Skip to main content

Apoptosis and Tumor Cell Death in Response to HAMLET (Human α-Lactalbumin Made Lethal to Tumor Cells)

  • Chapter
Book cover Bioactive Components of Milk

Abstract

HAMLET (human a-lactalbumin made lethal to tumor cells) is a molecular complex derived from human milk that kills tumor cells by a process resembling programmed cell death. The complex consists of partially unfolded a-lactalbumin and oleic acid, and both the protein and the fatty acid are required for cell death. HAMLET has broad antitumor activity in vitro, and its therapeutic effect has been confirmed in vivo in a human glioblastoma rat xenograft model, in patients with skin papillomas and in patients with bladder cancer. The mechanisms of tumor cell death remain unclear, however. Immediately after the encounter with tumor cells, HAMLET invades the cells and causes mitochondrial membrane depolarization, cytochrome c release, phosphatidyl serine exposure, and a low caspase response. A fraction of the cells undergoes morphological changes characteristic of apoptosis, but caspase inhibition does not rescue the cells and Bcl-2 overexpression or altered p53 status does not influence the sensitivity of tumor cells toHAMLET. HAMLET also creates a state of unfolded protein overload and activates 20S proteasomes, which contributes to cell death. In parallel, HAMLET translocates to tumor cell nuclei, where high-affinity interactions with histones cause chromatin disruption, loss of transcription, and nuclear condensation. The dying cells also show morphological changes compatible with macroautophagy, and recent studies indicate that macroautophagy is involved in the cell death response to HAMLET. The results suggest that HAMLET, like a hydra with many heads, may interact with several crucial cellular organelles, thereby activating several forms of cell death, in parallel. This complexity might underlie the rapid death response of tumor cells and the broad antitumor activity of HAMLET.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aas, T., Borresen, A. L., Geisler, S., Smith-Sorensen, B., Johnsen, H., Varhaug, J. E., Akslen, L. A., & Lonning, P. E. (1996) Specific P53 mutations are associated with de novo resistance to doxorubicin in breast cancer patients. Nature Medicine, 2, 811–814.

    Article  CAS  Google Scholar 

  • Ahmad, M., Srinivasula, S. M., Wang, L., Talanian, R. V., Litwack, G., Fernandes-Alnemri, T., & Alnemri, E. S. (1997) CRADD, a novel human apoptotic adaptor molecule for caspase-2, and FasL/tumor necrosis factor receptor-interacting protein RIP. Cancer Research, 57, 615–619.

    CAS  Google Scholar 

  • Andersson, B., Dahmén, J., Freijd, T., Leffler, H., Magnusson, G., Noori, G., & Svanborg-Edén, C. (1983) Identification of a disaccharide unit of a glycoconjugate receptor for pneumocci attaching to human pharyngeal epithelial cells. Journal of Experimental Medicine, 158, 559–570.

    Article  CAS  Google Scholar 

  • Andersson, B., Porras, O., Hanson, L. A., Svanborg-Eden, C., & Leffler, H. (1985) Non-antibody-containing fractions of breast milk inhibit epithelial attachment of Streptococcus pneumoniae and Haemophilus influenzae. Lancet, 1, 643.

    Article  CAS  Google Scholar 

  • Andersson, B., Porras, O., Hanson, L. A., Lagergard, T., & Svanborg-Eden, C. (1986) Inhibition of attachment of Streptococcus pneumoniae and Haemophilus influenzae by human milk and receptor oligosaccharides. Journal of Infectious Diseases, 153, 232–237.

    CAS  Google Scholar 

  • Ashe, P. C., & Berry, M. D. (2003) Apoptotic signaling cascades. Progress in Neuropsychopharmacology Biological Psychiatry, 27, 199–214.

    Article  CAS  Google Scholar 

  • Bakhshi, A., Jensen, J. P., Goldman, P., Wright, J. J., McBride, O. W., Epstein, A. L., & Korsmeyer, S. J. (1985) Cloning the chromosomal breakpoint of t (14;18) human lymphomas: Clustering around JH on chromosome 14 and near a transcriptional unit on 18. Cell, 41, 899–906.

    Article  CAS  Google Scholar 

  • Beresford, P. J., Zhang, D., Oh, D. Y., Fan, Z., Greer, E. L., Russo, M. L., Jaju, M., & Lieberman, J. (2001) Granzyme A activates an endoplasmic reticulum-associated caspase-independent nuclease to induce single-stranded DNA nicks. Journal of Biological Chemistry, 276, 43285–43293.

