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ABSTRACT
Objective Caffeine reduces toxic Ca2+ signals in
pancreatic acinar cells via inhibition of inositol 1,4,5-
trisphosphate receptor (IP3R)-mediated signalling, but
effects of other xanthines have not been evaluated, nor
effects of xanthines on experimental acute pancreatitis
(AP). We have determined effects of caffeine and its
xanthine metabolites on pancreatic acinar IP3R-mediated
Ca2+ signalling and experimental AP.
Design Isolated pancreatic acinar cells were exposed to
secretagogues, uncaged IP3 or toxins that induce AP and
effects of xanthines, non-xanthine phosphodiesterase
(PDE) inhibitors and cyclic adenosine monophosphate
and cyclic guanosine monophosphate (cAMP/cGMP)
determined. The intracellular cytosolic calcium
concentration ([Ca2+]C), mitochondrial depolarisation and
necrosis were assessed by confocal microscopy. Effects of
xanthines were evaluated in caerulein-induced AP (CER-
AP), taurolithocholic acid 3-sulfate-induced AP (TLCS-AP)
or palmitoleic acid plus ethanol-induced AP (fatty acid
ethyl ester AP (FAEE-AP)). Serum xanthines were
measured by liquid chromatography-mass spectrometry.
Results Caffeine, dimethylxanthines and non-xanthine
PDE inhibitors blocked IP3-mediated Ca

2+ oscillations,
while monomethylxanthines had little effect. Caffeine and
dimethylxanthines inhibited uncaged IP3-induced Ca

2+

rises, toxin-induced Ca2+ release, mitochondrial
depolarisation and necrotic cell death pathway activation;
cAMP/cGMP did not inhibit toxin-induced Ca2+ rises.
Caffeine significantly ameliorated CER-AP with most
effect at 25 mg/kg (seven injections hourly); paraxanthine
or theophylline did not. Caffeine at 25 mg/kg significantly
ameliorated TLCS-AP and FAEE-AP. Mean total serum
levels of dimethylxanthines and trimethylxanthines
peaked at >2 mM with 25 mg/kg caffeine but at
<100 mM with 25 mg/kg paraxanthine or theophylline.
Conclusions Caffeine and its dimethylxanthine
metabolites reduced pathological IP3R-mediated
pancreatic acinar Ca2+ signals but only caffeine
ameliorated experimental AP. Caffeine is a suitable
starting point for medicinal chemistry.

INTRODUCTION
Acute pancreatitis (AP) has an incidence of 30 per
100 000 per annum in the UK, commonly caused
by gallstones or alcohol excess.1 Most cases are

Significance of this study

What is already known on this subject?
▸ Acute pancreatitis is a major health problem

without specific drug therapy.
▸ Coffee consumption reduces the incidence of

acute alcoholic pancreatitis.
▸ Caffeine blocks physiological intracellular Ca2+

oscillations by inhibition of inositol
1,4,5-trisphosphate receptor-(IP3R)-mediated
signalling.

▸ Sustained cytosolic Ca2+ overload from
abnormal Ca2+ signalling is implicated as a
critical trigger in the pathogenesis of acute
pancreatitis.

What are the new findings?
▸ Caffeine and its dimethylxanthine

metabolites inhibit IP3R-mediated, sustained
cytosolic Ca2+ elevations, loss of
mitochondrial membrane potential and
necrotic cell death pathway activation in
pancreatic acinar cells.

▸ Neither specific phosphodiesterase inhibitors
nor cyclic adenosine monophosphate and cyclic
guanosine monophosphate inhibit sustained
Ca2+ elevations in pancreatic acinar cells.

▸ Serum levels of xanthines after 25 mg/kg
caffeine administration are sufficient to inhibit
IP3R-mediated Ca2+ overload in experimental
acute pancreatitis.

▸ Caffeine but not theophylline or paraxanthine
administered at 25 mg/kg significantly
ameliorated pancreatic injury in experimental
acute pancreatitis through IP3R-mediated
signalling inhibition.

How might it impact on clinical practice in
the foreseeable future?
▸ These findings support an approach of

inhibition of Ca2+ overload and of its
consequences as novel potential therapy for
acute pancreatitis.

▸ Methylxanthine-based structures are suitable
starting points for drug discovery and
development to treat acute pancreatitis.
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mild, whereas a complicated clinical course occurs in one out of
every five patients, resulting in significant morbidity, mortality
and financial burden.2 Over the last two decades, our under-
standing of pathogenesis has advanced, but there is still no spe-
cific therapy despite many randomised trials.2 The development
of treatments for AP is, therefore, a priority, one strategy for
which is to follow leads from complementary laboratory and
clinical studies, as here.

Intracellular Ca2+ signals control normal secretion from pan-
creatic acinar cells but can become a critical trigger in pathogen-
esis. Physiological concentrations of acetylcholine (ACh) and
cholecystokinin (CCK) generate repetitive elevations in the cyto-
solic Ca2+ concentration ([Ca2+]C) within the cellular apical
pole that elicit stimulus metabolism coupling to generate ATP
from mitochondria and stimulus-secretion coupling to initiate
exocytosis.3 Intermittently, global extension of short-lived
signals throughout the cell is necessary for nuclear signalling
contributing to transcription and translation.3 In contrast, toxins
such as bile acids,4 oxidative5 and non-oxidative metabolites6 7

of ethanol and CCK hyperstimulation8 9 each elicit abnormal
elevations of [Ca2+]C that are global and sustained. These
abnormal elevations induce premature activation of intracellular
enzymes, mitochondrial dysfunction, impaired autophagy,
vacuolisation and necrosis, all of which contribute to the patho-
genesis of AP.10 Ca2+ chelation prevents zymogen activation and
vacuolisation through attenuation of Ca2+ overload in acinar
cells in vitro11 12 and ameliorates the severity of AP in vivo.13

Blockage of the Ca2+ release-activated Ca2+ channel, also
known as the store-operated Ca2+ entry (SOCE) channel, by
Orai1 inhibitor GSK-7975A, reduces Ca2+ overload and necro-
sis in both mouse14 15 and human15 pancreatic acinar cells and
prevents AP in three different mouse models. Genetic deletion
or pharmacological inhibition of another SOCE channel, transi-
ent receptor potential cation channel 3 (TRPC3), also reduces
caerulein-induced SOCE and AP.16 17

Excessive Ca2+ release from intracellular stores occurs pre-
dominantly via inositol 1,4,5-trisphosphate receptor (IP3R) Ca

2+

channels.18 The pancreatic acinar cell expresses all three subtypes
of the IP3R in the apical region, close to the luminal mem-
brane,19–21 but IP3R types 2 and 3 are predominantly responsible
for physiological Ca2+ signalling and enzyme secretion.20 Stimuli
such as CCK,22 the bile acid taurolithocholic acid 3-sulfate
(TLCS),23 24 alcohol25 and fatty acid ethyl ester (FAEE)6 18 cause
intracellular Ca2+ release in pancreatic acinar cells primarily via
IP3Rs, an effect inhibited by double knockout of IP3R types 2
and 318 or by caffeine.8 18

Caffeine (1,3,7-trimethyxanthine) belongs to the methyl-
xanthine class of small, purine-based planar molecules and has
several pharmacological actions,26 including pronounced actions
on Ca2+ signalling.27 Caffeine inhibits Ca2+ release from IP3Rs
by inhibition of phospholipase C-mediated production of IP3

