New clinical method for measuring the rate of gastric emptying: the double sampling test meal

J. D. GEORGE

From the Department of Surgery, Institute of Clinical Science, Royal Victoria Hospital, Belfast

A resurgence of interest in gastric emptying has developed, due mainly to its possible aetiological significance in gastric ulceration. Many techniques have been used to measure the rate of emptying but few clinical methods, which determine both the rate and pattern of gastric evacuation, are available.

Radiological methods do not determine the pattern and their accuracy in measuring the end point has been questioned (Hunt and Spurrell, 1951; Horton, Ross, and Darling, 1965). The method using radioactive chromium and surface scanning described by Griffith, Owen, Kirkman, and Shields (1966) excludes premenopausal women and, therefore, some patients with gastric ulceration. The serial test meal (Hunt and Spurrell, 1951) maintains a high degree of accuracy in determining both rate and pattern and can simultaneously measure gastric secretion. This test has the further advantage of measuring certain 'characteristics' of emptying which are more informative than emptying time alone. Modified Hunt techniques, such as that used by Aylett (1965), assume constant emptying pattern and characteristics in all stomachs. As the serial test meal takes several days to complete, with daily nasogastric intubation, a new test has been designed to obtain the emptying pattern for an individual stomach in a single test. This gives the test a more clinical application. A dye dilution and double-sampling technique is used. Double sampling is introduced to overcome the accumulation of error in dye dilution methods which was shown by Hollander and Glickstein (1940) to exist. It also obviates the necessity of emptying the stomach to determine the volume of its contents; a series of measurements can be made as the stomach empties and a complete pattern of emptying obtained in a single test lasting a few hours. The volume of gastric secretion can be determined at the same time and consequently a precise rate of gastric evacuation obtained.

PRINCIPLE

The volume of fluid in a container can be ascertained by determining the increase in concentration of a dye produced by the addition of a small concentrated measure of the same dye.

In Fig. 1

\[V_1 = \text{Volume to be determined} \]
\[C_1 = \text{Initial concentration of dye in } V_1 \]
\[V_2 = \text{Volume of the measure of dye to be added to } V_1 \]
\[C_2 = \text{Concentration of the added dye} \]
\[C_3 = \text{Final concentration of the mixture} \]

The mass of dye in \(V_1 \) is given by \(m_1 = V_1 C_1 \) \(\text{(i)} \)

The mass of dye in \(V_2 \) is given by \(m_2 = V_2 C_2 \) \(\text{(ii)} \)

The mass of dye in \(V_1 + V_2 \) is given by \(m_3 = (V_1 + V_2) C_3 \) \(\text{(iii)} \)

\[m_1 + m_2 = m_3 \] \(\text{(iv)} \)

\[\therefore V_1 C_1 + V_2 C_2 = (V_1 + V_2) C_3 \]

\[\therefore V_1 = V_2 (C_3 - C_2) \]

\[C_3 - C_1 \] \(\text{(v)} \)

FIG. 1. Principle of double sampling technique.

1This work was undertaken during the tenure of a Royal Victoria Hospital research fellowship.
If the concentration of a solution before and after the
addition of a measure of known volume and concentra-
tion can be determined, the original volume can be
calculated from this equation.

ANALYTICAL TECHNIQUES

The dye used in the test is phenol red. To make up the
test meal and to determine the concentration of phenol
red, Hunt's procedure (Hunt, 1954) has been used with
minor modifications. A spectrophotometer has been
employed rather than a colorimeter to improve the
precision and smaller sample volumes of gastric contents
are used.

A stock solution of approximately 500 ppm is made up
and this constitutes the concentrated measure used in the
test. The test meal, 750 ml of approximately 30 ppm, is
made up from the stock solution by diluting with distilled
water. The pH of the meal and of the concentrated mea-
Sure is adjusted to 7-0 with sulphuric acid. The buffer
solution is made by dissolving 27.5 g of trisodium orthophosphate, Na3PO4·12H2O in 1 litre of water.