    Article  CAS  Google Scholar 

  • Bouillet, P., & Strasser, A. (2002) BH3-only proteins—Evolutionarily conserved proapoptotic Bcl-2 family members essential for initiating programmed cell death. Journal of Cell Science, 115, 1567–1574.

    CAS  Google Scholar 

  • Boya, P., Gonzalez-Polo, R. A., Casares, N., Perfettini, J. L., Dessen, P., Larochette, N., Metivier, D., Meley, D., Souquere, S., Yoshimori, T., Pierron, G., Codogno, P., & Kroemer, G. (2005) Inhibition of macroautophagy triggers apoptosis. Molecular and Cell Biology, 25, 1025–1040.

    Article  CAS  Google Scholar 

  • Brown, S. B., Bailey, K., & Savill, J. (1997) Actin is cleaved during constitutive apoptosis. Biochemistry Journal, 323, 233–237.

    CAS  Google Scholar 

  • Browne, K. A., Johnstone, R. W., Jans, D. A., & Trapani, J. A. (2000) Filamin (280-kDa actin-binding protein) is a caspase substrate and is also cleaved directly by the cytotoxic T lymphocyte protease granzyme B during apoptosis. Journal of Biological Chemistry, 275, 39262–39266.

    Article  CAS  Google Scholar 

  • Bursch, W. (2004) Multiple cell death programs: Charon's lifts to Hades. FEMS Yeast Research, 5, 101–110.

    Article  CAS  Google Scholar 

  • Bykov, V. J., Issaeva, N., Shilov, A., Hultcrantz, M., Pugacheva, E., Chumakov, P., Bergman, J., Wiman, K. G., & Selivanova, G. (2002) Restoration of the tumor suppressor function to mutant p53 by a low-molecular-weight compound. Nature Medicine, 8, 282–288.

    Article  CAS  Google Scholar 

  • Carr, A. M. (2000) Cell cycle. Piecing together the p53 puzzle. Science, 287, 1765–1766.

    Article  CAS  Google Scholar 

  • Chiba, I., Takahashi, T., Nau, M. M., D'Amico, D., Curiel, D. T., Mitsudomi, T., Buchhagen, D. L., Carbone, D., Piantadosi, S., Koga, H., et al. (1990) Mutations in the p53 gene are frequent in primary, resected non-small cell lung cancer. Lung Cancer Study Group. Oncogene, 5, 1603–1610.

    CAS  Google Scholar 

  • Chinnaiyan, A. M., O'Rourke, K., Tewari, M., & Dixit, V. M. (1995) FADD, a novel death domain-containing protein, interacts with the death domain of Fas and initiates apoptosis. Cell, 81, 505–512.

    Article  CAS  Google Scholar 

  • Choi, W. S., Lee, E. H., Chung, C. W., Jung, Y. K., Jin, B. K., Kim, S. U., Oh, T. H., Saido, T. C., & Oh, Y. J. (2001) Cleavage of Bax is mediated by caspase-dependent or -independent calpain activation in dopaminergic neuronal cells: Protective role of Bcl-2. Journal of Neurochemistry, 77, 1531–1541.

    Article  CAS  Google Scholar 

  • Creagh, E. M., Conroy, H., & Martin, S. J. (2003) Caspase-activation pathways in apoptosis and immunity. Immunology Reviews, 193, 10–21.

    Article  CAS  Google Scholar 

  • Cunningham, A. S., Jelliffe, D. B., & Jelliffe, E. F. (1991) Breast-feeding and health in the 1980s: A global epidemiologic review [see comments]. Journal of Pediatrics, 118, 659–666.

    Article  CAS  Google Scholar 

  • Davis, M. K., Savitz, D. A., & Graubard, B. I. (1988) Infant feeding and childhood cancer. Lancet, 2, 365–368.

    Article  CAS  Google Scholar 

  • Deveraux, Q. L., Roy, N., Stennicke, H. R., Van Arsdale, T., Zhou, Q., Srinivasula, S. M., Alnemri, E. S., Salvesen, G. S., & Reed, J. C. (1998) IAPs block apoptotic events induced by caspase-8 and cytochrome c by direct inhibition of distinct caspases. EMBO Journal, 17, 2215–2223.

