Effect of vagotomy upon the small intestine

J. BEJAR, S. A. BROITMAN, AND N. ZAMCHECK

From the Gastrointestinal Research Laboratory, Mallory Institute of Pathology Foundation, the Second and Fourth (Harvard) Medical Services, Boston City Hospital, the Department of Medicine, Harvard Medical School, and the Departments of Microbiology and Pathology, Boston University School of Medicine, Boston, Mass., U.S.A.

Abdominal vagotomy with various drainage procedures, widely used in the surgical treatment of peptic ulcer, may be followed by weight loss, intermittent diarrhoea, and steatorrhoea (Butler and Eastham, 1965; Everson, Hutchings, Eisen, and Witanowski, 1957; Golding, Mendoza, Aiello, Fierst, Salomon, and Enquist, 1965; Tucker, Barnett, and Goodrich, 1964). Following section of the vagus nerve in the dog, steatorrhoea and histological and enzymatic abnormalities of the small intestinal mucosa were observed (Ballinger, Iida, Aponte, Wirts, and Goldstein, 1964). In man, barium meal studies revealed dilatation, delayed motility, and flocculation in the small intestine (Isaac, Ottoman, and Weinberg, 1950). Although gallbladder functions have been studied in post-
vagotomy diarrhoea in man (Rudick and Hutchison, 1965), the role of the small intestine in the development of these complications has not been elucidated. Accordingly, the effects of abdominal vagotomy upon the villus architecture and mitotic activity of the crypts of the small intestinal mucosa were studied and correlated with xylose and fat absorption.

MATERIALS AND METHODS

Six patients with duodenal or marginal ulcers were studied. All underwent bilateral vagotomy and subsequently had some diarrhoea and weight loss (Table I). Five patients with gastric ulcer without diarrhoea served as controls. Biopsies were obtained with the Carey capsule (positioned at the jejunum under fluoroscopic control) preoperatively (six patients), three weeks postoperatively (six patients), and six weeks postoperatively (four patients). The tissue was examined in the fresh state under the dissecting microscope and sections stained with haematoxylin and eosin and alcian blue-P.A.S. The

<table>
<thead>
<tr>
<th>Patient No.</th>
<th>Preoperative Diagnosis</th>
<th>Sex</th>
<th>Age</th>
<th>Operative Procedure</th>
<th>Postoperative Course During First Six Weeks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Duodenal ulcer and gastro-enterostomy</td>
<td>M</td>
<td>41</td>
<td>Abdominal vagotomy</td>
<td>Epigastric fullness, watery diarrhoea, weight loss (10 lb.)</td>
</tr>
<tr>
<td>2</td>
<td>Marginal ulcer and gastro-duodenostomy</td>
<td>F</td>
<td>38</td>
<td>Thoracic vagotomy</td>
<td>Epigastric fullness, watery diarrhoea, weight loss (5 lb.)</td>
</tr>
<tr>
<td>3</td>
<td>Duodenal ulcer</td>
<td>M</td>
<td>53</td>
<td>Abdominal vagotomy and pyloroplasty</td>
<td>Epigastric fullness, watery diarrhoea, weight loss (8 lb.)</td>
</tr>
<tr>
<td>4</td>
<td>Duodenal ulcer</td>
<td>M</td>
<td>62</td>
<td>Abdominal vagotomy and partial (50%) gastrectomy</td>
<td>Epigastric fullness, steatorrhoea (14 g.), weight loss (16 lb.)</td>
</tr>
<tr>
<td>5</td>
<td>Duodenal ulcer</td>
<td>M</td>
<td>42</td>
<td>Abdominal vagotomy and antrectomy</td>
<td>Epigastric fullness, watery diarrhoea, weight loss (8 lb.)</td>
</tr>
<tr>
<td>6</td>
<td>Duodenal ulcer</td>
<td>M</td>
<td>58</td>
<td>Abdominal vagotomy and partial (50%) gastrectomy</td>
<td>Epigastric fullness, watery diarrhoea, weight loss (15 lb.)</td>
</tr>
</tbody>
</table>
following morphological findings were evaluated: architecture, height, and invaginations of villi; depths of crypts; integrity of the brush border; height, appearance, and nuclear polarity of epithelial cells; and a quantitative estimate of the villus/crypt ratio was obtained by relating the length of the villus tip with the depth of five consecutive crypts. The mitotic index was estimated by counting the number of metaphase mitotic figures per 1,000 cells in consecutive crypts (Creamer, 1962). The 25 g. oral d-xylose test absorption study was performed. Urine and blood pentose were assayed by the method of Roe and Rice (1948). In three patients ingesting a 100 g. fat diet, 72-hour stool fat studies were done (Wolochow, Broitman, Williams, and Zamcheck, 1965).