28

or by antagonising IP3Rs
29 through direct binding and reduction

of the open-state probability of IP3Rs.
30 31 Contrarily, caffeine

activates Ca2+ release from ryanodine receptors (RyRs) by
increasing the sensitivity of RyRs to Ca2+ itself as observed in
multiple cells,32 although in pancreatic acinar cells effects on
IP3Rs predominate.28 29

The effects of caffeine on IP3-mediated Ca2+ signalling may be
protective in AP since the incidence of AP is inversely propor-
tional to the amount of coffee consumed.33 Caffeine also inhibits
cyclic adenosine monophosphate (cAMP) and cyclic guanosine
monophosphate (cGMP) phosphodiesterase (PDE), which
degrades cAMP and cGMP to non-cyclic forms;34 inhibition of
PDE reduces tumour necrosis factor and leukotriene synthesis,

inhibiting innate immunity.35 Caffeine is a non-selective inhibitor
of adenosine receptors, removing an endogenous brake on neural
activity.26 This stimulant effect of caffeine is the most familiar,
but taken to excess may result in caffeine intoxication with major
central nervous system hyperstimulation.26 Degradation of caf-
feine in the liver forms the dimethylxanthines theophylline
(1,3-dimethylxanthine), paraxanthine (1,7-dimethylxanthine)
and theobromine (3,7-dimethylxanthine), used variously as drugs
with similar actions to those of caffeine, although their actions
on IP3R-mediated signalling have not been clarified. As data
suggest caffeine and/or related methylxanthines may be protect-
ive in AP, we sought to determine their actions on toxin-induced,
IP3R-mediated [Ca2+]C changes and cell death in vitro, and in
three models of AP in vivo.

MATERIALS AND METHODS
Animals
Adult male CD1 mice (8–12 weeks old) were housed at 23±2°C
under a 12 h light/dark cycle with ad libitum access to standard
laboratory chow and water. For in vivo experiments, animals
were deprived of food but were allowed access to water from
12 h before the start of the experiments.

Measurements of Ca2+ responses, mitochondrial membrane
potential (ΔΨM) and IP3 uncaging
Fresh pancreatic acinar cells were isolated as described.7 Fluo
4-AM (3 μM), ci-IP3/PM (2 mM) and/or tetramethyl rhodamine
methyl ester (TMRM, 37.5 nM) were loaded for 30 min at
room temperature. Confocal images were acquired on a Zeiss
LSM510 system (Carl Zeiss Jena GmbH, Germany) with a 63×
C-Apochromat water immersion objective (NA 1.2). ΔΨM was
recorded in the perigranular mitochondrial cell region. IP3 was
uncaged by UV excitation of whole cells (364 nm, 1% power)
every three seconds where indicated. All fluorescence measure-
ments were expressed as changes from basal fluorescence (F/F0
ratio), where F0 represents initial fluorescence at the start of
each experiment.

In vitro necrosis assays
For CCK-induced cell death, a time-course propidium iodide
(50 mM) necrosis assay was run at 37°C using a POLARstar
Omega Plate Reader (BMG Labtech, Germany). Isolated murine
pancreatic acinar cells (75 mL) were added to a caffeine solution
(75 mL) at selected concentrations or the same volume of
physiological saline (for controls) prior to CCK (50 nM)
addition.

In TLCS-induced cell injury, an end-point propidium iodide
(100 mg/mL) necrosis assay was employed. Cells were incubated
with respective test solutions and agitated by rotary inversion
for 30 min at 37°C, centrifuged (at 260 g for 2 min), resus-
pended and transferred to a microplate. Data were calculated as
background-subtracted (cell-free blanks) percentage of total
death (in 0.02% TritonX). Data were normalised to minimum
and maximum fluorescence using the formula (F-Fmax)/(Fmax −
Fmin)+1. All experiments were in triplicate.

Determination of serum dimethylxanthine and
trimethylxanthine levels by liquid chromatography-mass
spectrometry
Serum was analysed on a QTRAP5500 hybrid triple-
quadrupole/linear ion trap instrument with TurboIon V Ion
source (Applied Biosystems, UK), with inline LC (Ultimate 3000
(Thermoscientific/Dionex, UK)) and Gemini C18, 3 mm,
2.1×100 mm column (Phenomenex, UK). Eluent A comprised
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H2O/0.1%, formic acid (FA)/1% and tetrahydrofuran v/v, Eluent
B 100% acetonitrile/0.1% FA v/v. The QTRAP5500 was oper-
ated in positive electrospray ionisation (ESI) mode and two
MRM transitions were monitored for caffeine (195.3/138.0 and
195.3/110.0), theobromine (181.1/124.0 and 181.1/96.0), para-
xanthine (181.2/124.0 and 181.2/142.0), theophylline (181.7/
96.0 and 181.7/124.0) and internal standard (paracetamol—
152.064/110.0 and 152.064/65.0) with a 100 ms dwell time.
Also, 1 mL of 100 mM internal standard was added to 50 mL of
each mouse serum sample and subjected to acetone precipitation
(8:1 v/v) at −20°C for 1 h. Samples were centrifuged at 14 000g
for 10 min at 4°C, then supernatant vacuum centrifuged to a
volume of 50 mL. A 10 mL aliquot was injected into the liquid
chromatography-mass spectrometry system. All xanthine serum
concentrations were determined using a calibration curve of 1–
100 mM for each analyte, spiked in mouse serum.

Experimental AP
Hyperstimulation AP was induced by either 7 or 12 intraperito-
neal injections of 50 mg/kg caerulein hourly (CER-AP), with
saline controls. Bile acid AP was induced by retrograde infusion
of 50 mL taurolithocholate acid sulfate (3 mM, TLCS-AP) into
the pancreatic duct as described, with saline injection (sham)
controls.10 36 FAEE-AP was induced by simultaneous intraperi-
toneal injection of ethanol (1.35 g/kg) and palmitoleic acid
(POA, 150 mg/kg), twice at 1 h apart.7 Control mice received
only ethanol (1.35 g/kg) injections. In all models, analgesia with
0.1 mg/kg buprenorphine hydrochloride (Temgesic, Reckitt and
Coleman, Hull, England) was administered. Mice were
humanely killed at designated time points for determination of
severity (see online supplementary materials and methods).

Caffeine administration in vivo
Details of caffeine dose optimisation and administration of
other methylxanthines are described in supplementary materials
and methods. In CER-AP, mice received seven intraperitoneal
injections of 1, 5, 10 or 25 mg/kg of caffeine (called regimen
subsequently) hourly, beginning 2 h after the first caerulein
injection, and were humanely killed at 12 h for determination
of severity. The effect of caffeine was also assessed in both 7-
injection and 12-injection CER-AP models at 24 h. In TLCS-AP,
caffeine (25 mg/kg regimen) was begun 1 h after TLCS infusion
and severity determined after humane killing at 24 h. In
FAEE-AP, two intraperitoneal injections of caffeine (25 mg/kg,
1 h apart) were administered from an hour after the second
POA/ethanol injection.