DETERMINATION OF PHENOL RED CONCENTRATION

Gastric contents, 4 ml, centrifuged to remove mucus and
gastric debris if present, plus 20 ml buffer solution, are
made up to 100 ml in a volumetric flask and filtered. The
purple colour developed is measured on an Optica CF4
spectrophotometer at 560 mμ using a 1 cm cell. A linear
relationship exists between concentration and optical
density up to at least 200 ppm which is well above the
maximum concentration encountered in this test. The
concentration of the samples can either be read from a
calibration chart or calculated from the equation of its
curve.

Before the concentrated stock solution and test meal
are used, their exact concentration is determined on the
day of the test, since a very slight daily change in concen-
tration has been noted.

TECHNIQUE OF TEST

1 A nasogastric tube is passed into the stomach of a
fasting patient, the resting juice removed, and the sto-
mach washed out with 200 ml distilled water. The patient
rests for a minimum of 20 minutes until he feels com-
fortable with the gastric tube in situ.

2 The patient drinks 750 ml of the test meal, the
drinking time being between one and four minutes, and
the time is noted at the beginning of the meal. The
patient remains in a standard position, sitting upright on
a chair throughout the test. He is also asked to refrain
from swallowing saliva and to use a sputum jar.

3 At exactly 10 minutes 7-8 ml of gastric contents is
withdrawn. The plunger of the syringe is then removed
and 20 ml of the concentrated stock solution is added
by pipette. Mixing in the stomach is achieved by with-
drawing and re-inserting syringefuls of gastric contents
for about 45 seconds, and following this a second sample
of gastric contents is removed (Fig. 2). From these two
samples concentrations C1 and C2 are determined and
the unknown volume calculated from equation (v).

4 The above procedure is repeated at required intervals
until the stomach is almost empty.

5 Some difficulty in withdrawing contents may now
be encountered and it may be necessary to move the
gastric tube to find the remaining fluid. When this point
is reached, as much as possible of the remaining contents
is withdrawn and measured. The stomach is then washed
out with 200 ml of water and the true residual volume
calculated from the concentrations of dye in the residual
contents and washout (Hunt and Spurrell, 1951). This
final procedure has been included as a check on the
double sampling technique.

Certain points in this method require further discussion.
The tip of the tube should lie in the body of the stomach
and there should be no slack in the tube; the tip should
not reach the pyloric antrum. This position is checked
by x-ray screening and the tube is then secured firmly to
the upper lip with adhesive tape. A pipette is used to add
the concentrated solution, since it is important that this
volume should be accurate as any error would be magni-
fied when applied to the mathematical equation. The
denominator in this equation is the difference between
two relatively large values and it is therefore advantageous

FIG. 2. Double sampling test meal. At 0 min, 750 ml test meal ingested; at 10 min, sample withdrawn from stomach; at
10 min 10 sec (approx.), concentrated measure of dye added; at 10 min 15 sec to 11 min (approx.), mixing of dye in
stomach; at 11 min 15 sec (approx.), second sample withdrawn from stomach.
New clinical method for measuring the rate of gastric emptying: the double sampling test meal

239
to maintain it as large as possible. This is achieved by making the volume of the added solution large at the beginning of the test, when the volume in the stomach is large, and decreasing it as the test proceeds. Experience has shown that the added volumes can be standardized as indicated in Table I.

TABLE I
STANDARDIZATION OF ADDED VOLUMES

<table>
<thead>
<tr>
<th>Intervals of Test Time (min)</th>
<th>Volume of added solution (ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>20</td>
</tr>
<tr>
<td>20</td>
<td>15</td>
</tr>
<tr>
<td>30</td>
<td>10</td>
</tr>
<tr>
<td>40</td>
<td>10</td>
</tr>
<tr>
<td>50</td>
<td>5</td>
</tr>
<tr>
<td>60</td>
<td>0</td>
</tr>
</tbody>
</table>

Additional information can be gained from this test. If the concentrations of H+ and Cl- are measured in each sample the gastric juice secreted can be assessed. As a further step, where information about intraluminal pressure is required, a side arm can be attached to the gastric tube and pressure recordings made as the stomach empties.