    Article  CAS  Google Scholar 

  • Du, C., Fang, M., Li, Y., Li, L., & Wang, X. (2000) Smac, a mitochondrial protein that promotes cytochrome c-dependent caspase activation by eliminating IAP inhibition. Cell, 102, 33–42.

    Article  CAS  Google Scholar 

  • Duan, H., & Dixit, V. M. (1997) Raidd is a new death adaptor molecule. Nature, 385, 86–89.

    Article  CAS  Google Scholar 

  • Duringer, C., Hamiche, A., Gustafsson, L., Kimura, H., & Svanborg, C. (2003) HAMLET interacts with histones and chromatin in tumor cell nuclei. Journal of Biological Chemistry, 278, 42131–42135.

    Article  CAS  Google Scholar 

  • Dyche, W. J. (1979) A comparative study of the differentiation and involution of the Mullerian duct and Wolffian duct in the male and female fetal mouse. Journal of Morphology, 162, 175–209.

    Article  CAS  Google Scholar 

  • Edinger, A. L., & Thompson, C. B. (2004) Death by design: Apoptosis, necrosis and autophagy. Current Opinion in Cell Biology, 16, 663–669.

    Article  CAS  Google Scholar 

  • Enari, M., Sakahira, H., Yokoyama, H., Okawa, K., Iwamatsu, A., & Nagata, S. (1998) A caspase-activated DNase that degrades DNA during apoptosis, and its inhibitor ICAD [see comments] [published erratum appears in Nature, May 28, 1998; 393 (6683): 396]. Nature, 391, 43–50.

    Article  CAS  Google Scholar 

  • Fischer, W., Gustafsson, L., Mossberg, A. K., Gronli, J., Mork, S., Bjerkvig, R., & Svanborg, C. (2004) Human α-lactalbumin made lethal to tumor cells (HAMLET) kills human glioblastoma cells in brain xenografts by an apoptosis-like mechanism and prolongs survival. Cancer Research, 64, 2105–2112.

    Article  CAS  Google Scholar 

  • Foghsgaard, L., Wissing, D., Mauch, D., Lademann, U., Bastholm, L., Boes, M., Elling, F., Leist, M., & Jaattela, M. (2001) Cathepsin B acts as a dominant execution protease in tumor cell apoptosis induced by tumor necrosis factor. Journal of Cell Biology, 153, 999–1010.

    Article  CAS  Google Scholar 

  • Foster, B. A., Coffey, H. A., Morin, M. J., & Rastinejad, F. (1999) Pharmacological rescue of mutant p53 conformation and function. Science, 286, 2507–2510.

    Article  CAS  Google Scholar 

  • Garcia-Calvo, M., Peterson, E. P., Leiting, B., Ruel, R., Nicholson, D. W., & Thornberry, N. A. (1998) Inhibition of human caspases by peptide-based and macromolecular inhibitors. Journal of Biological Chemistry, 273, 32608–32613.

    Article  CAS  Google Scholar 

  • Gobeil, S., Boucher, C. C., Nadeau, D., & Poirier, G. G. (2001) Characterization of the necrotic cleavage of poly (ADP-ribose) polymerase (PARP-1): Implication of lysosomal proteases. Cell Death and Differentiation, 8, 588–594.

    Article  CAS  Google Scholar 

  • Golding, J., Emmett, P. M., & Rogers, I. S. (1997a). Does breast feeding protect against non-gastric infections? Early Human Development, 49 (Suppl), S105–120.

    Article  Google Scholar 

  • Golding, J., Emmett, P. M., & Rogers, I. S. (1997b). Gastroenteritis, diarrhoea and breast feeding. Early Human Development, 49 (Suppl), S83–103.

    Article  Google Scholar 

  • Gonzalez-Polo, R. A., Boya, P., Pauleau, A. L., Jalil, A., Larochette, N., Souquere, S., Eskelinen, E. L., Pierron, G., Saftig, P., & Kroemer, G. (2005) The apoptosis/autophagy paradox: Autophagic vacuolization before apoptotic death. Journal of Cell Science, 118, 3091–3102.

    Article  CAS  Google Scholar 

  • Green, D. R., & Kroemer, G. (2004) The pathophysiology of mitochondrial cell death. Science, 305, 626–629.

    Article  CAS  Google Scholar 

  • Greenblatt, M. S., Bennett, W. P., Hollstein, M., & Harris, C. C. (1994) Mutations in the p53 tumor suppressor gene: Clues to cancer etiology and molecular pathogenesis. Cancer Research, 54, 4855–4878.