Statistical analysis
Results are presented as means±SEM from three or more inde-
pendent experiments. In all figures, vertical bars denote mean
±SE values. Statistical analysis was performed using Student’s t
test or analysis of variance in Origin 8.5 (OriginLab,
Northampton, Massachusetts, USA) and a value of p<0.05 con-
sidered significant.

Chemicals
Fluo 4-AM, TMRM and Hoechst 33342 were from Thermo
Fisher Scientific (Waltham, Massachusetts, USA); ci-IP3/PM
from SiChem GmbH (Bremen, Germany). Unless otherwise
stated, all other chemicals were from Sigma (Gillingham, UK) of
the highest grade available.

RESULTS
Inhibition of ACh-induced [Ca2+]C oscillations by caffeine
and its dimethylxanthine metabolites
ACh (50 nM) caused [Ca2+]C oscillations in pancreatic acinar
cells that were concentration-dependently inhibited by caffeine
at 500 mM to 2 mM (figure 1Ai, ii); 200 mM caffeine resulted
in no significant reduction (data not shown). ACh-induced [Ca2
+]C oscillations were also inhibited by 500 mM theophylline
(figure 1Aiii) and 500 mM paraxanthine (figure 1Aiv); all
dimethylxanthines inhibited ACh-induced [Ca2+]C signals in a
concentration-dependent manner (figure 1Av). Theophylline,
paraxanthine and theobromine induced significantly more inhib-
ition than caffeine at 500 mM, with paraxanthine showing the
highest potency. In contrast, 1-methylxanthine and xanthine
showed minimal inhibition (see online supplementary
figure S1A, B).

Inhibition of IP3-mediated [Ca2+]C signals by caffeine and its
dimethylxanthine metabolites
To investigate whether methylxanthines might directly inhibit
IP3R-mediated Ca2+ elevations, a membrane-permeable caged IP3
analogue, ci-IP3/PM, was loaded into pancreatic acinar cells.
Repetitive uncaging of ci-IP3/PM caused sustained increases of
[Ca2+]C that were inhibited in a concentration-dependent manner
by caffeine (3 and 5 mM) (figure 1Bi, ii). Theophylline and para-
xanthine showed similar effects (figure 1Biii). These results suggest
that methylxanthines inhibit IP3R-mediated [Ca2+]C signals by an
action on the IP3R.

Caffeine-induced inhibition of CCK-induced [Ca2+]C signals,
ΔΨM loss and cell death
The effects of caffeine on CCK-induced toxic, sustained [Ca2+]C
signals were investigated. An elevated Ca2+ plateau followed
hyperstimulation with 10 nM CCK (figure 2A), which was
reduced by 27% by 1 mM caffeine (figure 2Ai), and blocked by
10 mM (figure 2Aii), effects reversible upon washout. Similar
effects were observed when 10 mM caffeine was applied prior to
10 nM CCK stimulation (see online supplementary figure S2A).

Methylxanthines are PDE inhibitors and simultaneous
increases in cAMP and cGMP may synergistically inhibit [Ca2+]C
oscillations induced by ACh.37 The potential contribution of
PDE inhibition to the effects of caffeine on CCK-induced sus-
tained Ca2+ signals was investigated using non-hydrolysable ana-
logues of cAMP and cGMP. Addition of 8-bromo-cAMP/GMP
(1 mM) did not affect the CCK-induced [Ca2+]C plateau,
whereas 10 mM caffeine caused complete inhibition (figure 2B),
suggesting a mechanism independent of intracellular cyclic
nucleotide levels, although both xanthine and non-xanthine PDE
inhibitors were found to inhibit ACh-induced [Ca2+]C oscilla-
tions (see online supplementary figure S3A–D).

To test potential effects of caffeine on SOCE, internal Ca2+

stores were depleted under Ca2+-free conditions using either
10 nM CCK or 2 mM thapsigargin, an inhibitor of the
sarco-endoplasmic reticulum calcium transport ATPase (SERCA)
and SOCE triggered by reapplication of extracellular Ca2+

(5 mM). Following depletion of internal stores with thapsigar-
gin, caffeine was unable to revert the SOCE-induced Ca2+

plateau (figure 2Ci). When 10 nM CCK was used to deplete
internal stores, the sustained SOCE plateau was significantly
inhibited by 10 mM caffeine in a reversible manner (figure
2Cii). Following application of both CCK and thapsigargin, caf-
feine did not reduce the associated SOCE (figure 2Ciii). These
data, summarised in figure 2Civ, are consistent with an
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inhibitory action of caffeine on IP3R-mediated signalling, not
SOCE per se.

Since sustained [Ca2+]C elevations are known to induce mito-
chondrial dysfunction leading to pancreatic acinar cell necro-
sis,6 7 10 the effects of caffeine on ΔΨM were also evaluated.
Caffeine (both 1 and 10 mM) did not significantly affect ΔΨM

on its own (figure 2Di), but it (10 mM) inhibited the loss of
ΔΨM induced by CCK, reversible on removal of the xanthine
(figure 2Dii). In a time-course necrotic cell death pathway acti-
vation assay, caffeine (2 and 5 mM) reduced 50 nM
CCK-induced cell death in a concentration-dependent and time-
dependent manner (figure 2E).

Inhibition of TLCS-induced [Ca2+]C signals and cell death by
caffeine and its dimethylxanthine metabolites
To investigate effects of caffeine on bile acid induced [Ca2+]C
signals, 500 mM TLCS was applied to induce sustained [Ca2+]C
elevations in pancreatic acinar cells. Caffeine concentration-
dependently blocked these TLCS-induced [Ca2+]C elevations.
Thus, 3 mM caffeine partially reduced the plateau (figure 3Ai),
5 mM caffeine further reduced the sustained elevation with

oscillatory [Ca2+]C rises sometimes superimposed (figure 3Aii),
while 10 mM completely blocked the sustained elevations
(figure 3Aiii). Pretreatment of cells with 10 mM caffeine con-
verted 500 mM TLCS-induced [Ca2+]C plateaus into oscillations
(see online supplementary figure S2B).

The effects of methylxanthines on TLCS-induced necrosis
were investigated using an end-point assay. Caffeine, theophyl-
line and paraxanthine concentration-dependently inhibited
TLCS-induced toxicity (figure 3Bi–iii). Caffeine induced a slight
but significant reduction of TLCS-induced necrosis at 5 mM
and approximately halved this at 10 mM (figure 3Bi). Similar
patterns were observed for theophylline and paraxanthine over
the range of concentrations tested (figure 3Bii, iii).