VALIDITY OF TEST

The validity of this test has been assessed in a glass model and also in human stomachs.

CALCULATION OF VOLUME IN VITRO

Forty known volumes in a static glass model were calculated by this technique. Then, using a siphon, an emptying model was constructed and 20 estimations were made, limiting the sampling time to two minutes. The percentage error in measuring volumes between 100 and 750 ml ranged from 0.3 to 9. For volumes below 100 ml the error was never greater than 8 ml.

HOMOGENEOUS MIXING

Mixing by the method described above was applied to a glass stomach and it was found that mixing for 30 seconds was adequate. Samples taken after longer periods of mixing and after thorough shaking of the glass model showed no change in concentration.

CALCULATION OF VOLUME IN HUMAN STOMACH

To validate the test in human stomachs unknown volumes of fluids in a volunteer's stomach were determined by the double sampling technique and immediately afterwards as much as possible of the fluid was removed and measured. After washing out the stomach with 200 ml of water the volume of any remaining fluid was calculated from the concentrations of dye in the removed fluid and in the washed out fluid. This volume was added to the volume of removed fluid to find the true volume (Hunt and Spurrell, 1951). Forty comparisons were made and the percentage difference in the calculations ranged from 2 to 10 for volumes above 100 ml; for volumes below 100 ml the difference was never greater than 7 ml.

COMPLETE TEST IN HUMANS

The complete test was compared with the serial test meal (Hunt and Spurrell, 1951) in several subjects. The excellent correlation between the two tests is shown in Figure 3.

![Graph showing the correlation between the complete test and the serial test meal](image)

FIG. 3. Three double sampling test meals and one serial test meal carried out on the same subject to show the close correlation between the two tests.

REPRODUCIBILITY OF TEST

Hunt and Spurrell (1951) have shown that there is very little daily variation in the emptying pattern of an individual stomach. The present test has been repeated on several volunteers and the reproducibility of results found to be very satisfactory (Fig. 4).

ABNORMAL STOMACHS

A normal stomach was compared with a stomach with obvious clinical and radiological evidence of pyloric stenosis. The test demonstrated the expected gross delay in emptying in the abnormal stomach.

INTERPRETATION OF RESULTS

Hunt and Spurrell (1951) found that a linear relationship existed when the logarithm of the volume remaining in the stomach was plotted against time. However, Hopkins (1966), who reviewed Hunt's work, stated that the regression line was closer to a linear relationship when the square root of the remaining volume was plotted against time.

The regression equations for both the logarithm and the square root of the volumes estimated in each of 79 tests have been calculated, with the aid of a computer, using the method of least squares.
and the coefficient of variation for each equation obtained. In five cases the coefficient of variation indicated a square root relationship; for the remaining 74 the coefficient of variation indicated an exponential relationship. It was therefore decided that the defining parameters should be calculated from the exponential relationship.

The three 'characteristics' of emptying as originally described by Hunt and Spurrell (1951) have been calculated from the exponential regression equation of each case. 1 'Emptying time' is defined as the time taken for the volume of gastric contents to become reduced to 10 ml. 2 'Half-life' is defined as the time required for the volume in the stomach to fall by half. 3 'Starting index' is defined as the number of minutes before or after zero time at which the extrapolated regression line reached log. 750 (Figs. 5 and 6). A negative starting index indicates that the initial phase of emptying is rapid and a positive index occurs when initial emptying is slow.

In three cases of gastric ulceration neither an exponential nor a square root relationship existed. In these cases there was obvious delay in emptying; the stomach started to empty in a normal fashion but there appeared to be difficulty in expressing the final 100-200 ml of contents (Fig. 7).

RESULTS

This test has been carried out on three groups of subjects. Twenty normal controls have been com-

FIG. 4. Double sampling test meal performed two or three times on each of five different subjects to show the reproducibility of the test.

FIG. 5. Negative starting index indicated by the regression line reaching Log. 750 at time - 3 min.

