THE ROLE OF GLIAL CELLS AND APOPTOSIS OF ENTERIC NEURONS IN THE NEUROPATHOLOGY OF INTRACTABLE SLOW TRANSIT CONSTIPATION

*Gabrio Bassotti, §Vincenzo Villanacci, ○Christoph A Maurer, §Simona Fisogni, §§Francesco Di Fabio, §Morris Cadei, *Antonio Morelli, ○Theodorou Panagiotis, □Gieri Cathomas, §§Bruno Salerni

*Department of Clinical and Experimental Medicine, University of Perugia; §2nd Department of Pathology, Spedali Civili, Brescia, and §§Department of Surgery, University of Brescia, Italy; ○Department of Surgery and □Cantonal Institute of Pathology, Liestal Hospital, Switzerland

Running head: neuropathology of slow transit constipation

Key words: apoptosis, enteric neurons, glial cells, interstitial cells of Cajal, slow transit constipation

Address for correspondence:
Dr Gabrio Bassotti
Clinica di Gastroenterologia ed Epatologia
Via Enrico Dal Pozzo, Padiglione W
06100 Perugia, Italy
Email: gabassot@tin.it
Abstract

Background. Idiopathic slow transit constipation is one of the most severe and often intractable forms of constipation. Since motor abnormalities are thought to play an important pathogenetic role, studies have been performed on the colonic neuroenteric system, which rules the motor aspects of the viscus.

Aims. We hypothesized that important neuropathologic abnormalities of the large bowel are present, that these are not confined to the ICC and the ganglion cells, and that the previously described reduction of enteric neurons, if confirmed, might be related to an increase of programmed cell death (apoptosis).

Patients and methods. Surgical specimens from 26 severely constipated patients were assessed by conventional and immunohistochemical methods. Specific staining for enteric neurons, glial cells, interstitial cells of Cajal, and fibroblast-like cells associated with the latter were used. In addition, gangliar cell apoptosis was evaluated by means of indirect and direct techniques. Data from patients were compared with those obtained in 10 controls.

Results. Severely constipated patients displayed a significant decrease in enteric gangliar cells, glial cells, and interstitial cells of Cajal. Fibroblast-like cells associated with the latter did not differ significantly between patients and controls. Patients had significantly more apoptotic enteric neurons than controls.

Conclusion. Severely constipated patients have important neuroenteric abnormalities, not confined to gangliar cells and interstitial cells of Cajal. The reduction of enteric neurons may in part be due to increased apoptotic phenomena.
Introduction

Chronic constipation is a symptom encountered frequently in clinical practice, and may affect a considerable percentage of the general population [1]. Several mechanisms contribute to constipation, although the main two subgroups are related to obstructed defecation and slow transit [2]. In particular, slow transit constipation (STC) usually represents the subgroup of patients with most severe symptoms, who tend to be less influenced by therapeutic measures [3]. These patients are frequently labelled as intractable [4], and the most severe ones (up to true colonic inertia) are often referred for a surgical approach [5,6].

The pathophysiological causes of STC are still poorly understood, and abnormal colonic motility is thought to play an important role[7,8]. Several qualitative and quantitative changes in the enteric nervous system of such patients have been described. They include abnormal enteric neurochemistry [9-12], decreased argyrophilic neurons [13], decreased intraganglionic neurofilaments [14] and hypoganglionosis of the myenteric plexus [15]. More recently, a decrease in colonic interstitial cells of Cajal (ICC) in STC patients has also been reported [16-18].

However, most of the above reports involved small groups of patients with different clinical and instrumental characteristics, and the studies usually focused on only one or two issues related to the myenteric plexus.

Here we report a neuropathologic investigation of the colon in a relatively large and homogeneous group of STC patients. In particular, we wanted to test the hypothesis that the abnormalities are not confined to the ICC and the ganglion cells, and that the previously described reduction of enteric neurons, if confirmed, might be related to an increase of programmed cell death (apoptosis).

Patients

Twenty-six STC patients (25 women, 1 man, age range 24-78 yrs) undergoing colectomy with ileorectostomy for severe intractable constipation were enrolled in the study. The inclusion criteria were: 1) long-standing history of constipation (more than three years, average 14, range 3-59); symptoms arose in childhood in one patient and in later life in the others; 2) one or fewer evacuations per week; 3) absence of frequent (more than two episodes per month) or chronic abdominal pain; 4) sensation of incomplete evacuation in >1/4 defecations; 5) negative history for (sub)occlusive episodes; 6) unresponsiveness to appropriate and intensive medical treatment, including high fiber diet, stimulant and osmotic laxatives, and enemas. Intestinal transit time, measured by means of radiopaque markers, was delayed in all patients (up to more than 240 hours). Causes of secondary constipation were excluded by drug history, physical examination and laboratory screening (blood chemistry, thyroid hormones and, where appropriate, oral glucose tolerance test, sex hormone profiles and antinuclear antibodies). To exclude organic diseases or mechanical causes of constipation and megacolon or megarectum, each patient underwent double-contrast barium enema and/or colonoscopy. Absence of Hirschsprung’s disease was demonstrated by normal relaxation of the internal anal sphincter at anorectal manometry [19]. No patient had evidence of obstructed defecation, as documented by anorectal manometry and/or defecography.