Serum dimethylxanthine and trimethylxanthine levels in
CER-AP
The major metabolites of caffeine that appear in the blood
stream of both humans and rodents are theophylline, para-
xanthine, theobromine and monomethylxanthines (figure 4A).
The serum levels of these were measured following in vivo caf-
feine administration to mice (25 mg/kg regimen) during

Figure 1 Dimethylxanthine and
trimethylxanthines inhibit acetylcholine
(ACh)-induced and inositol
1,4,5-trisphosphate receptor
(IP3)-induced Ca

2+ signals in isolated
pancreatic acinar cells. (A)
Representative traces of ACh (50 nM)
induced Ca2+ oscillations that were
significantly inhibited by caffeine (CAF),
theophylline (TP) and paraxanthine
(PX): (i) partial inhibition by CAF at
500 mM, (ii) almost complete inhibition
by CAF at 2 mM, or (iii) TP at 500 mM
or (iv) PX at 500 mM. (v) Summary
histograms of the inhibitory effects of
CAF, TP, PX and theobromine (TB) on
ACh-induced Ca2+ oscillations at both
500 mM and 2 mM. (B) Representative
traces of Ca2+ elevations (grey)
generated by uncaging of the
membrane permeable IP3 analogue,
ci-IP3/PM (2 mM) that were significantly
inhibited by CAF (black): (i) partial
inhibition at 3 mM and (ii) complete
inhibition at 5 mM. (iii) Summary
histograms of inhibitory effects of CAF,
TP and PX on IP3-induced Ca

2+

elevations at 3 and 5 mM. *p<0.05 vs
control group; †p<0.05 vs lower
concentration. Traces are averages of
>20 cells from at least three repeat
experiments. Data normalised from
basal fluorescence levels (F/F0) and are
expressed as means±SE in histograms.
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CER-AP. The serum levels of caffeine were up to 700 μM at
10 min after four caffeine injections (figure 4B). It peaked at
10 min after seven injections of caffeine at >1 mM and grad-
ually reduced to >600 and >400 μM at 2 and 6 h after last caf-
feine injection, respectively (figure 4B). Caffeine was the most
abundant xanthine detected (∼1200 mM 10 min after seven
injections), followed by theobromine (∼400 mM), theophylline
(∼300 mM) and paraxanthine (∼150 mM) (figure 4C). The total
level of dimethylxanthine and trimethylxanthine rose to

>2 mM, a concentration capable of exerting marked inhibition
of CCK-induced Ca2+ signals and cell death.

Effects of dimethylxanthine and trimethylxanthine on the
severity of CER-AP
Since caffeine and its dimethylxanthine metabolites were able to
protect against Ca2+-induced toxicity in vitro, an evaluation of
caffeine was carried out in vivo on CER-AP. In the CER-AP with
seven caerulein injections, at 12 h after the first caerulein

Figure 2 Caffeine (CAF) inhibits cholecystokinin (CCK)-induced sustained Ca2+ signals, mitochondrial membrane potential (ΔΨM) loss and cell
death. (A) Representative traces showing the CCK-induced (10 nM) Ca2+ plateau that was significantly inhibited by CAF: (i) partial inhibition at
1 mM and (ii) almost complete inhibition at 10 mM, with mean plateau height as % above baseline (inset) showing CAF has a dose-dependent
inhibitory effect on the plateau height (*p<0.05 vs control group; †p<0.05 vs lower concentration). (B) Representative trace showing the lack of
inhibitory effect of non-hydrolysable analogues of cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP),
8-bromo-cAMP/cGMP (1 mM) on the CCK-induced Ca2+ plateau, subsequently abolished by CAF (10 mM). (C) Representative traces and summary
histogram showing that CAF (10 mM) (i) did not inhibit the store-operated Ca2+ entry plateau (SOCE) induced by thapsigargin (TG, 2 mM) but (ii)
did inhibit SOCE induced by CCK (10 nM); (iii) CAF did not inhibit SOCE in the presence of TG. (iv) Summary histogram of the effect of CAF on the
SOCE plateau in the presence of TG, CCK, or both (*p<0.05 vs control group). (D) Loss of mitochondrial ΔΨM (tetramethyl rhodamine methyl,
TMRM) induced by CCK (10 nM) was reversed by application of CAF (10 mM), after removal of which the ΔΨM dropped once more and addition of
the protonophore (CCCP, 10 mM) collapsed this to a minimal level: (i) CAF itself had no significant effect on ΔΨM; (ii) effect on CAF on
CCK-induced ΔΨM loss. (E) CAF significantly inhibited necrotic cell death pathway activation (PI uptake) induced by CCK (50 nM) in a
dose-dependent manner at 2 and 5 mM (*p<0.05 vs control group; †p<0.05 vs CCK only). Traces are averages of >19 cells from at least three
repeat experiments. Data normalised from basal fluorescence levels (F/F0) and are expressed as means±SE in histograms.
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injection there were significant elevations of serum amylase,
pancreatic oedema (pancreatic wet to dry ratio), trypsin and
myeloperoxidase (MPO) activity (a marker of neutrophil infiltra-
tion), with increases of lung MPO activity, alveolar membrane
thickening and serum interleukin (IL)-6 (figure 5A–F and online
supplementary figure S4A, B). To evaluate possible further
distant organ injury, we assessed renal pathology in CER-AP, but
no significant effects were seen on serum creatinine and renal
histology, which appeared normal (see online supplementary
figure S4C, D). Typical histopathological features of AP (oedema,
vacuolisation, neutrophil infiltration and necrosis) were con-
firmed and mirrored by histopathology scores (figure 5G, H).

In agreement with in vitro findings, there was dose-
dependency for caffeine in ameliorating the severity of CER-AP
(figure 5A–F). Using 1 mg/kg caffeine regimen, there was no sig-
nificant effect; with 5 mg/kg caffeine, there was significant reduc-
tion of pancreatic oedema and MPO activity, although other
parameters remained unchanged. With 10 and 25 mg/kg caffeine
regimens, there was marked suppression of serum amylase, pan-
creatic oedema, trypsin and MPO activity, whereas elevated lung
MPO activity, alveolar membrane thickening and elevated serum
IL-6 levels remained unsuppressed (figure 5A–F and online
supplementary figure 4B). Caffeine had no significant effect on
serum creatinine and renal histology (see online supplementary
figure S4C, D). Caffeine at both 10 and 25 mg/kg markedly
reduced the overall histopathology score (figure 5Hi). The pro-
tective effect at 25 mg/kg was the most marked (figure 5G), con-
firmed by the histopathological scores (figure 5Hii–iv). In other
experimental AP models, the 25 mg/kg regimen was used,
reduced to two injections for FAEE-AP.

To determine whether caffeine reduced pancreatic injury
through direct vascular actions that increased blood flow,38 we
determined pancreatic blood flow using fluorescent micro-
spheres in untreated animals (see online supplementary
materials and methods), in CER-AP and in CER-AP following

25 mg/kg caffeine regimen. While CER-AP markedly reduced
pancreatic blood flow, caffeine did not have a significant effect
on this flow, although there was a trend towards a modest
improvement (see online supplementary figure S4E).

In contrast of the dramatic effects of caffeine on
caerulein-induced pancreatic injury, theophylline and para-
xanthine did not exert significant protective effects in CER-AP
with both 10 and 25 mg/kg regimens (see online supplementary
figure S5A–E). To further explore these unexpected findings, the
serum levels of theophylline and paraxanthine were measured
from both dose regimens. Serum levels of theophylline and
paraxanthine 10 min after the last xanthine injection were each
<100 mM in the 25 mg/kg regimen and <50 mM in the 10 mg/
kg regimen (see online supplementary figure S6). These
dimethylxanthine concentrations were previously shown not to
alter IP3R-mediated [Ca2+]C signals in vitro, consistent with an
effect of caffeine on this signalling pathway.

Since caffeine treatment was markedly protective in CER-AP at
12 h after induction by seven caerulein injections, its effects on
more severe disease at a later time point were compared (figure 6).
CER-AP induced by 12 hourly caerulein injections converted mild
necrotising AP into a severe necrotising form characterised by
extensive pancreatic oedema, neutrophil infiltration and necrosis
at 24 h after induction (figure 6Ei–iv). Caffeine (25 mg/kg
regimen) markedly reduced all parameters of pancreatic injury in
both models.