FIG. 6. Positive starting index indicated by the regression line reaching Log. 750 at time + 5 min.
New clinical method for measuring the rate of gastric emptying: the double sampling test meal

![Graph showing gastric emptying volume over time.](image)

FIG. 7. ‘Abnormal’ pattern of gastric emptying: initial pattern of emptying is normal but there is difficulty in expressing the final 100-200 ml of test meal.

pared with 20 unselected cases of duodenal ulceration and 20 cases of gastric ulceration. Three gastric ulcer patients who showed an abnormal emptying pattern have not been included. Several subjects had more than one test performed and in these cases the mean result was taken.

Table II, III, and IV indicate the ‘starting index’, ‘half-life’, and ‘emptying time’ in the three groups of subjects. There is a highly significant increase in both the emptying time and half-life in patients with gastric ulceration when compared with normal subjects (P < 0.001) and also with duodenal ulcer patients (0.05 > P > 0.02). There is no significant

TABLE II

RESULTS OF DOUBLE-SAMPLING TEST MEAL
IN NORMAL SUBJECTS

<table>
<thead>
<tr>
<th>Subject</th>
<th>Age</th>
<th>Sex</th>
<th>No. of Tests</th>
<th>Starting Index (Minutes)</th>
<th>Half-life (Minutes)</th>
<th>Emptying Time (Minutes)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>19</td>
<td>M</td>
<td>1</td>
<td>1</td>
<td>8</td>
<td>50</td>
</tr>
<tr>
<td>2</td>
<td>24</td>
<td>M</td>
<td>1</td>
<td>+7</td>
<td>7</td>
<td>51</td>
</tr>
<tr>
<td>3</td>
<td>35</td>
<td>M</td>
<td>1</td>
<td>+3</td>
<td>4</td>
<td>35</td>
</tr>
<tr>
<td>4</td>
<td>22</td>
<td>M</td>
<td>8</td>
<td>+1</td>
<td>10</td>
<td>61</td>
</tr>
<tr>
<td>5</td>
<td>71</td>
<td>M</td>
<td>1</td>
<td>+8</td>
<td>9</td>
<td>62</td>
</tr>
<tr>
<td>6</td>
<td>31</td>
<td>M</td>
<td>4</td>
<td>0</td>
<td>10</td>
<td>62</td>
</tr>
<tr>
<td>7</td>
<td>28</td>
<td>M</td>
<td>1</td>
<td>8</td>
<td>9</td>
<td>66</td>
</tr>
<tr>
<td>8</td>
<td>25</td>
<td>M</td>
<td>1</td>
<td>6</td>
<td>10</td>
<td>69</td>
</tr>
<tr>
<td>9</td>
<td>24</td>
<td>M</td>
<td>1</td>
<td>0</td>
<td>11</td>
<td>69</td>
</tr>
<tr>
<td>10</td>
<td>26</td>
<td>F</td>
<td>1</td>
<td>0</td>
<td>12</td>
<td>70</td>
</tr>
<tr>
<td>11</td>
<td>26</td>
<td>F</td>
<td>1</td>
<td>0</td>
<td>12</td>
<td>73</td>
</tr>
<tr>
<td>12</td>
<td>23</td>
<td>F</td>
<td>1</td>
<td>3</td>
<td>12</td>
<td>73</td>
</tr>
<tr>
<td>13</td>
<td>27</td>
<td>M</td>
<td>1</td>
<td>0</td>
<td>12</td>
<td>75</td>
</tr>
<tr>
<td>14</td>
<td>30</td>
<td>M</td>
<td>1</td>
<td>9</td>
<td>11</td>
<td>78</td>
</tr>
<tr>
<td>15</td>
<td>31</td>
<td>M</td>
<td>1</td>
<td>0</td>
<td>13</td>
<td>78</td>
</tr>
<tr>
<td>16</td>
<td>20</td>
<td>M</td>
<td>1</td>
<td>16</td>
<td>11</td>
<td>85</td>
</tr>
<tr>
<td>17</td>
<td>23</td>
<td>F</td>
<td>1</td>
<td>0</td>
<td>14</td>
<td>86</td>
</tr>
<tr>
<td>18</td>
<td>21</td>
<td>F</td>
<td>1</td>
<td>0</td>
<td>14</td>
<td>88</td>
</tr>
<tr>
<td>19</td>
<td>22</td>
<td>F</td>
<td>4</td>
<td>2</td>
<td>14</td>
<td>89</td>
</tr>
<tr>
<td>20</td>
<td>24</td>
<td>M</td>
<td>2</td>
<td>2</td>
<td>15</td>
<td>98</td>
</tr>
</tbody>
</table>

