Recovery, reproducibility, and usefulness of polyethylene glycol, iodine-labelled rose bengal, sulphobromophthalein, and indocyanine green as non-absorbable markers

WILLIS C. MADDOREY, HAROLD A. SEREBRO, HELEN MARCUS, AND FRANK L. IBER

From the Division of Gastroenterology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, U.S.A.

EDITORIAL COMMENT All of these markers except indocyanine green were completely recovered in the dog.

Non-absorbable reference markers are widely employed in investigations of gastrointestinal absorption either to estimate the fluid content of a segment of gut or to compare the concentration of the markers to that of an unknown (Cooper, Levitan, Fordtran, and Ingelfinger, 1966; Clifton and Schedl, 1963; Fordtran, Levitan, Bikerman, Burrows, and Ingelfinger, 1961; Schedl, 1966). The reliability of both estimations has been questioned (Worning and Amstrup, 1965). The need in our laboratory for a highly precise determination of the fluid content of the rat intestine led to this re-evaluation. Data in the literature on recovery of the indicator and the reproducibility upon serial sampling of the intestinal contents from the same site are limited (Cooper et al., 1966; Schedl, 1966). The total recovery and constancy on serial sampling of four different markers has been investigated in dogs with Thirty-Vella loops.

METHODS

Four mongrel dogs were prepared with Thirty-Vella loops by the method of Markowitz, Archibald, and Downie (1954) utilizing a 30 cm. loop of jejunum (dogs A, B, C) or ileum (dog D). One week was allowed for postoperative recovery of dogs A, B, and C and to allow the loop to stabilize. Dog D was studied on the day of operation, two days, and 13 days later. Plaster of paris collars were found to be effective in preventing the dog from tearing at the loop with his teeth. Dog A was studied six times over a 92-day interval, dog B was studied twice 12 days apart, and dog D was studied three times in 15 days.

On the day of study the dog was placed supine and lightly anaesthetized with intravenous sodium pentobarbital (5 to 7.5 mg./kg. body weight). Foley catheters (size no. 24) with 30 ml. occlusive balloons were used in both ends of the loop. They were positioned manually and the catheters held immobile with clamps to prevent leakage. The loop was initially perfused with 200 to 300 ml. of isotonic saline to wash it free of accumulated mucus and cell debris. All perfusion was made with a Technicon roller pump delivering 10-6 ml./min. When the effluent became clear, a sample was collected for blank determinations. While washing was taking place a stock solution of indicators was prepared. To isotonic saline (750 ml.) was added sufficient polyethylene glycol (P.E.G.), sulphobromophthalein (B.S.P.), indocyanine green (I.C.G.) or labelled rose Bengal (R.B.) to give an approximate final concentration of P.E.G. 25 mg./ml., I.C.G. 0.0067 mg./ml., B.S.P. 0.033 mg./ml., and R.B. 10,000 counts/min./ml. In some studies 10% mannitol was substituted for isotonic saline (see Table I).

After collection of the blank effluent the intake tubing to the perfusion pump was placed in an exactly measured quantity of stock indicator solution. An aliquot of the stock indicator is retained for analysis as a standard. The effluent was then continuously collected in a beaker. A few minutes after the green colour of I.C.G. was first noticed in the effluent (approximately 10 minutes after onset) a 20 ml. sample was taken from the outlet tubing. Nine subsequent 20 ml. samples were taken. Each sample required about two minutes of flow and five minutes of flow separated each small sample. All effluent was collected, either in the large pooled sample or in the 10 individual samples. When all of the stock solution had been infused, isotonic saline was added to the pump reservoir to wash all of the stock through the pump and into the loop. Washing was continued with isotonic saline until at least 15 minutes after all colour had disappeared from the effluent. These washings were collected as a separate pool and analyzed. Duplicate determinations

1P.E.G. supplied as Carbowax 4000. Union Carbide Corporation.
2B.S.P. and I.C.G. supplied by Hyson, Wescott & Dunning, Incorporated, Baltimore, Maryland 21201.
were performed on each sample and quadruplicate
determinations were made on each large pool. From the
measured volumes of the samples the total amount of each
material recovered in the samples and washings could be
determined.
Polyethylene glycol was measured by the method of
Hyden (1956). Sulphobromsulphalein determinations were
performed on a Beckman DU spectrophotometer at 580
m

\(\mu \) (Seligson, Marino, and Dodson, 1957). Indocyanine
green was determined on the Beckman DU spectrophotom-
eter at 800 m

\(\mu \). The R.B. was counted in a Picker
automated well scintillation counter. All samples used for
B.S.P. and I.C.G. determinations were subjected to
centrifugation before analysis. Mucus was present in
many samples and it was observed that the blue-green
colour of I.C.G. often adhered to the mucus. Alkalization
of the mucus plug did not bring out the colour of
B.S.P. No method was devised to quantitate the amount of
I.C.G. lost in this way.