Protective effects of caffeine on TLCS-AP and FAEE-AP
TLCS-AP caused dramatic increases of pancreatic and systemic
injury markers compared with the sham group at 24 h
(figure 7A–E), with marked histopathological changes (figure 7F).
Since pancreatic trypsin activity peaks very early after induction of
AP in the bile acid-induced model, this parameter was not
included for severity assessment.36 Caffeine significantly reduced
serum amylase (figure 7A), pancreatic oedema (figure 7B),

Figure 3 Effects of methylxanthines on taurolithocholic acid 3-sulfate (TLCS)-induced Ca2+ signals and cell death. (A) Representative traces
showing that the TLCS-induced (500 mM) Ca2+ plateau was significantly inhibited by caffeine (CAF): (i) partial inhibition at 3 mM, (ii) the sustained
Ca2+ plateau was converted to oscillations at 5 mM and (iii) complete inhibition at 10 mM. (B) (i) CAF significantly inhibited necrotic cell death
pathway activation (PI uptake) induced by TLCS (500 mM) in a dose-dependent manner at 5 and 10 mM. Similar effects were also seen for (ii)
theophylline (TP) and (iii) paraxanthine (PX). CAF, TP and PX did not affect basal PI uptake compared with normal controls (*p<0.05 vs control
group; †p<0.05 vs TLCS only). Traces are averages of >20 cells from at least three repeat experiments. Data normalised from basal fluorescence
levels (F/F0) for Ca

2+ signals and from maximal fluorescence levels (F/Fmax) for PI uptake, respectively. Data are expressed as means±SE in
histograms.
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pancreatic MPO activity (figure 7C) and serum IL-6 (figure 7E),
but did not affect lung MPO activity (figure 7D). Caffeine signifi-
cantly reduced the overall histopathological score (figure 7Gi), as
well as the specific oedema (figure 7Gii) and inflammation scores
(figure 7Giii), with a trend to curtail the necrosis score (figure
7Giv).

Since caffeine inhibits FAEE-induced Ca2+ signals in vitro,7

its effects in FAEE-AP were tested. Co-administration of ethanol
and POA caused typical AP features compared with ethanol
alone (figure 8A–G).7 Two injections of 25 mg/kg caffeine sig-
nificantly reduced serum amylase, pancreatic oedema, trypsin
and MPO activity, although an increase in lung MPO activity
was observed (figure 8A–E). The overall histopathological score
(figure 8Gi) was greatly ameliorated, with significantly lowered
oedema (figure 8Gii) and inflammation (figure 8Giii) with a
trend towards a decrease in necrosis (figure 8Giv).

DISCUSSION
This study defines the inhibitory effects of methylxanthines on
IP3R-mediated Ca2+ release from the pancreatic acinar

endoplasmic reticulum store into the cytosol and their potential
application in AP. It has been shown that caffeine inhibits
IP3Rs

29 as well as IP3 production in a concentration-dependent
manner.28 We found that inhibition of IP3R-mediated Ca2+

release is attributable at least in part to an action on the IP3R,
since xanthines inhibited IP3R-mediated Ca2+ release elicited
by uncaged IP3. Caffeine, theophylline and paraxanthine pre-
vented physiological Ca2+ signalling and toxic elevations of
[Ca2+]C induced by agents (CCK and TLCS) that cause AP, in
a concentration-dependent manner (500 mM to 10 mM), also
inhibiting falls in ΔΨM and necrotic cell death pathway activa-
tion. An inhibitory action on PDE preventing cAMP/cGMP
degradation could not account for the effects on toxic [Ca2+]C
overload since additional cAMP/cGMP did not prevent these.
Extending these findings in vivo, caffeine significantly reduced
the severity of multiple, diverse models of AP. The combined
concentrations of dimethylxanthine and trimethylxanthine after
the 25 mg/kg caffeine protocol were within the range over
which effects on both IP3R-mediated Ca2+ release and toxic
elevations of [Ca2+]C were identified. Despite the half-life of

Figure 4 Methylxanthine (MX)
structure and determination of serum
di-MX and tri-MX levels in caerulein
acute pancreatitis (CER-AP). (A) (i)
Positions 1, 3 and 7 methylation of the
xanthine structure are shown. (ii)
Dependent on methylation state,
caffeine (CAF) and its MX metabolites
are classed as mono-MX, di-MX and
tri-MX that are listed in the table. (B)
In CER-AP, caffeine at 25 mg/kg (seven
injections hourly) was given
simultaneously with each CER (50 mg/
kg) injection. Mice were sacrificed at
different time points to measure serum
caffeine (CAF, tri-MX) levels by LC/MS.
(C) Respective serum di-MX levels and
total di-MX and tri-MX levels showing
peak caffeine concentration at 10 min
after last caffeine/CER injection: CAF
had the highest serum concentration,
followed by theobromine (TB),
theophylline (TP) and paraxanthine
(PX). The cumulative concentration of
di-MX and tri-MX was >2 mM. Values
are means±SE from six mice.
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caffeine in mice of ∼60 min,39 the combined peak concentra-
tions of dimethylxanthine and trimethylxanthine with the
25 mg/kg caffeine regimen were >2 mM, and serum caffeine
was >400 μM 6 h after last caffeine injection. Following
similar protocols of 25 mg/kg theophylline or paraxanthine,
concentrations were far below the effective range on IP3Rs but
within the effective range on PDE (approaching 100 mM
10 min after the last dimethylxanthine injection),26 and no pro-
tective effects on in vivo AP were seen. Nor were significant
protective effects seen on pancreatic blood flow with the
25 mg/kg caffeine regimen, to be expected if mediated via PDE
inhibition.38 Since pancreatic cellular injury initiates and deter-
mines severity in AP, the protective effect of caffeine on AP is
likely to have been mediated by inhibition of IP3R-mediated
Ca2+ release.

The concentration range over which caffeine inhibited toxic
[Ca2+]C overload induced by CCK hyperstimulation was similar
to that seen here with quasi-physiological ACh-elicited Ca2+

oscillations, as previously in pancreatic acinar cells28 and per-
meabilised vascular smooth muscle cells.40 There could have
been a cAMP/cGMP-dependent component to inhibition of the
ACh-elicited Ca2+ oscillations since both xanthine-based and
non-xanthine-based PDE inhibitors reduced ACh-elicited Ca2+

oscillations. Nevertheless, PDE inhibition is unlikely to have
contributed to the reduction of toxic [Ca2+]C overload as this
was not affected by application of cell-permeable cAMP/cGMP
analogues, but was immediately reversed upon caffeine adminis-
tration. It is also unlikely that any increase in SERCA activity
occurred in response to caffeine and downstream rises in cyclic
nucleotide levels since no decrease in [Ca2+]C was induced by

Figure 5 Dose-dependent protective effects of caffeine on the severity of caerulein acute pancreatitis (CER-AP) at 12 h. Mice received either
intraperitoneal injections of 50 mg/kg CER (seven injections hourly) or equal amount of saline injections. Caffeine (CAF) at 1, 5, 10 or 25 mg/kg
regimen (seven injections hourly) was begun 2 h after the first injection of CER. Mice were sacrificed at 12 h after disease induction and assessed
for (A) serum amylase, (B) pancreatic oedema, (C) pancreatic trypsin activity, (D) pancreatic myeloperoxidase (MPO) activity (normalised to CER
group), (E) lung MPO activity (normalised to CER group) and (F) serum interleukin (IL-6). (G) Representative images of pancreatic histopathology for
all groups (H&E, ×200). (H) (i) Overall histopathological score and components: (ii) oedema, (iii) inflammation and (iv) necrosis. *p<0.05 vs control
group; †p<0.05 vs CER group. Values are means±SE of 6–8 animals per group.
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analogues of cAMP and cGMP, which have been shown to upre-
gulate SERCA via phospholamban.41 Therefore, the actions of
caffeine on toxic [Ca2+]C overload are consistent with a primary
effect on IP3R-mediated Ca2+ release.

