Pathology of an East African megacolon

G. M. BÖHM AND BARBARA SMITH

From the Pathology Department, St. Bartholomew's Hospital, London

EDITORIAL COMMENT This paper provides further evidence of the value of studying the epidemiology of diseases. Attention is drawn to a local cause of megacolon and it is postulated that there may be degenerative changes in the sacral para-sympathetic nerve supply.

In 1952 Burkitt called attention to the frequency of volvulus of the sigmoid colon amongst the Baganda tribe in Uganda. Hall-Craggs (1960) reported 104 cases in five years at Kampala, and Shepherd and Wright (1965) stated that from 1961 to 1963 over 120 cases were admitted to the Mulago Hospital, Kampala. In Hall-Craggs' experience patients with volvulus were between 30 and 60 years of age, 94.2% of the patients were males, and 77% of them were Baganda. He suggested that a long mobile sigmoid colon, common in Africans, predisposed to torsion of the gut.

Shepherd and Wright (1965) considered that the hypertrophy and dilatation in these cases were rather the cause of the torsion than its consequence, the primary disease being a megacolon which frequently caused volvulus. The same authors observed that the symptoms do not date from birth and that a distal narrowed aganglionic segment was not present. Dilatation and hypertrophy of the sigmoid colon have been encountered in patients without a history of obstruction and in some cases were incidental radiological or surgical findings. Coordinated contraction rings were not seen either radiologically or at laparotomy. Usually only the distal two-thirds of the sigmoid colon was affected and involvement of the other segments of the colon was not observed. At laparotomy the appearance of the affected part was flabby and stimulation by pinching did not result in contraction. The wall of the dilated pelvic colon was greatly thickened; in 10 cases in which it was resected for volvulus it was found to be 150-200% thicker than that of the descending colon. The meso-

Material from two cases was obtained by one of us (G.M.B.). Both patients were males, one (no. 591/64) was 27 years old and the other (no. 5084/64) was 55. In the first patient the total sigmoid colon was measured and was 65 cm. long; the dilated part was 27 cm. long and 10 cm. wide in its widest portion. The second sigmoid colon was 75 cm. long and the dilated part 40 cm. in length and 9 cm. in its greatest diameter. In both cases the dilatation occurred in the distal part of the sigmoid colon and the rectum appeared normal, although no biopsy was taken.

The specimens were fixed in formol-saline, paraffin sections were stained with haematoxylin and eosin, and thick frozen sections by Schofield's silver impregnation method. Köberle's (1963a) technique, which counts all neurones in a ring of 1 mm. thickness, was used to assess the number of ganglion cells in Auerbach's plexus. This was done at four levels in each case.

RESULTS

The histological appearances of the mucosa and submucosa were normal. The muscle coats were hypertrophied, particularly the circular fibres. The circular muscle coat contained a few vacuolated fibres and some of the nuclei were large and pale with pronounced nucleoli similar to those seen in regenerating skeletal muscle.

1This work is supported by the Conselho Nacional de Pesquisas (Brazil) and Fundação de Amparo à Pesquisa do Estado de São Paulo (Brazil).
2Present address: Department of Pathology, Medical School of Ribeirão Preto, University of São Paulo, Brazil.
Ganglion cells were present in the intermuscular and submucosal nerve plexuses and although many showed normal appearances, some were swollen with chromatolysis or vacuolation of their cytoplasm (Fig. 1). Figure 2 shows the results of the ganglion cell counts in Auerbach's plexus. These numbers are similar to those found in normal Brazilian subjects. The average number found in a ring 1 mm. in diameter is 5,785 for normal sigmoid colon and 4,036 for normal rectum (Köberle, 1960).

The quantity of unmyelinated nerve fibre in the intermuscular plexus was reduced compared both with a normal gut and with gut distended behind a neoplastic obstruction. The Schwann cell nuclei were large and more rounded than normal and considerably reduced in numbers. The plexus was infiltrated in places by a number of eosinophils but there was no other inflammatory reaction.

Silver impregnations of normal large intestine show two types of unmyelinated axons. One type is relatively thick and runs in the same direction as the circular muscle fibres (Fig. 3). The other type consists of an interlacing network of very fine fibres (Fig. 4). In the two cases of megacolon studied, the thick axons could still be seen, but they were fragmented and in some cases very swollen (Figs. 5 and 6). The fine network was absent except for a little axonal dust (Fig. 7).