Mean: +3 11 72
Standard deviation: 4.7 2.2 13.1

TABLE III

RESULTS OF DOUBLE-SAMPLING TEST MEAL
IN DUODENAL ULcer PATIENTS

<table>
<thead>
<tr>
<th>Subject</th>
<th>Age</th>
<th>Sex</th>
<th>No. of Tests</th>
<th>Starting Index (Minutes)</th>
<th>Half-life (Minutes)</th>
<th>Emptying Time (Minutes)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>36</td>
<td>M</td>
<td>1</td>
<td>0</td>
<td>6</td>
<td>39</td>
</tr>
<tr>
<td>2</td>
<td>60</td>
<td>M</td>
<td>1</td>
<td>3</td>
<td>9</td>
<td>56</td>
</tr>
<tr>
<td>3</td>
<td>36</td>
<td>M</td>
<td>2</td>
<td>2</td>
<td>10</td>
<td>56</td>
</tr>
<tr>
<td>4</td>
<td>56</td>
<td>M</td>
<td>1</td>
<td>4</td>
<td>9</td>
<td>59</td>
</tr>
<tr>
<td>5</td>
<td>34</td>
<td>M</td>
<td>1</td>
<td>0</td>
<td>10</td>
<td>61</td>
</tr>
<tr>
<td>6</td>
<td>36</td>
<td>M</td>
<td>1</td>
<td>5</td>
<td>10</td>
<td>69</td>
</tr>
<tr>
<td>7</td>
<td>47</td>
<td>F</td>
<td>1</td>
<td>1</td>
<td>11</td>
<td>69</td>
</tr>
<tr>
<td>8</td>
<td>60</td>
<td>M</td>
<td>2</td>
<td>1</td>
<td>11</td>
<td>70</td>
</tr>
<tr>
<td>9</td>
<td>37</td>
<td>M</td>
<td>1</td>
<td>3</td>
<td>12</td>
<td>70</td>
</tr>
<tr>
<td>10</td>
<td>47</td>
<td>M</td>
<td>1</td>
<td>7</td>
<td>12</td>
<td>80</td>
</tr>
<tr>
<td>11</td>
<td>59</td>
<td>F</td>
<td>1</td>
<td>7</td>
<td>12</td>
<td>83</td>
</tr>
<tr>
<td>12</td>
<td>62</td>
<td>M</td>
<td>1</td>
<td>5</td>
<td>13</td>
<td>83</td>
</tr>
<tr>
<td>13</td>
<td>68</td>
<td>M</td>
<td>1</td>
<td>0</td>
<td>13</td>
<td>83</td>
</tr>
<tr>
<td>14</td>
<td>39</td>
<td>F</td>
<td>1</td>
<td>4</td>
<td>14</td>
<td>93</td>
</tr>
<tr>
<td>15</td>
<td>40</td>
<td>M</td>
<td>1</td>
<td>3</td>
<td>14</td>
<td>93</td>
</tr>
<tr>
<td>16</td>
<td>43</td>
<td>M</td>
<td>1</td>
<td>1</td>
<td>15</td>
<td>96</td>
</tr>
<tr>
<td>17</td>
<td>36</td>
<td>M</td>
<td>1</td>
<td>5</td>
<td>16</td>
<td>106</td>
</tr>
<tr>
<td>18</td>
<td>20</td>
<td>M</td>
<td>1</td>
<td>7</td>
<td>18</td>
<td>113</td>
</tr>
<tr>
<td>19</td>
<td>41</td>
<td>F</td>
<td>1</td>
<td>7</td>
<td>18</td>
<td>118</td>
</tr>
<tr>
<td>20</td>
<td>53</td>
<td>M</td>
<td>1</td>
<td>12</td>
<td>19</td>
<td>128</td>
</tr>
</tbody>
</table>