SOCE in pancreatic acinar and ductal cells occurs predomin-
antly via Orai channels and is regulated in part by TRP chan-
nels.42 Previously we found inhibition of Orai to markedly

reduce CER-AP, TLCS-AP and FAEE-AP.15 Inhibition of TRPC3
was found to reduce a mild model of CER-AP,16 while the non-
selective cation channel TRPV143 44 as well as TRPA144 have
been implicated in neurogenic inflammation contributing to AP.
We obtained no data to indicate any direct effect of caffeine on
Orai or TRP channels. On the contrary, SOCE is unlikely to
have been inhibited directly by caffeine since caffeine had no

Figure 6 Caffeine (CAF) protects against pancreatic injury in two caerulein acute pancreatitis (CER-AP) models at 24 h. Mice received either
intraperitoneal injections of 50 mg/kg CER (both 7 and 12 injections hourly) or equal amounts of saline injections. Caffeine (CAF) at the 25 mg/kg
regimen (7 injections hourly) was begun 2 h after the first injection of CER. Mice were sacrificed at 24 h after disease induction and were assessed
for (A) serum amylase, (B) pancreatic oedema, (C) pancreatic trypsin activity and (D) pancreatic myeloperoxidase (MPO) activity (normalised to CER
group). (E) (i) Overall histopathological score and components: (ii) oedema, (iii) inflammation and (iv) necrosis. *Indicates p<0.05. Values are means
±SE of 6–8 animals per group.
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effect on thapsigargin-induced [Ca2+]C plateaus, rather SOCE
will have been inhibited secondarily to reduction of store deple-
tion, the principal driver of SOCE in non-excitable cells.14 15 21

Inhibition of second messenger-mediated Ca2+ release via
RyR ameliorates both caerulein45 and bile acid-induced AP.46

Since caffeine enhances Ca2+ release from RyRs in excitatory
cells,32 and RyRs are major contributors to Ca2+ signalling in
pancreatic acinar cells,23 47 the effects of caffeine in the reduc-
tion of toxic Ca2+ overload observed here might appear contra-
dictory. However, in contrast to the situation in muscle cells,
caffeine can only release Ca2+ in pancreatic acinar cells under
quite exceptional circumstances and then only when present at a
low concentration (1 mM); indeed, this effect is abolished by
stepping up the caffeine concentration.29 Furthermore,
ACh-elicited Ca2+ signalling is blocked by inhibiting IP3Rs
pharmacologically29 and knockout of the principal subtypes
(IP3R2 and IP3R3) results in a failure of Ca2+ signal generation

and secretion.20 Thus, caffeine is used extensively as an inhibi-
tor of Ca2+ release in fundamental investigations of pancreatic
acinar and other electrically non-excitable cells.27

Little, if any, protective effect of caffeine on experimental AP
can be attributed to actions on adenosine receptors, which have
both inhibitory (A1, A3) and excitatory (A2A, A2B) actions
mediated in part through changes in cAMP.48 Caffeine is an
antagonist of all adenosine receptors; the potency of caffeine is
highest on A2A then A1 receptors at concentrations 10–20
times lower than on PDE.26 In the rat pancreas, few acinar cells
express adenosine receptors;49 differential subtype expression
occurs in vascular endothelium, nerve fibres, islet cells and
ductal cells, with total expression A2A>A2B>A3>A1.48 While
antagonism of the least predominant receptor (A1) previously
reduced pancreatic oedema but no other parameter of experi-
mental AP,49 the majority of data indicate that increasing adeno-
sine receptor activation by reuptake inhibition or administration

Figure 7 Protective effects of caffeine (CAF) on taurolithocholic acid 3-sulfate (TLCS)-acute pancreatitis (AP). Mice received either retrograde
infusion of 50 mL of 3 mM TLCS into the pancreatic duct or underwent sham surgery. CAF at 25 mg/kg (seven injections hourly) was begun 1 h after
TLCS infusion. Mice were sacrificed at 24 h after disease induction and were assessed for (A) serum amylase level, (B) pancreatic oedema, (C)
pancreatic myeloperoxidase (MPO) activity (normalised to sham group), (D) lung MPO activity (normalised to sham group) and (E) serum interleukin
(IL-6). (F) Representative pancreatic histopathology for all groups (H&E, ×200). (G) (i) Overall histopathological score and components: (ii) oedema,
(iii) inflammation and (iv) necrosis. *p<0.05 vs other two groups. Values are means±SE of 6–11 animals per group.
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of A2 or A3 receptor agonists ameliorates experimental AP.50

Furthermore, adenosine receptor activation has broad anti-
inflammatory effects, including reduction of neutrophil recruit-
ment and effector functions via A2A and A2B;51 antagonism of
these receptors may account for the lack of effect of caffeine on
lung MPO or lung histopathology in experimental AP. Similarly,
protective effects via adenosine receptors would be expected at
doses of caffeine that had no (1 mg/kg) or minimal (5 mg/kg)
effect.52

High doses of caffeine were required to reduce the severity of
experimental AP, with the most effective 25 mg/kg regimen
extending into toxicity, indicative of a very narrow therapeutic

index. At this dose, the number of hourly injections had to be
reduced from seven to two in FAEE-AP to avoid mortality; in
CER-AP, 50 mg/kg resulted in caffeine intoxication syndrome,
although at 25 mg/kg no visible side effects were observed. In
humans, even 10 mg/kg caffeine would be likely to induce caf-
feine intoxication, with florid neuro-excitotoxic and other
undesirable side effects.26 The principal caffeine metabolites in
humans, monkeys, rabbits, rats and mice are similar and do not
differ when given by mouth compared with intraperitoneally.39

Paraxanthine, however, is the most abundant dimethylxanthine
metabolite in humans, while in mice this is theobromine.39

There is marked individual variability in caffeine metabolism

Figure 8 Protective effects of caffeine (CAF) on fatty acid ethyl ester acute pancreatitis. Mice received two intraperitoneal injections of ethanol
(EtOH, 1.35 g/kg) in combination with palmitoleic acid (POA, 150 mg/kg) or equal amounts of EtOH injection only, 1 h apart. CAF at 25 mg/kg
(seven injections hourly) was given 1 h after the second injection of EtOH/POA. Mice were sacrificed 24 h after disease induction and assessed for
(A) serum amylase level, (B) pancreatic oedema, (C) pancreatic trypsin activity, (D) pancreatic myeloperoxidase (MPO) activity (normalised to EtOH
group) and (E) lung MPO activity (normalised to EtOH group). (F) Representative pancreatic histopathology for all groups (H&E, ×200). (G) (i) Overall
histopathological score and components: (ii) oedema, (iii) inflammation and (iv) necrosis. *p<0.05 vs other two groups. Values are means±SE of 10
animals per group.
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and pharmacokinetics;26 since the half-life in humans typically
ranges from 3 to 7 h, repeated high doses or continuous intra-
venous infusions would be hazardous unless rapid therapeutic
monitoring were to be possible.