Controls

Ten patients (9 women, 1 man, age range 43-75 yrs) undergoing left hemicolecetomy for non-obstructing colorectal cancer were used as controls, since there is evidence that the distribution of ICC is relatively uniform throughout the human colon [16]. No data are available on the regional density of the enteric neurons and glial cells in man, although in preliminary observations we did not detect significant regional differences between the
various colonic segments, except in the rectum (G. Bassotti and V. Villanacci, personal observations). The control specimens were taken at least 5 cm from the resection margin in tumor-free areas.

Methods
After removal, the surgical specimens were immediately fixed in 10% neutral-buffered formalin for 24 hours, then 12 to 20 full-thickness samples from the whole resected colon were taken and transversal sections obtained. For conventional histology 5 μm paraffin sections were stained with Hematoxylin-Eosin, PAS and Trichrome stain.

Immunohistochemistry. At least 40 slides for each patient were processed for immunohistochemistry. To evaluate markers of the enteric nervous system we used monoclonal antibodies toward neuron-specific enolase (NSE, NCL-NSE2, Novocastra laboratories, dilution 1:50) acting as a marker of gangliar cells, and the glial marker protein S100 (S-100, Dako, dilution 1:50) were used [20,21]. Since ICC express Kit [22], an anti-Kit antibody (rabbit polyclonal antibody, IgG, Dako, Carpinteria, CA, dilution 1:50) was used to detect these cells, as previously reported [23]. Moreover, CD34 staining (CD34 Clone QBEnd/10 Neo markers, dilution 1:30) was used to evaluate the population of fibroblast-like cells which are intimately associated with the ICC [24]. Two methods were used as markers for apoptosis in the enteric nervous system: a) the expression of Bcl-2 protein (BCL2 Oncoprotein clone 124, DBS, dilution 1:10), a proto-oncogene responsible for specific suppression of apoptosis in several important situations [25], and well displayed in human enteric neurons [26,27], and b) the monoclonal antibody to single-stranded DNA [28], using the formamide monoclonal antibody (formamide-MAb) method (Mab F7-26 BMS 156, Bender MedSystem), which detects apoptotic cells in tissue processed with routine histological techniques and allows discrimination of apoptosis from necrosis [29].

NSE, S-100, CD34, and Bcl-2 immunostaining was carried out using a peroxidase-based visualization kit (Dako LSAB ®), following the manufacturer’s recommendations. Diaminobenzidine tetrahydrochloride was used as chromogen. The slides were then counterstained with Mayer’s hematoxylin for 5 seconds, dehydrated and mounted in Clarion (Biomeda). To account for non-specific staining, peptides that blocked polyclonal antibody bindings (passage with normal goat serum) were used, or sections were incubated in the absence of primary antibody. In these cases, no immunostaining was detected. For Bcl-2, the expression in mucosal lymphoid cells served as internal control.

Expression of Kit. Consecutive formalin-fixed, paraffin sections were dewaxed and rehydrated through decreasing alcohol series up to distilled water. Sections were then subjected to heat-induced epitope retrieval by immersion in a heat-resistant container filled with citrate buffer solution (pH 6.0) placed in a pressure cooker and microwaved for 20 minutes. Endogenous peroxidase activity was suppressed by incubation with 3% solution of H₂O₂ for 5 minutes. Kit immunostaining was carried out using a peroxidase-based visualization kit (Dako EnVision ™), following the manufacturer’s recommendations. Kit-positive mast cells served as internal control.

