
1743Gut September 2018 Vol 67 No 9

PostScriptPostScript

Guiding longitudinal sampling 
in IBD cohorts

We read with interest the work by Pascal 
et al published recently in Gut.1 Here, 
they report the volatile microbial signa-
tures of patients with Crohn’s disease 
(CD), a quality that greatly hinders our 
ability to classify healthy from affected 
subjects using 16S rRNA profiles from 
stool. Nonetheless, their work over-
came these and other complications,2 
producing a decision tree that classifies 
subjects with CD, UC, irritable bowel 
syndrome and anorexia. Although the 
authors note that both subtypes of IBD, 
particularly CD, have increased microbial 

community instability, this information is 
not used as a feature to improve classi-
fier accuracy. Could microbiome insta-
bility become actionable by creating a 
new classifier that benefits from repeated 
measurements? If so, how many samples 
per individual are needed to assess 
instability?

We collected daily stool samples for 
up to 6 weeks from 19 CD subjects and 
12 controls (see the analysis notebook 
for cohort description, methods and 
data, https:// github. com/ knightlab- anal-
yses/ longitudinal- ibd) over two sepa-
rate periods of 2 or 4 weeks spread 
over 2 and 5 months, for a total of 960 
samples. We believe that this is the most 
densely sampled longitudinal study of 
CD; previous studies collected samples 
every 1–3 months.1 3 Our cohort shows 
decreased alpha diversity and increased 
stability, as previously reported in CD 
and other subtypes of IBD.1 3–5 We also 
noted that subjects who underwent resec-
tion have lower alpha diversity than 
other CD-affected subjects (see analysis 
notebooks, https:// github. com/ knightlab- 
analyses/ longitudinal- ibd).

A critical experimental design ques-
tion for clinical studies is whether a finite 
budget should best be spent collecting 
samples from more patients or collecting 
more serial samples from each patient? 
Therefore, we created a Random 
Forests6 model based on per subject 
aggregation of longitudinal data for 
alpha diversity,7 beta diversity8 and 
abundances of two phylogenetic factors 
found to be associated with CD in ileal 
biopsies5 9 (figure 1). With one sample 
per subject, our model performs worse 

Figure 1 Diagram for the model creation and comparison of four receiver operating characteristic (ROC) curves. (A) Diagram describing the 
origin for the classifying features. (B) ROC curve for a model that relies on relative abundances and one sample per subject (as used in previous 
publications). (C–E) ROC curve for our new model at 1, 2 and 8 samples per subject. The grey lines represent the performance at each of the 100 
iterations. The dotted black diagonal line represents the performance of a classifier that guesses the labels at random.
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than a classifier that uses microbial rela-
tive abundances at a single time point, 
but when more samples per subject are 
added, the classifier outperforms that 
approach and results previously only 
attained with biopsy samples.5 Further-
more, we replicate this observation with 
a different cohort (table 1).

Novel analyses aggregating features 
over time and combining both alpha and 
beta diversity over time using our intensive 
daily sampling demonstrate that the main 
benefits are already obtained by collecting 
between three and five faecal specimens, 
and no additional benefits are obtained 
beyond seven serial samples. Similar 
results are found for monthly sampling. 
These results highlight the importance 
of treating CD as a volatile, time-varying 
condition, even during clinical remis-
sion, but provide hope to clinicians in 
that a relatively small number of samples 
yield large additional benefits, facilitating 
patient compliance. This information 
can be used to design collection of faecal 
samples for a large prospective cohort of 
patients with CD for longitudinal studies 
of host–microbial interactions over time.

The methods demonstrated here have 
not previously been used for microbiome 
analyses but have been used for other 
engineering applications, for example, 
in production lines to predict product 
specification outcomes in a steel manu-
facturer’s facility.10 We expect the results 
to generalise in other systems, including 
other GI and hepatic disorders, where 

dynamic features of the microbiome, 
host gene expression or other accessible 
descriptors can act as indicators of under-
lying dysbiotic states.
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