Our study has demonstrated proof of principle that caffeine
causes marked amelioration of experimental AP, largely through
inhibition of IP3R-mediated signalling. Medicinal chemistry
starting with the template of caffeine and/or other compounds
that inhibit IP3R-mediated signalling could lead to more potent,
selective and safer drug candidates for AP.
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SUPPLEMENTARY MATERIALS AND METHODS 

Isolation of pancreatic acinar cells 

Pancreatic acinar cells were freshly isolated from pancreata of young adult CD1 

mice (8-12 week old) using a standard collagenase (Worthington Biochemical 

Corporation, Lakewood, NJ, USA) digestion procedure established in previous 

work.6-10 S1 All experiments were performed at room temperature (23-25°C) unless 

otherwise indicated and cells were used within 4 h of isolation. The extracellular 

solution contained (mM): 140 NaCl, 4.7 KCl, 1.13 MgCl2, 1 CaCl2, 10 D-glucose, 10 

HEPES. The final pH of the solution was adjusted to pH 7.35 using NaOH. For 

experiments longer than two hours, a modified solution was used. The standard 

physiological saline solution was supplemented with 1X minimal essential amino acid 

solution, 292 µg ml-1 L-glutamine, 100 µg ml-1 penicillin and streptomycin, 1 mg ml-1 

soybean trypsin inhibitor, 1 mM Na3PO4·12H2O and 1 mM pyruvate. The solution 

was sterilised by passing it once through a 200 nm filter (Appleton Woods, Selly 

Oak, UK).  

 

Caffeine dose optimisation and other methylxanthine administration in vivo 

To determine the optimal protocol of caffeine injections, we performed several 

preliminary experiments. We administered 100 mg/kg caffeine (7 intraperitoneal (i.p.) 

injections at hourly intervals), aiming to achieve a serum concentration of 5 mM, 

previously shown to inhibit toxin-induced elevations of the acinar cell cytosolic Ca2+ 

concentration ([Ca2+]c).
10, 23, 27 S2 Mice died at this dose, so the dose was reduced to 

50 mg/kg, using the same injection protocol. At this dose mice survived but resulted 

in caffeine intoxication syndrome with irritability, increased urination and muscle 

twitching. The dose was reduced further to 25 mg/kg using the same protocol. At this 



dose no neuro-excitotoxicity was observed. However, in the fatty acid ethyl ester-

induced acute pancreatitis, 7 injections of 25 mg/kg caffeine (25 mg/kg regimen) 

resulted in several mouse fatalities so the injections were reduced to two injections, 

with the second of these one h after the first. 25 mg/kg theophylline or paraxanthine 

(7 i.p. injections at hourly intervals) resulted in no discernible side effects.  

 

Serum sampling protocol for di- and trimethylxanthine assay in CER-AP 

The 25 mg/kg caffeine regimen was given by injection at the same time as caerulein 

injections from the third caerulein injection in CER-AP, with two further caffeine 

injections at hourly intervals after the seventh caerulein injection. Serum samples 

were taken prior to the first caffeine injection, 10 min after the fourth caffeine 

injection and 10 min after the seventh caffeine injection as well as two and six hours 

after the seventh caffeine injection. Serum samples were then assayed by LC/MS for 

di- and trimethylxanthines. The same administration and sampling protocols were 

used to assay serum samples before and after theophylline or paraxanthine 

administration in CER-AP. 

 

Serum amylase and serum IL-6 levels 

Serum amylase was tested using a kinetic method by Roche automated clinical 

chemistry analyzers (GMI, Leeds, UK). Serum IL-6 levels were measured by the 

ELISA method using the protocols provided by R&D Systems (Abingdon, UK).  

 

Pancreatic oedema  

Pancreatic oedema was assessed by measuring pancreatic water content. A portion 

of pancreas (~60 mg) taken at the time of AP severity assessment was sliced, then 



weighed and incubated at 90°C for 72 h. The fully dried tissue was weighed again 

and the pancreatic water content calculated as: wet weight-dry weight/wet weight 

×100%. 

 

Pancreatic trypsin activity 

Pancreata were homogenised by a motorised homogeniser on ice in tissue buffer pH 

6.5, containing (in mM) MOPS 5, sucrose 250 and magnesium sulfate 1. The 

homogenates were centrifuged at 1500 g for 5 min, and 100 μl of each supernatant 

was added to a cuvette containing the peptide substrate Boc-Gln-Ala-Arg-MCA 

(Peptide, Osaka, Japan) dissolved in 1900 μl pH 8.0 assay buffer containing (in mM) 

Tris 50, NaCl 150, CaCl2 1 and 0.1 mg/mL bovine serum albumin. Trypsin activity 

was measured by fluorimetric assay using a Shimadzu RF-5000 spectrophotometer 

(Milton Keynes, UK). Samples were excited at 380 nm and emissions collected at 

440 nmS2 S3. A standard curve was generated using purified human trypsin. 

Pancreatic protein concentration was measured by a BCA protein assay (Thermo, 

Rockford, USA) using a BMG FlUOstar Omega Microplate Reader (Imgen 

Technologies, New York, USA). Trypsin activity was expressed as fmol/mg protein. 

 

Myeloperoxidase activity 

Myeloperoxidase activity in pancreas and lung was tested by a modified method 

from Dawra et alS4. Myeloperoxidase activity was measured by using the substrate 

3,3′,5,5′-tetramethylbenzidine (TMB) in extracted supernatants from the samples. 

Briefly, 20 µl of the supernatant was added into the assay mix which consisted of 

200 µL of phosphate buffer (100 mM, pH 5.4) with 0.5% HETAB and 20 µl TMB (20 

mM in DMSO). This mixture was incubated at 37°C for 3 min, followed by addition of 



50 µL H2O2 (0.01%). The mixture was further incubated for 3 min. The difference of 

absorbance between 0 min and 3 min at 655 nm was calculated against a standard 

curve generated by human myeloperoxidase using a plate reader.  

 

Histopathology 

Pancreatic and lung tissues were subjected to H&E staining and cut into 5 µm slides.  

For all experimental groups, 10 random fields of each pancreatic slide were graded 

by two independent blinded observers at magnification x200. Severity of pancreatic 

injury was defined by the extent of edema, inflammatory cell infiltration and acinar 

necrosis as previously described (each was scored as 0-3), and overall 

histopathology score calculated as the sum of individual scores.10, 15 Lung 

histolopathology scores were determined by two independent blinded observers 

grading alveolar septal thickening in 10 random fields of each lung slide at 

magnification x200 (scored as 0-3 where 0 = normal, 1 = thickening <1/3 field, 2 = 

thickening 1/3 field and ≤ 2/3 field and 3 = thickening >2/3 field). 