RESULTS

MORPHOLOGICAL FINDINGS The appearance of all biopsy specimens in the fresh state seen under the dissecting microscope was normal before and after vagotomy. The dissecting microscopic appearance of the biopsies obtained from one patient (case 5) and representative of the others is shown in Figures 1, 2, and 3. Representative light micrographs are shown in Figures 4a and 4b. Specimens revealed finger-like with occasional leaf-like villi. In the four patients without previous surgery, the preoperative microscopic sections revealed normal villus architecture, and columnar cells with polarized nuclei and an intact brush border. There was a minimal infiltrate of round cells in the lamina propria. In two patients with marginal ulcer there was a moderate increase of eosinophils and round cells. Specimens obtained from five patients, three and six weeks postoperatively, were unchanged from the preoperative biopsies. One patient (case 4) who had a partial gastrectomy with vagotomy showed no change at three weeks postoperatively, but at six weeks a moderate infiltrate of round cells in the lamina propria was observed. The villus architecture and mucosa were unchanged.

VILLUS/CRYPT RATIO AND MITOTIC INDEX The villus/crypt ratio (Table II) and crypt cell mitoses per 1,000 crypt cells did not show significant differences before and after vagotomy.

The xylose absorption test was normal in four patients before and after bilateral vagotomy (Table III). Another patient with a previous gastroduodenostomy experienced severe diarrhoea following ingestion of xylose and had a low five-hour urinary xylose output (1.0 g.). In a repeat test the xylose solution was ingested over a one-hour period. Abdominal pain and diarrhoea were minimized and the five-hour urinary xylose output was normal (7.5 g.). Only one of the six patients exhibited a low urinary xylose output (1.4 g./5 hr. at three weeks.
Effect of vagotomy upon the small intestine

TABLE III
ORAL XYLose TEST BEFORE AND AFTER VAGOTOMY

<table>
<thead>
<tr>
<th>Patient No.</th>
<th>Preoperative Five-hour Urine (g.)</th>
<th>Postoperative Three Weeks Five-hour Urine (g.)</th>
<th>Postoperative Six Weeks Five-hour Urine (g.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3.4</td>
<td>4.5</td>
<td>3.4</td>
</tr>
<tr>
<td>2</td>
<td>1.0</td>
<td>6.6</td>
<td>—</td>
</tr>
<tr>
<td>3</td>
<td>7.5†</td>
<td>5.4</td>
<td>—</td>
</tr>
<tr>
<td>4</td>
<td>4.3</td>
<td>1.4</td>
<td>2.9</td>
</tr>
<tr>
<td>5</td>
<td>4.1</td>
<td>6.0</td>
<td>4.0</td>
</tr>
<tr>
<td>6</td>
<td>7.2</td>
<td>5.5</td>
<td>—</td>
</tr>
</tbody>
</table>

Mean ± S.D.
Normal values 5.7 ± 1.5

†Repeat test — xylose administered over one-hr. period.

FIG. 4a. Histological section of the jejunal mucosa in case 6 (top) before abdominal vagotomy revealing finger-like villi with minimal infiltrate in the lamina propria (× 100) and (bottom) after vagotomy (× 200).

and 2.9 g./5 hr. at six weeks postoperatively) which was coupled with steatorrhoea (14 g./24 hr.).

DISCUSSION

It is clear that monosaccharide malabsorption (as assessed by the oral D-xylose test) is not a tenable explanation for postvagotomy diarrhoea since normal values were obtained in all patients except one, who had previously undergone a partial gastrectomy. In this case, the diarrhoea and malabsorption have been ascribed to rapid gastric emptying, decreased absorbing surface, and rapid gastrointestinal transit (Benson, Culver, Ragland, Jones, Drummey, and Bougas, 1957).

It is clear from the present study that vagotomy alone had no significant effect on intestinal morphology as observed by light microscopy; postvagotomy diarrhoea observed in these patients could not be explained on morphological grounds.