Anti single-stranded DNA immunohistochemistry. Sections 2-3 μm thick were warmed overnight at 60°C, then dewaxed and rehydrated through decreasing alcohol series up to distilled water. Thereafter, the sections were incubated for 5 minutes in PBS with the addition of 20% Tween 20, followed by a passage with proteinase K (Dako) for 20 minutes. The sections were then rinsed with distilled water and heated in 50% formamide prewarmed to 60°C for 20 minutes. After cooling, endogenous peroxidase activity was suppressed by incubation with 3% solution of H₂O₂ for 5 minutes. Normal serum diluted 1:50 was applied for 10 minutes to room temperature, followed by anti-DNA MAb for 30 minutes, according to the manufacturer’s recommendations. After that, the sections were
incubated at room temperature with secondary polymeric antibody for 20 minutes and ABC (Kit super sensitive non biotin detection system, Menarini) for 30 minutes. Finally, a 5 minutes reaction in the dark with diaminobenzidine (Bio-Optica) was carried out, and the sections were then counterstained with Mayer’s hematoxylin for 5 seconds, dehydrated and mounted in Clarion (Biomed). Positivity was observed under the microscope as an intense brown reaction.

The presence of lymphocytes was assessed by means of a monoclonal mouse anti-human CD 3 antibody (Dako Cytomation, dilution 1:40).

The colonic smooth muscle was evaluated by means of an anti alfa-actin monoclonal antibody (Biogenex, dilution 1:100).

Data analysis
All slides were coded and analyzed blind by two pathologists. For NSE, S100, and CD3, as well as for Bcl-2 and formamide-MAb positive cells, both the submucosal and the myenteric plexuses were taken into account by optical microscopy at x 20 magnification (Olympus BX 40). For each patient, the number of immunopositive cells was calculated and expressed as the mean of cells on 10 well stained and well oriented microscopic fields for each region of interest. To be considered as positive, the intensity of cell immunostaining in relation to possible background had to be from moderate to strong, as described previously [30].

The density of ICC was graded, according to a previously described method [31,32], after the evaluation of 10 well-stained and well-oriented fields at x 20 magnification. The three previously identified populations of ICC were taken into consideration [33,34]: IC-SM, along the submucosal surface of the circular muscle bundle, IC-MY, within the intermuscular space between circular and longitudinal muscle layers (myenteric region, which displays the highest yield of ICC in normal tissue [16,18,31]), and IC-IM, within the muscle fibers of the circular and longitudinal muscle layers. Not only nucleated cells but also Kit positive labelled elongated structures were considered for analysis [32].

For CD34, the strength of the immunostaining (graded as either present or severely depleted/absent, according to recently reported criteria [35]) was calculated around the myenteric plexus, between the elements of the plexus, within the longitudinal and circular muscle elements. Care was taken not to include vessels in the evaluation; however, the effectiveness of CD34 staining was indicated by the staining of capillaries in subjects with severe depletion/absence in the other locations [35].

Statistical analysis
The Kolmogorov-Smirnov test for normality was applied and showed the data to be normally distributed. Data from controls and patients were thus compared using Student’s t-test for unpaired data (two-tailed) and Pearson’s correlation coefficient, where appropriate. Values of p<0.05 were chosen for rejection of the null hypothesis. Data are expressed as means (95% CI).

Results
Conventional histology. In both groups, the mucosa, submucosa, smooth muscle and nerve plexus architecture appeared normal at Hematoxylin-Eosin, Trichrome and PAS staining. No inflammatory cells (nor any intranuclear or viral inclusions) were observed in or around muscular or nervous structures.

No patient exhibited hyperplastic changes (e.g. giant ganglia) of the submucosal plexus, thereby excluding a diagnosis of intestinal neuronal dysplasia [36]. Moreover, no inclusion body myopathy was found in the smooth muscle [37]. The presence of (pseudo)melanosis coli was shown in 80% of patients, those with a history of anthraquinone laxative use.
Immunohistochemistry. NSE expression (Fig 1, A and B) was significantly decreased in STC patients compared to controls, in both the myenteric (28.5 (24-33) vs 64.4 (55-73) cells, p<0.001) and the submucosal (21 (19-24) vs 58 (46-70) cells, p<0.001) plexus. Similar results were detected for S100 expression (Fig 1, C and D), again significantly decreased in STC patients compared to controls, in both the myenteric (174 (156-191) vs 214 (190-238) cells, p= 0.021) and the submucosal (97 (85-109) vs 127 (94-161) cells, p= 0.026) plexus.

As regards ICC (Fig. 2, A, B, and C), a significant decrease was found in patients for IC-MY (141.3 (124-159) vs 214 (154-274) cells, p= 0.0017) and IC-SM (14 (11-17) vs 29 (23-35) cells, p<0.001), but not for IC-IM (36 (30-42) vs 38 (32-44) cells, p= 0.68). Scattered Kit-positive mast cells were observed in the patients' mucosa, and were numerically distributed as in the control tissue.

No relationship was found between the number of myenteric neurons or ICC-MY and the duration of constipation (for myenteric neurons r=-0.02, p= 0.89; for ICC-MY r= 0.156, p= 0.44).