Mean: 2.7 13 81
Standard deviation: 3.9 3.4 23.1

TABLE IV

RESULTS OF DOUBLE SAMPLING TEST MEAL
IN GASTRIC ULCER PATIENTS

<table>
<thead>
<tr>
<th>Subject</th>
<th>Age</th>
<th>Sex</th>
<th>No. of Tests</th>
<th>Starting Index (Minutes)</th>
<th>Half-life (Minutes)</th>
<th>Emptying Time (Minutes)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>44</td>
<td>M</td>
<td>1</td>
<td>11</td>
<td>8</td>
<td>60</td>
</tr>
<tr>
<td>2</td>
<td>39</td>
<td>F</td>
<td>1</td>
<td>2</td>
<td>10</td>
<td>62</td>
</tr>
<tr>
<td>3</td>
<td>56</td>
<td>M</td>
<td>1</td>
<td>0</td>
<td>12</td>
<td>71</td>
</tr>
<tr>
<td>4</td>
<td>70</td>
<td>F</td>
<td>2</td>
<td>2</td>
<td>13</td>
<td>73</td>
</tr>
<tr>
<td>5</td>
<td>46</td>
<td>F</td>
<td>1</td>
<td>1</td>
<td>12</td>
<td>77</td>
</tr>
<tr>
<td>6</td>
<td>52</td>
<td>M</td>
<td>1</td>
<td>5</td>
<td>12</td>
<td>79</td>
</tr>
<tr>
<td>7</td>
<td>41</td>
<td>F</td>
<td>1</td>
<td>2</td>
<td>13</td>
<td>83</td>
</tr>
<tr>
<td>8</td>
<td>51</td>
<td>F</td>
<td>1</td>
<td>8</td>
<td>13</td>
<td>86</td>
</tr>
<tr>
<td>9</td>
<td>72</td>
<td>F</td>
<td>1</td>
<td>0</td>
<td>14</td>
<td>87</td>
</tr>
<tr>
<td>10</td>
<td>52</td>
<td>M</td>
<td>1</td>
<td>4</td>
<td>14</td>
<td>92</td>
</tr>
<tr>
<td>11</td>
<td>43</td>
<td>F</td>
<td>1</td>
<td>0</td>
<td>15</td>
<td>93</td>
</tr>
<tr>
<td>12</td>
<td>55</td>
<td>M</td>
<td>1</td>
<td>1</td>
<td>15</td>
<td>95</td>
</tr>
<tr>
<td>13</td>
<td>41</td>
<td>M</td>
<td>1</td>
<td>2</td>
<td>16</td>
<td>103</td>
</tr>
<tr>
<td>14</td>
<td>47</td>
<td>F</td>
<td>1</td>
<td>12</td>
<td>16</td>
<td>109</td>
</tr>
<tr>
<td>15</td>
<td>32</td>
<td>F</td>
<td>2</td>
<td>9</td>
<td>16</td>
<td>112</td>
</tr>
<tr>
<td>16</td>
<td>35</td>
<td>F</td>
<td>1</td>
<td>3</td>
<td>18</td>
<td>117</td>
</tr>
<tr>
<td>17</td>
<td>49</td>
<td>F</td>
<td>1</td>
<td>0</td>
<td>25</td>
<td>154</td>
</tr>
<tr>
<td>18</td>
<td>55</td>
<td>F</td>
<td>1</td>
<td>12</td>
<td>24</td>
<td>160</td>
</tr>
<tr>
<td>19</td>
<td>40</td>
<td>M</td>
<td>1</td>
<td>2</td>
<td>18</td>
<td>174</td>
</tr>
<tr>
<td>20</td>
<td>32</td>
<td>M</td>
<td>1</td>
<td>7</td>
<td>31</td>
<td>201</td>
</tr>
</tbody>
</table>

