–Meier curves showing time course of mortality in the
triolein coadministered group (red), which is prevented by orlistat (green) and is absent in other groups. Number per group is mentioned in
parenthesis. Serum oleate (B), IL-1β (C) and KC/GRO (D) are significantly increased in the acute pancreatitis (AP) group coadministered triolein and
reduced by orlistat. Multiple comparisons were done using one-way analysis of variance. Significant (p<0.05) difference from controls is denoted
with an *; † over the CER+triolein+orlistat group indicates significant difference from CER+triolein.
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hypocalcaemia.121 This spectrum of endpoints secondary to
UFAs and the findings of this study support UFA generation as a
target to improve SAP outcomes. The published evidence men-
tioned above, along with this study showing that MSOF in SAP
results from triolein hydrolysis to oleate and not triolein alone
(see online supplementary figure S5), brings this two-step phe-
nomenon (ie, increased UTG (in fat)+lipase (in AP)→high
UFA→AP with MSOF (ie, SAP)) to closely replicate the third pos-
tulate of Koch as shown in online supplementary figure S6. Such
two-step fulfilment would be relevant to therapy in diseases such
as cholangitis, where neither biliary obstruction alone nor bac-
teria entering the biliary tract alone (such as post choledochojeju-
nostomy) would cause cholangitis, which would only happen
when the two are combined such as after recurrence of a
stricture.

The same mode of initiating pancreatitis may have
different outcomes
While severity of traditional animal models is attributed to the
aetiology,33 outcomes in human AP are unrelated to the aeti-
ology.21–24 93 While all groups in our study fulfil the diagnostic
criteria for AP,108 the improved outcomes in the triolein+ orli-
stat group with AP were unrelated to serum amylase or lipase,
but associated with reduced lipase activity in ascites, supporting
the notion that improved outcomes may result from targeting
the modifier, that is, lipase-mediated UFA generation from the
hydrolysable peripancreatic UTG in visceral fat and not the
primary insult. Interestingly, this resonates with hypertriglyceri-
demic (HTG) pancreatitis being the exceptional AP aetiology

that is typically severe,25–28 122 though excluding the patients
with HTG from our analysis in figures 1 and 2 did not change
the results.

Serum cytokines are markers of AP severity
Predictive models for SAP often use serum cytokines.11–17 123 In
agreement with the trends noted in patients and consistent with
UFAs being proinflammatory,111 124 125 cytokines were higher
in NCs (also enriched in UFAs) and in rodents administered
triolein during AP. These cytokines were reduced by lipase
inhibition consistent with previous studies showing cytokine
upregulation occurs secondary to UFAs.1 This observation, the
lack of cell death in acinar cells and PBMCs treated with IL-1β
+KC/GRO, the mild course in the IL-1β+KC/GRO groups
(despite higher MPOs and a febrile response), suggests that the
increased inflammatory response may be a marker but is not a
mediator of the adverse events resulting in SAP. This is sup-
ported by previous studies showing cytokine levels follow the
course of lipotoxicity and normalise on lipase inhibition.1 90

Similarly, mice administered IL-6 do not develop organ
failure126 and obesity-associated SAP is unaffected in IL-6
knockout (KO) mice.126 Additionally, the elevation of IL-6 and
TNF-α in response to intravenous UFAs111 supports UFAs as
drivers of inflammation. The cytokines themselves may poten-
tially have a protective role in AP as shown in AP models using
IL-6 KO mice57 or on neutralising TNF-α.58 Similarly, IL-8/KC/
GRO/CXCL1 mediated neutrophil influx is protective in other
models of lung injury.127–129