RESULTS USING RECOVERY DATA

In Table I is listed the percentage recovery of each
marker in each of the 12 experiments. The means and
standard deviations of the means (corrected for small
sample) indicate that the recovery is less than
100\% only for I.C.G. The standard deviation and
coefficient of variation

\[
C.V. = \frac{100 \times \text{Standard Deviation}}{\text{Mean}}
\]

are greatest for P.E.G.

<table>
<thead>
<tr>
<th>Experiment No.</th>
<th>B.S.P.</th>
<th>I.C.G.</th>
<th>(^{131}\text{I}) R.B.</th>
<th>P.E.G.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 A</td>
<td>90-0</td>
<td>84-8</td>
<td>90-0</td>
<td>93-5</td>
</tr>
<tr>
<td>2 A</td>
<td>104-0</td>
<td>85-9</td>
<td>102-2</td>
<td>97-6</td>
</tr>
<tr>
<td>3 A</td>
<td>100-0</td>
<td>65-1</td>
<td>95-5</td>
<td>102-0</td>
</tr>
<tr>
<td>4 A</td>
<td>103-1</td>
<td>88-1</td>
<td>96-2</td>
<td>112-5</td>
</tr>
<tr>
<td>5 B</td>
<td>103-5</td>
<td>70-0</td>
<td>96-0</td>
<td>119-2</td>
</tr>
<tr>
<td>6 B</td>
<td>95-0</td>
<td>96-8</td>
<td>95-0</td>
<td>125-0</td>
</tr>
<tr>
<td>7 C</td>
<td>97-5</td>
<td>96-5</td>
<td>102-0</td>
<td>108-0</td>
</tr>
<tr>
<td>8 A</td>
<td>100-0</td>
<td>93-5</td>
<td>100-1</td>
<td>97-5</td>
</tr>
<tr>
<td>9 A</td>
<td>93-8</td>
<td>104-0</td>
<td>94-1</td>
<td>95-1</td>
</tr>
<tr>
<td>10 D</td>
<td>104-0</td>
<td>108-2</td>
<td>119-2</td>
<td>101-0</td>
</tr>
<tr>
<td>11 D</td>
<td>103-2</td>
<td>113-0</td>
<td>99-0</td>
<td>101-6</td>
</tr>
<tr>
<td>12 D</td>
<td>105-5</td>
<td>106-0</td>
<td>96-5</td>
<td>93-0</td>
</tr>
<tr>
<td></td>
<td>99-9</td>
<td>92-3</td>
<td>98-8</td>
<td>103-8</td>
</tr>
<tr>
<td>S.D.</td>
<td>4-83</td>
<td>4-87</td>
<td>7-24</td>
<td>10-3</td>
</tr>
</tbody>
</table>

Coefficient of variation = 4-83\% 5-28\% 7-33\% 9-92\% 1Perfused solution made up with 10\% mannitol (see text).

STATISTICAL ANALYSIS USING 10 SAMPLES IN EACH STUDY

EFFECT OF TIME OF SAMPLE ON CONCENTRATION OF
INDICATOR AFTER ONSET OF PERFUSION
Within a
given experiment each timed marker concentration
was compared to the mean and standard deviation for
all of the data. This analysis for each of the four

substances indicated that the time of sampling was
not significant at \(P < 0.01 \).

COMPARISON OF EXPERIMENTS IN SEPARATE DOGS
All
data for each dog were reduced to means. No signifi-
cant difference (\(P < 0.01 \)) was found between dogs.

COMPARISON OF STUDIES IN THE JEJUNUM WITH
THOSE IN THE ILEUM
Again, the data for each dog reduced to means were
compared and no significant difference (\(P < 0.01 \)) was
found between experiments done in the jejunum and those
in the ileum.

COMPARISON OF STUDIES WITH 10\% MANNITOL
AND THOSE DONE IN ISOTONIC SALINE
No significant differences (\(P < 0.01 \)) were found between
studies employing 10\% mannitol and those with
isotonic saline.

PARTIAL CORRELATION OF VARIABLES
Table II gives
the partial correlation (correlation between two
variables when a series of other variables is held
constant) between marker pairs (Fisher, 1956).
Significant correlation was found between R.B. and
P.E.G. and between B.S.P. and R.B. That between
R.B. and P.E.G. is almost complete.