DISCUSSION

This is a true megacolon as suggested by Köberle (1963a), namely, dilatation and hypertrophy, not due to any obstruction, either mechanical or functional, and the dilated segment itself is diseased. The finding of muscular hypertrophy does not need any
obstruction and overwork for its explanation. Meyer
(1921) and Froboese (1922) have shown that disten-
sion of the immobilized muscle leads to hypertrophy
without an increased work load. In the colon failure
of peristalsis will lead to chronic distension of the
viscus and muscular hypertrophy (Köberle, 1963a).
This explanation is consistent with the more accen-
tuated hypertrophy of the circular muscular coat
which suffers the greater distension found in our
cases and other enteromegalies (Köberle, 1963b).

The histological changes in these intestines are
quite different from those described in Hirschprung’s
disease where the pathological section of the gut is
contracted and aganglionic. The dilated and hyper-
trophied bowel lies proximal to this and is the result
of a physiological obstruction. Hirschprung’s disease
is thus not a megacolon.

Siegmund (1935) showed that patients treated with
atropine developed megacolon, thus calling attention
to the importance of normally functioning ganglion
cells in preventing this condition. In Chagas disease
a true megacolon occurs as a late manifestation of
the condition due to the destruction of neurones in
Auerbach’s plexus by a neurotoxic substance pro-
duced by the disintegrated leishmanias (Köberle,
1956a; 1956b).

In these two cases the number of neurones is
within normal limits, but they do show histological
changes, namely, vacuolation and chromatolysis.
These changes could be due to direct damage to the
cell, damage to their axons resulting in retrograde
cell change, or to loss of the preganglionic innerva-
tion resulting in transneuronal degeneration (Jacob,
1957). Direct damage to the neurone is unlikely, as
one would expect cell fall-out with so much functional
derangement. However, infectious diseases are en-
demic in East Africa and it is possible that one might
produce a toxin damaging, but not destroying,
neurones. The presence of a chronic volvulus with
ischaemia could also damage them.

A great deal of the normal fine nerve network has
disappeared in these cases and the long thick fibres
show evidence of damage. Cajal (1954) states that
the preganglionic fibres are much thicker than the
intrinsic fibres of Auerbach’s plexus, although he
does not distinguish between sympathetic and para-
sympathetic innervation. The presence of these cir-
cular fibres in Hirschprung’s disease where there are
no ganglion cells would tend to confirm that they
may be preganglionic fibres. If so, in these cases it
is possible that the lesion lies not in the colon but in
the preganglionic neurones. This would account for
the presence of normal numbers of ganglion cells and
for the damage to the thick circular axons, the loss
of the nerve net being a secondary phenomenon.

The descending and sigmoid portions of the colon

FIGS. 5 and 6. Greatly swollen circular fibres
from Auerbach’s plexus in a megacolon. Schofield
× 300.

FIG. 7. Axonal remnants in Auerbach’s plexus in
a case of megacolon. Schofield × 300.
Pathology of an East African megacolon

receive their parasympathetic supply from the second, third, and fourth sacral segments (Woodburne, 1956) and a degenerative lesion of neurones in the lateral columns of these segments of the cord could produce this type of lesion. The fact that this disease occurs mainly in one tribe and in the male sex suggests a genetic factor (associated or not with an infectious agent) perhaps similar to that in Kuru (Gajdusek, 1963) or the melanesian amyotrophic lateral sclerosis (Kurland, 1957). These diseases occur also in a single tribe, mainly in the same sex, and have been shown to be a neuronal degeneration coming on in adult life. Degenerative changes in central autonomic cells can occur with the production of symptoms. Shy and Drager (1960) described cell loss in the intermediolateral columns in a case of postural hypotension. Two further cases of progressive autonomic failure with a similar pathology have been published by Johnson, Lee, Oppenheimer, and Scadding (1966). In all three cases there were other degenerative changes in the nervous system.

In these cases of megacolon the examination of the spinal cord could confirm or eliminate this possibility.

SUMMARY

The pathology of the gut is described in two cases of dilatation and hypertrophy of the sigmoid colon from East Africa, occurring predominantly in the males of a single tribe. The pathological findings confirm other workers’ impressions that this entity is a true megacolon. The possibility that it may be a system degeneration affecting the sacral parasympathetic outflow is suggested.

The authors are indebted to Dr. J. J. Shepherd (Makerere University College, Department of Surgery, Kampala) for the permission to use his material, to Mr. P. Crocker for the photographs, and to Mr. J. W. Miller and Mr. R. A. Dunbar for technical assistance.

REFERENCES

Pathology of an East African megacolon.

G M Böhm and B Smith

Gut 1966 7: 662-665
doi: 10.1136/gut.7.6.662

Updated information and services can be found at: http://gut.bmj.com/content/7/6/662.citation

Email alerting service

Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to: http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to: http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to: http://group.bmj.com/subscribe/