The morphology of the small intestinal mucosa was not affected by bilateral vagotomy three and

TABLE II
SMALL BOWEL BIOPSY STUDIES IN SIX PATIENTS BEFORE AND AFTER VAGOTOMY

<table>
<thead>
<tr>
<th>Patient No.</th>
<th>Before Vagotomy</th>
<th>After Vagotomy Three Weeks</th>
<th>After Vagotomy Six Weeks</th>
<th>Mitoses/100 Crypt Cells Before Vagotomy</th>
<th>After Vagotomy Three Weeks</th>
<th>After Vagotomy Six Weeks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2:3:1:0</td>
<td>3:0:1:0</td>
<td>2:8:1:0</td>
<td>2:0</td>
<td>1:7</td>
<td>1:7</td>
</tr>
<tr>
<td>2</td>
<td>2:4:1:0</td>
<td>2:6:1:0</td>
<td>3:2:1:0</td>
<td>1:5</td>
<td>1:8</td>
<td>1:8</td>
</tr>
<tr>
<td>3</td>
<td>2:0:1:0</td>
<td>2:8:1:0</td>
<td>1:6</td>
<td>1:6</td>
<td>1:1</td>
<td>1:1</td>
</tr>
<tr>
<td>4</td>
<td>2:0:1:0</td>
<td>2:3:1:0</td>
<td>1:0</td>
<td>1:0</td>
<td>2:0</td>
<td>1:1</td>
</tr>
<tr>
<td>5</td>
<td>3:6:1:0</td>
<td>2:0:1:0</td>
<td>1:5</td>
<td>1:4</td>
<td>1:6</td>
<td>1:6</td>
</tr>
</tbody>
</table>

Mean ± SD
5 Controls

| | | | |
| 2:6 ± 0.7:1 | 2:8 ± 0.7:1 | 2:8 ± 0.4:1 | 1:6 ± 0.4 | 1:6 ± 0.2 | 1:6 ± 0.3 |

Mean ± SD
Range

| | | | |
| 2:9 ± 0.5:1 | 1:7 ± 0.2 | 1:4 – 2:0 |

| | | | |
| 2:3:1 – 4:0:1 | 1:4 – 2:0 |
six weeks postoperatively. The moderate increase in infiltrate of round cells in the lamina propria noted in two patients with previous gastric surgery is consistent with jejunal histology observed in patients with partial gastrectomy (Baird and Dodge, 1957; Madanagopalan, Shiner, and Rowe, 1965; Scott, Williams, and Clark, 1964). It was of interest to observe an increase in the infiltrate of round cells in the lamina propria in one patient as early as six weeks following partial gastrectomy and vagotomy.

This study in man differs from observations made in the dog after extrinsic denervation or abdominal vagotomy. Ballinger, Christy, and Ashby (1962) observed protracted diarrhoea, weight loss, decreased fat absorption, alterations in the radiological appearance of the small intestine, and the full-thickness biopsies revealed villus atrophy following complete extrinsic denervation of the canine small intestine. Complete healing with restoration of normal villi was not evident until six months later. Ballinger et al. (1964) observed in dogs fat malabsorption, reduced enzymatic activity, and atrophy of the small intestinal mucosa after abdominal vagotomy. The histological changes appeared at the ninth day and were maximal at three weeks after vagotomy. At 21 weeks a return to normal mucosa with normal absorption was noted. It is not clear why the small intestinal mucosa of man responds to abdominal vagotomy differently.

The influence of the autonomic nervous system upon the cell turnover of crypts and maturation process of villous epithelial cells has not been adequately studied in man or in animals. Dupont, Biggers, and Sprinz (1965) observed that the jejunal epithelial cell renewal in the mouse was markedly reduced by immunosympathectomy with damage of the ganglionic cells and postganglionic fibres, indicating a direct interplay between the renewal of mucosal epithelial cells in the jejunum and the sympathetic nervous system. In the present study the mitotic activity of the crypt cells was not significantly altered following bilateral vagotomy, suggesting that the section of the parasympathetic preganglionic fibres has no apparent influence upon the epithelial cell turnover of the small intestinal mucosa in man.

SUMMARY

Vagotomy alone is not associated with malabsorp-

tion of either carbohydrates or fat. In man, unlike the dog and mouse, renewal of the mucosal epithelium does not appear to be directly influenced by the preganglionic parasympathetic nervous system. Postvagotomy diarrhoea in the patients studied was self-limiting within six weeks and was not associated with morphological changes in the small bowel as seen by light microscopy.

The authors are grateful for the assistance of Drs. Melvin P. Osborne, Frank Cagoliano, John Mahan, and Rudolph Vollman of the Fifth Surgical (Harvard) Service, Boston City Hospital, Boston, Mass.

REFERENCES

Effect of vagotomy upon the small intestine.

J Bejar, S A Broitman and N Zamcheck

Gut 1968 9: 87-90
doi: 10.1136/gut.9.1.87

Updated information and services can be found at:
http://gut.bmj.com/content/9/1/87.citation

These include:

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Topic Collections
Articles on similar topics can be found in the following collections
 Diarrhoea (663)
 Ulcer (484)
 Stomach and duodenum (1689)
 Pancreas and biliary tract (149)

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/