<table>
<thead>
<tr>
<th>TABLE II</th>
</tr>
</thead>
<tbody>
<tr>
<td>PARTIAL CORRELATION BETWEEN PAIRS OF MARKERS</td>
</tr>
<tr>
<td>B.S.P. and I.C.G. (R.B. and P.E.G.—constant) = 0.0161</td>
</tr>
<tr>
<td>B.S.P. and R.B. (I.C.G. and P.E.G.—constant) = 0.7619 (^1)</td>
</tr>
<tr>
<td>B.S.P. and P.E.G. (I.C.G. and R.B.—constant) = 0.4861</td>
</tr>
<tr>
<td>I.C.G. and R.B. (B.S.P. and P.E.G.—constant) = 0.4287</td>
</tr>
<tr>
<td>I.C.G. and P.E.G. (R.B. and B.S.P.—constant) = 0.1742</td>
</tr>
<tr>
<td>R.B. and P.E.G. (B.S.P. and I.C.G.—constant) = 0.9902 (^2)</td>
</tr>
</tbody>
</table>

\(^1\) Significant (Fisher, 1956).

Tables III, IV, V, and VI present the mean and
standard deviation for each marker in the 12 experi-
ments corrected to an arbitrary standard to account
for slight differences in initial infusate concentrations.
The coefficient of variation from animal to animal is
< 1\% for each marker.

| TABLE III |
| SUMMATION OF VARIABILITY OF B.S.P. |
| Experiment No. | Mean \(^3\) | S.D. | Coefficient of Variation (%)
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1 A</td>
<td>6-16</td>
<td>0-18</td>
<td>2-8</td>
</tr>
<tr>
<td>2 A</td>
<td>6-16</td>
<td>0-18</td>
<td>2-0</td>
</tr>
<tr>
<td>3 A</td>
<td>6-16</td>
<td>0-30</td>
<td>4-9</td>
</tr>
<tr>
<td>4 A</td>
<td>5-91</td>
<td>0-09</td>
<td>1-6</td>
</tr>
<tr>
<td>5 B</td>
<td>6-16</td>
<td>0-02</td>
<td>2-9</td>
</tr>
<tr>
<td>6 B</td>
<td>6-17</td>
<td>0-02</td>
<td>4-8</td>
</tr>
<tr>
<td>7 C</td>
<td>6-16</td>
<td>0-03</td>
<td>4-7</td>
</tr>
<tr>
<td>8 A</td>
<td>6-16</td>
<td>0-18</td>
<td>2-9</td>
</tr>
<tr>
<td>9 A</td>
<td>6-17</td>
<td>0-20</td>
<td>2-7</td>
</tr>
<tr>
<td>10 D</td>
<td>6-07</td>
<td>0-10</td>
<td>1-4</td>
</tr>
<tr>
<td>11 D</td>
<td>6-17</td>
<td>0-23</td>
<td>3-7</td>
</tr>
<tr>
<td>12 D</td>
<td>6-16</td>
<td>0-14</td>
<td>2-2</td>
</tr>
</tbody>
</table>

\(^1\) OD units/20 ml.—corrected mean of 10 samples.

\(\mu = 6-19 \)
S.D. = 0-05
C.V. = ±0-79\%
An adequate reference substance is necessary in the study of absorptive processes in the intact animal. The characteristics of an ideal marker have been outlined by Smyth (1961) as follows: (a) it can be estimated simply and accurately; (b) it can be estimated in very small concentrations so that its presence will cause the minimum osmotic disturbance; and (c) it should neither be absorbed from the intestine nor be adherent to protein or mucus.

These results with Thiry-Vella loops support the premise that nearly quantitative recovery can be made of all of these markers from intact intestinal loop. Only I.C.G. was recovered less than completely, apparently because it is bound to mucus, thus failing to fulfill the last criterion noted above by Smyth. The stability of the loop over a period of study of several months is in agreement with results of Berger, Kanzaki, and Steele (1959). Over a long period of time (70 min.), sampling of the markers remains valid and the experimental use of them is reproducible from day to day and from animal to animal.

Rose bengal and P.E.G. emerge best from these studies, demonstrating both complete recovery and low variability. Rose Bengal is much easier to analyse and produces a smaller osmotic effect than P.E.G. These two correlate with one another far better than any other pair. Our results confirm those of Schedl (1966) regarding the efficacy of P.E.G. The binding of I.C.G. to mucus diminishes its usefulness as a marker.

ADDENDUM

Similar recovery studies carried out in the rat indicate that R.B. may be recovered from the bile (5% per hour) indicating absorption in that species.

REFERENCES

Recovery, reproducibility, and usefulness of polyethylene glycol, iodine-labelled rose bengal, sulphobromophthalein, and indocyanine green as non-absorbable markers.

W C Maddrey, H A Serebro, H Marcus and F L Iber

Gut 1967 8: 169-171
doi: 10.1136/gut.8.2.169

Updated information and services can be found at:
http://gut.bmj.com/content/8/2/169.citation

These include:

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/