No differences between the groups were found in the expression of CD34 (Fig. 2, D), which was severely depleted/absent in two patients and two controls (chi-square test, p= 0.66).

The expression of Bcl-2 (Fig. 3, A and B) was significantly decreased in STC patients compared to controls, in both the myenteric (124 (108-141) vs 167 (127-207) cells, p= 0.015) and the submucosal (30 (26-33) vs 55.4 (47-64) cells, p<0.001) plexus; the expression of Bcl-2 in mucosal lymphoid cells of patients was comparable to that found in controls.

The number of apoptotic enteric neurons (Fig 3, C and D) was significantly increased in the myenteric plexus of STC patients (18 (15-20) vs 11 (7-14) cells, p= 0.0052), whereas no differences were found in the submucosal plexus (16 (12-19) vs 12 (9-15) cells, p= 0.15).

No lymphocytic infiltration (assessed by CD3) was observed in either the submucosal or the myenteric plexus of the patients and controls.

All patients and controls showed strong intensity for alfa-actin immunostaining, so that colonic smooth muscle was judged to display normal characteristics.

Discussion

This study, carried out in a homogeneous and relatively large group of patients with severe and intractable STC, showed that abnormalities of the enteric nervous system are present in such patients, but that they are not confined to neurons and ICC. Although a significant decrease in enteric neurons and ICC was found in patients compared to the control group, a further significant decrease was discovered in patients concerning glial cells, which were reduced in both the myenteric and the submucosal plexus. We consider this finding interesting and worthy of comment.

Enteric glial cells originate from the neural crest and provide support for neuronal elements [38]. The best known function of the glia in the adult is the formation of myelin sheaths around axons, thus allowing the fast connections essential for nervous system function. The glia also maintains appropriate concentrations of ions and neurotransmitters in the neuronal environment. An increasing body of evidence indicates that glial cells are essential regulators of the formation, maintenance and function of synapses, the key functional units of the nervous system [39]. Thus, since enteric glial cells are thought to act as intermediaries in enteric neurotransmission [40], their decrease might further weaken the already precarious neuroenteric balance due to the decrease in neuronal elements and ICC found in STC patients (see below). We are as yet unable to explain this decrease of glial elements in our patients, and there is no literature support, except the reduction of
these cells found in aged rats [41]. However, no such reduction was detected in the similarly aged control group; it therefore appears unlikely that the decrease was due to aging, at least in the proportion we found. Our patients presented a significant drop in ICC in the myenteric and submucosal plexus. This finding is consistent with other recent studies [16-18], which also detected a decreased ICC volume in STC patients [42]. The role of ICC as intestinal pacemakers has been clearly established in experimental animal models, which have shown that a lack of ICC networks leads to the absence of slow waves and is accompanied by delayed or absent intestinal motility [43,44]. Therefore, a reduction or loss of ICC function might decrease or eliminate the colonic electrical slow wave activity, thereby reducing the contractile response and resulting in delayed transit in STC patients. How can this finding be explained? Very recent evidence has shown that the expression of c-kit mRNA and c-kit protein was significantly decreased in STC patients, suggesting that alterations in the c-kit signal pathway may play an important role in ICC reduction in such patients [45].

The reduction of ICC was not accompanied by a loss of CD34-positive fibroblasts, as observed in other pathological conditions [35]. In a mouse model the blockage of Kit receptors caused transdifferentiation of intestinal ICC to a smooth muscle phenotype [46]; it is tempting to speculate that this inherent plasticity between ICC and smooth muscle cells might also happen in the human colon. If verified, this hypothesis could be exploited, because - if ICC do not die in STC but rather redifferentiate- it might be possible to create conditions that would shift the phenotype back toward ICC.

A third important neuropathologic aspect is the loss of enteric neural elements found in these patients. Similar findings have previously been reported in small groups of STC patients [15,17], although not consistently [47]. Since the mechanisms that lead to the depletion of enteric neurons are unknown, we tested the hypothesis that neuronal loss might be due to an increase of programmed cell death, i.e. an apoptotic phenomenon. Therefore, we first obtained indirect evidence by assessing Bcl-2, a unique proto-oncogene localized to mitochondria and able to block apoptosis in a variety of in vitro and in vivo situations, suggesting interference with a central mechanism of apoptosis [48,49]. The expression of Bcl-2 was significantly lower in the enteric neural elements of STC patients compared to controls, in both the myenteric and the submucosal plexus, thus suggesting an impairment of anti-apoptotic factors.