 

Measurement of pancreatic blood flow by fluorescent microsphere 

To measure pancreatic blood flow, mice received either intraperitoneal injections of 

50 µg/kg caerulein (CER, 7 injections hourly) or an equal number of equivalent 

volume saline injections. CAF (25 mg/kg) was given simultaneously with each CER 

injection. Mice were humanely killed 1 h after the last CER/CAF injection. The 

method to measure flow was adapted from that published by the Fluorescent 

Microsphere Resource Centre in the University of Washington 

(http://fmrc.pulmcc.washington.edu).S5 In brief, male CD1 mice (35 g) had general 

anaesthesia induced and maintained with isofluorane. Under a dissecting 



microscope, the left common carotid artery was accessed, ligated cranially and 

cannulated using 0.6 mm diameter polyethylene tubing. The tubing was advanced 

just beyond the thoracic inlet and secured using a bulldog clip. 200 IU of 

unfractionated sodium heparin was injected, followed by slow bolus injection of 0.5 

ml phosphate buffered saline containing 140,000 red 10 μm diameter polystyrene 

microbeads (FluoSpheres, Red (580/605), Molecular Probes Europe, Leiden, The 

Netherlands) over 60 seconds. Animals were culled by intravascular injection of 

pentobarbital and organs (pancreas, lung, kidneys) harvested immediately. Whole 

organs were placed in 1.5 ml Eppendorf tubes and weighed prior to further 

processing. 

 

36,000 blue-green polystyrene microspheres (430/465) were added to each 

Eppendorf tube as procedural controls and organs digested in 1 ml of ethanolic KOH 

for 48h at 50 °C, vortexing at 24 and 48 h. Tubes were then centrifuged at 2000 g for 

20 min and pellets resuspended in distilled water with 1% Triton-100, vortexed and 

again centrifuged at 2000 g for 20min. Pellets were resuspended in phosphate buffer 

(pH 7), vortexed and centrifuged before resuspending in 1ml of 2-ethoxy-ethyl 

acetate, vortexed and kept in a dark at room temperature for 24 h. Samples were 

then centrifuged at 2000 g for 20min and fluorescence of supernatants determined 

using the BMG FlUOstar Omega Microplate Reader (BMG LABTECH, Aylesbury, 

UK), sequentially measuring red (420/460) and blue-green fluorescence (580/620). 

 

Individual experimental results were excluded if blue-green fluorescence differed by 

>20% from average, indicating loss of spheres during processing. Results were also 

excluded if the difference in red fluorescence between left and right kidneys was 



>20%, indicating inadequate mixing of spheres prior to injection. Fluorescent values 

per weight of pancreas were compared between experimental groups, with n ≥ 4 

experimental repeats per group. 

 

SUPPLEMENTARY FIGURE LEGENDS 

Supplementary Figure 1. Effect of monomethylxanthine and xanthine on ACh-

induced Ca2+ oscillations in isolated pancreatic acinar cells. (A) 1-methylxanthine (1-

MX, 2 mM) had minimal inhibitory effect on ACh-induced Ca2+ oscillations, while (B) 

Xanthine (2 mM) did not show any effect. Traces are averages from >20 cells from at 

least three repeat experiments. Data are normalised from basal fluorescence levels 

(F/F0).  

 

Supplementary Figure 2. Effect of caffeine (CAF) on CCK- and TLCS-induced Ca2+ 

plateaus in isolated pancreatic acinar cells. (A) CAF (10 mM) nearly abolished CCK-

induced Ca2+ plateaus. (B) CAF (10 mM) converted TLCS-induced Ca2+ plateaus 

into oscillations. Traces are averages from >20 cells from at least three repeat 

experiments. Data are normalised from basal fluorescence levels (F/F0).  

 

Supplementary Figure 3. Phosphodiesterase inhibitors block ACh-induced Ca2+ 

oscillations in isolated pancreatic acinar cells. (A) Non-selective phosphodiesterase 

inhibitors methylxanthines (MXs) - caffeine (CAF), theophylline (TP), paraxanthine 

(PX), theobromine (TB), 1-MX, 7-MX and 3-isobutyl-1-methylxanthine (IBMX) 

showed significant dose-dependent inhibition at 500 µM and 2 mM. TP (2 mM) 

showed the greatest inhibition that was similar to the IBMX positive control. Mono-

MXs showed the least inhibition, and no significant inhibition was detected with 500 



μM 7-MX (*p <0.05 vs control; †p <0.05 vs lower concentration). (B) IBMX (2 mM) 

and (C) a synthesised MX derivative pentoxfylline (PTX, 2 mM) were shown to have 

a complete inhibitory effect on ACh-induced Ca2+ oscillations. (D) (i) No significant 

inhibitory effect was observed when rolipram (ROL), a selective non-xanthine based 

phosphodiesterase 4 inhibitor, at 100 µM was used. (ii) A marked inhibition, 

however, was achieved when the concentration of ROL was increased to 200 µM. 

Traces are averages of >20 cells from at least three repeat experiments. Data are 

normalised from basal fluorescence levels (F/F0) and expressed as means ± SE in 

histograms.  

 

Supplementary Figure 4. Effects of caffeine (CAF) on lung histopathology, renal 

function, renal histology and pancreatic blood flow in CER-AP. (A) Representative 

images of lung histopathology for in controls, CER-AP and CER-AP with caffeine 

(H&E, ×200) and (C) lung histopathology scores. (D) Serum creatinine and (E) 

representative images of kidney histology for all groups and caffeine alone (H&E, 

×200). (E) Pancreatic blood flow in all three groups. (*p <0.05 vs other groups. 

Values are means ± SE of 4-6 animals per group). 

 

Supplementary Figure 5. Dose response of dimethylxanthines on the severity of 

CER-AP at 12 h. Mice received intraperitoneal injections of 50 µg/kg caerulein (7 

injections hourly) and either theophylline (TP) or paraxanthine (PX) at either 10 and 

25 mg/kg regimens (7 injections hourly) was given 2 h after the first injection of 

caerulein. Control groups received the same volume of saline injections from 2 h 

after the first injection of caerulein. Mice were humanely killed at 12 h after disease 

induction and assessed by (A) Serum amylase, (B) Pancreatic oedema, (C) 



Pancreatic trypsin activity and (D) Pancreatic myeloperoxidase (MPO) activity 

(normalised to saline group).  (E) (i) Overall histopathological score and breakdown 

of components: (ii) oedema, (iii) inflammation and (iv) necrosis. *p<0.05 vs saline 

group. Values are means ± SE of 6 animals per group. 

 

Supplementary Figure 6. Determination of dimethylxanthine levels in CER-AP. 

Mice received either intraperitoneal injections of 50 µg/kg caerulein (7 injections 

hourly). Theophylline (TP) or paraxanthine (PX) at either 10 or 25 mg/kg regimen (7 

injections hourly) was given respectively 2 h after the first injection of caerulein. Mice 

were humanely killed at 12 h after disease induction and serum dimethylxanthine 

levels assessed by LC/MS. (A) Serum mean levels of TP were 18.1 and 67.4 µM for 

10 and 25 mg/kg TP regimens, respectively. (B) Mean serum levels of PX were 48.0 

and 91.0 µM for 10 and 25 mg/kg PX regimens, respectively. Values are means ± 

SE of 6 animals per group.  
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