Mean: 3.7 16 104
Standard deviation: 4.6 6.1 38.9

Discussion

This test, which has been entitled the double samp-
ling test meal, has been described and certain
advantages over other methods are claimed. The
test is easy to perform and is completed in one to
two hours with little discomfort to the patient. It is
accurate if a strict practical and laboratory discipline
is maintained. Double sampling avoids any cumu-
lative error since each sample is determined inde-
pendently of any previous calculation and it also
allows a series of measurements to be made as the
stomach empties. Bloom, Jacobson, and Grossman
(1967) have indicated that there may be some loss of
phenol red from the canine stomach. An advantage
of double sampling is that the volume calculation is
independent of any action of dye in the stomach.
The only assumption made is that the amount of dye
absorbed or secreted by the stomach during the
sampling period (about one minute) is negligible.

A fluid meal has been used and it could be argued
that this gives no indication of the emptying pattern
of a normal mixed meal. Similar patterns of em-
ptying have, however, been demonstrated by Griffith
et al. (1966) for a mixed meal. The advantages of a
fluid meal are that it is easily standardized for
comparisons and it provides a useful vehicle for
accurate concomitant studies, such as acid secretion.

The results of this test confirm previous work
(Oberhelman, 1959; Burge, 1964) that the rate of
emptying is slower in patients with gastric ulceration
than in both normal controls and patients with
duodenal ulceration.

Both the emptying time and half life are increased
gastric ulcer patients but there is no difference in
the starting index. This would indicate that the
delayed rate of emptying is due to a decreased
propulsive power of the stomach or to an increased
resistance to emptying which is maintained through-
out the emptying process rather than an initial delay
in starting emptying. A small group of gastric ulcer
patients show an abnormal pattern of emptying
with delay in expressing the final part of the meal.

SUMMARY

A new test has been described to measure the rate of
gastric emptying. It utilizes a dye dilution and
double sampling technique to calculate the volume
of gastric contents.

The test is simple to perform and can be used
clinically. It can also be used to give information
about acid secretion.

The results of this test indicate that the rate of
gastric emptying is slower in patients with gastric
ulceration than in both normal subjects and patients
with duodenal ulceration.

I am indebted to the surgeons of the Royal Victoria
Hospital and the Belfast City Hospital for permission to
study patients under their care, and to Mr. T. L. Kennedy
and Dr. A. M. Connell for advice and help throughout
the course of this study. I thank Miss M. Simpson for
secretarial help and Staff Nurse E. Wheldon for help
with patients. My thanks also go to Messrs. R. Wood
and G. Smith for the diagrams.

REFERENCES

Aylett, P. (1965). Gastric emptying and secretion in patients with
diabetes mellitus. Gut, 6, 262-265.
dation of dilution indicators in the stomach. Gastroenterology,
52, 205-210.
Measurement of rate of gastric emptying using chromium-51.
Lancer, 1, 1244-1245.
Hollander, F., and Glickstein, J. (1940). Secretory studies in whole
stomachs: the dilution indicator technique and its precision
old results. J. Physiol. (Lond.), 182, 144-149.
Horton, R. E., Ross, F. G. M., and Darling, G. H. (1965). Detec-
tion of the emptying time of the stomach by use of
Hunt, J. N. (1954). The inhibitory action of sucrose on gastric digestive
activity in patients with peptic ulcer. Guy's Hosp. Rep., 103,
161-173.
-----, and Spurrell, W. R. (1951). The pattern of emptying of the
Oberhelman, H. A. (1959). In The Physiology and Treatment of Peptic
Ulcer, edited by J. G. Allen. University of Chicago Press,
Chicago.
New clinical method for measuring the rate of gastric emptying: the double sampling test meal.

J D George

Gut 1968 9: 237-242
doi: 10.1136/gut.9.2.237