Then we assessed apoptosis directly in the enteric neurons by means of the formamide-MAb method, a technique unaffected by DNA breaks and able to identify the apoptotic cells and to discriminate between them and necrotic ones [29]. We found that the number of apoptotic enteric neurons in patients was significantly increased in the myenteric (but not in the submucosal) plexus, suggesting that apoptosis probably plays a role in the loss of these cells. It is also worth noting that there is some literature evidence suggesting that, at least in colonic epithelia, melanosis coli may be a non-specific marker of increased apoptosis [50]. These data did not, however, include submucosal or myenteric plexus evaluation.

Neuronal depletion further supports a role of the (deranged) enteric nervous system in the pathophysiology of STC. We feel that the overall findings from this study all point toward a synergic effect of each abnormality in causing abnormal colonic motor activity and, therefore, the symptoms complained of by the patients. A decrease in ICC impairs pacemaker activity, whereas the loss of enteric glial cells and neurons reduces the nervous stimuli to the effector (smooth muscle) cells, which are therefore unable to yield an effective and coordinated force able to carry out the main physiological purposes of the viscus, namely mixing, storage and expulsion of the contents. The fact that the above abnormalities are incomplete, i.e. there was not a complete loss of any of the anatomical
elements evaluated, may explain why residual colonic motor activity may be still detected in very severely constipated patients [5,51].

The causes of the abnormalities we documented are still unclear, and we have not found results supporting proposed pathophysiological mechanisms in late-onset STC [52], such as lymphocytic epithelioganglionitis [53] and localization of neurotropic viruses in the myenteric plexus [7].

This study does of course have some limitations. For instance, the choice of controls and the (transverse) sectioning technique could be considered as suboptimal. However, at least for children, there is some evidence that colonic transverse sections yield similar counts of neuronal density as compared to longitudinal sections [54].

In conclusion, patients with intractable “idiopathic” STC display important neuropathologic enteric abnormalities, which are not confined to ICC and neuronal elements. The loss of the latter may be due in part to increased apoptosis, and this observation may be of some interest in the light of future therapeutic approaches aiming to reduce this phenomenon. Lastly, ever-increasing knowledge of the basic mechanisms of this entity might in the future help to delete “idiopathic” from the definition of this form of constipation.

"The Corresponding Author has the right to grant on behalf of all authors and does grant on behalf of all authors, an exclusive licence (or non exclusive for government employees) on a worldwide basis to the BMJ Publishing Group Ltd and its Licensees to permit this article (if accepted) to be published in Gut editions and any other BMJPG products to exploit all subsidiary rights, as set out in our licence”.

CONFLICT OF INTEREST STATEMENT: NONE DECLARED
References

3. Schiller LR. Review article: the therapy of constipation. Aliment Pharmacol Ther 2001, 15:749-763

13. Krishnamurti S, Schuffler MD, Rohrmann CA, Pope CE. Severe idiopathic constipation is associated with a distinctive abnormality of the colonic myenteric plexus. Gastroenterology 1985, 88:26-34

33. Sanders KM. A case for interstitial cells of Cajal as pacemakers and mediators of neurotransmission in the gastrointestinal tract. Gastroenterology 1996, 111:492-515

Figure legends

Figure 1.
NSE expression in the myenteric plexus of a control (A) and of a STC patient (B): the latter shows decreased number of gangliar cells. Original magnification x 20. The arrows indicate gangliar cells.
S100 expression in a control (C) and a patient (D), with the latter showing a reduction of glial cells. Original magnification x 20. The arrow indicates glial cells.

Figure 2.
CD 117 expression in a control (A and B) and a STC patient (C). Note the ICC decrease in the patient’s tissue. Original magnifications x 40 (A and C) and x 100 (B). ICC are indicated by the arrows.
D. CD34 expression in a STC patient. Original magnification x 20.

Figure 3.
Bcl2 expression in a control (A, original magnification x 20) and in a STC patient (B, original magnification x 40).
Apoptotic neurons (arrows) in a control (C) and in a STC patient (D). Original magnification x 40.
The role of glial cells and apoptosis of enteric neurons in the neuropathology on intractable slow transit constipation

Gabrio Bassotti, Vincenzo Villanacci, Christoph A Maurer, Simona Fisogni, Francesco Di Fabio, Morris Cadei, Antonio Morelli, Theodorou Panagiotis, Gieri Cathomas and Bruno Salerni

Gut published online July 24, 2005

Updated information and services can be found at:
http://gut.bmj.com/content/early/2005/07/24/gut.2005.073197.citation

These include:

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Topic Collections
Articles on similar topics can be found in the following collections
Constipation (198)

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/