Figure 7 Lipolysis of triolein unlike interleukin (IL)-1β+keratinocyte chemoattractant (KC)/growth-regulated oncogene (GRO) coadministration
results in lung injury during caerulein (CER) pancreatitis: images of terminal deoxynucleotidyl transferase dUTP nick end labelling (TUNEL) of lungs
(A–E) with each group mentioned at the bottom of the image. There was significantly more positive staining in the lungs (D) of CER+triolein group
(*), which is prevented by orlistat (E and F), depicted as †. Bronchoalveolar lavage (BAL) fluid was analysed for fluorescein isothiocyanate (FITC)
fluorescence (G), lactate dehydrogenase (LDH; H), total protein (I) or stained with propidium iodide, and the fluorescent cells were counted ( J).
Significant (p<0.05) difference from controls is denoted with an *; † over the CER+triolein+orlistat group indicates significant difference from CER
+triolein.
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The human part of this study is limited by its small size, ana-
lysis of a limited number of cytokines/chemokines and the lack
of data on agents degraded over the course of the illness before
intervention was clinically indicated. In addition, the endosco-
pist or the surgeon characterised collections as NCs or PCs, and
since sample collection predated revised Atlanta criteria, we
were unable to apply the definitions detailed in the revised cri-
teria. However, this is unlikely to influence our conclusions
since all NCs were walled off at the time of intervention (con-
sistent with the definition of walled-off pancreatic necrosis) and
grouping NCs and PCs together as being postinflammatory
showed similarly high UFAs and cytokines vs PCNs (see online
supplementary figure S2), the causality of which was explored
in animal and in vitro studies. While we do not have informa-
tion on underlying chronic pancreatitis in patients with PC, all
PCs in our study were present for at least 12 weeks. Thus, the
potential misclassification of a small proportion of these collec-
tions is unlikely to have significantly influenced our primary
finding of UFA-induced lipotoxicity since both NCs and PCs
alone or together had higher UFAs compared with PCNs and
both IL-1β and IL-8 were analysed mechanistically, even when
IL-8 was not significantly different in PCs from PCNs. Lack of
information on which fluid collections were infected is also a

limitation of this study. Infections are likely to predominantly
affect cytokine concentrations. However, the cytokines
increased in PCs and/or NCs did not worsen outcomes in our in
vitro or animal experiments. Conversely, microbes infecting NP
do not produce pancreatic lipases, and UFAs as a consequence,
which result in acinar necrosis. Therefore, our observations
regarding the role of UFA-induced lipotoxicity are unlikely to
be affected by infections.

In summary, human pancreatic necrosis collections are
enriched in UFAs and cytokines. Peripancreatic fat necrosis
resulting in UFA generation causes MSOF and mortality, con-
verting mild AP to SAP independent of pancreatic necrosis.
Therefore, targeting UFA-mediated lipotoxicity, rather than
cytokines such as IL-1β or IL-8, may be a better option to
improve AP outcomes, especially in the context of obesity.

Contributors VPS and SN designed and conceptualised the study. Acquisition of
data was carried out by PN, KP, CD, RNT, CDO, SN, KL, RB, JC, AS, GIP, AK, DCW,
JPD, RAC, CA, DJ, FMM and DY. Analysis and interpretation of data was done by
PN, KP, CD, SN, JPD, MDC, RP, RAC, CA, DJ, FMM, DY and VPS. Manuscript was
drafted by AS, SN, MDC, RP, DY and VPS, while AS, MDC, RP, AK, DCW, FMM, DY,
SN, VPS performed critical revision of the manuscript for important intellectual
content. Statistical analysis was done by PN, KP, RNT, MDC, DY and VPS. Funding
was obtained by SN and VPS, and the entire study was supervised by VPS

Figure 8 Lipolysis of triolein unlike interleukin (IL)-1β+keratinocyte chemoattractant (KC)/ growth-regulated oncogene (GRO) coadministration
results in necro-apoptotic injury and renal failure during caerulein (CER) pancreatitis: images of terminal deoxynucleotidyl transferase dUTP nick end
labelling (A–E) and immunohistochemistry for kidney injury molecule-1 (A1–E1) in kidneys, with each group mentioned above the image. There was
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