    CAS  Google Scholar 

  • Gueth-Hallonet, C., Weber, K., & Osborn, M. (1997) Cleavage of the nuclear matrix protein NuMA during apoptosis. Experiments in Cell Research, 233, 21–24.

    Article  CAS  Google Scholar 

  • Gustafsson, L., Leijonhufvud, I., Aronsson, A., Mossberg, A. K., & Svanborg, C. (2004) Treatment of skin papillomas with topical α-lactalbumin-oleic acid. New England Journal of Medicine, 350, 2663–2672.

    Article  CAS  Google Scholar 

  • Håkansson, A., Zhivotovsky, B., Orrenius, S., Sabharwal, H., & Svanborg, C. (1995) Apoptosis induced by a human milk protein. Proceedings of the National Academy of Sciences USA, 92, 8064–8068.

    Article  Google Scholar 

  • Håkansson, A., Andreasson, J., Zhivotovsky, B., Karpman, D., Orrenius, S., & Svanborg, C. (1999) Multimeric α-lactalbumin from human milk induces apoptosis through a direct effect on cell nuclei. Experiments in Cell Research, 246, 451–460.

    Article  Google Scholar 

  • Hallgren, O., Gustafsson, L., Irjala, H., Selivanova, G., Orrenius, S., & Svanborg, C. (2006) HAMLET triggers apoptosis but tumor cell death is independent of caspases, Bcl-2 and p53. Apoptosis, 11, 221–233.

    Article  CAS  Google Scholar 

  • Hanson, L. A. (1998) Breastfeeding provides passive and likely long-lasting active immunity. Annals in Allergy and Asthma Immunology, 81, 523–533; quiz 533–534, 537.

    Article  CAS  Google Scholar 

  • Helminen, H. J., & Ericsson, J. L. (1971) Ultrastructural studies on prostatic involution in the rat. Mechanism of autophagy in epithelial cells, with special reference to the rough-surfaced endoplasmic reticulum. Journal of Ultrastructured Research, 36, 708–724.

    Article  CAS  Google Scholar 

  • Holler, N., Zaru, R., Micheau, O., Thome, M., Attinger, A., Valitutti, S., Bodmer, J. L., Schneider, P., Seed, B., & Tschopp, J. (2000) Fas triggers an alternative, caspase-8-independent cell death pathway using the kinase RIP as effector molecule. Nature Immunology, 1, 489–495.

    Article  CAS  Google Scholar 

  • Hollstein, M., Sidransky, D., Vogelstein, B., & Harris, C. C. (1991) p53 Mutations in human cancers. Science, 253, 49–53.

    Article  CAS  Google Scholar 

  • Hollstein, M., Shomer, B., Greenblatt, M., Soussi, T., Hovig, E., Montesano, R., & Harris, C. C. (1996) Somatic point mutations in the p53 gene of human tumors and cell lines: Updated compilation. Nucleic Acids Research, 24, 141–146.

    Article  CAS  Google Scholar 

  • Horvitz, H. R., Shaham, S., & Hengartner, M. O. (1994) The genetics of programmed cell death in the nematode Caenorhabditis elegans. Cold Spring Harbor Symposia on Quantitative Biology, 59, 377–385.

    CAS  Google Scholar 

  • Hsu, H., Xiong, J., & Goeddel, D. V. (1995) The TNF receptor 1-associated protein TRADD signals cell death and NF-κB activation. Cell, 81, 495–504.

    Article  CAS  Google Scholar 

  • Jaattela, M. (2002) Programmed cell death: Many ways for cells to die decently. Annals in Medicine, 34, 480–488.

    Article  Google Scholar 

  • Jaattela, M., & Tschopp, J. (2003) Caspase-independent cell death in T lymphocytes. Nature Immunology, 4, 416–423.

    Article  CAS  Google Scholar 

  • Janicke, R. U., Ng, P., Sprengart, M. L., & Porter, A. G. (1998) Caspase-3 is required for α-fodrin cleavage but dispensable for cleavage of other death substrates in apoptosis. Journal of Biological Chemistry, 273, 15540–15545.

    Article  CAS  Google Scholar 

  • Johnson, D. E. (2000) Noncaspase proteases in apoptosis. Leukemia, 14, 1695–1703.

    Article  CAS  Google Scholar 

  • Kabeya, Y., Mizushima, N., Ueno, T., Yamamoto, A., Kirisako, T., Noda, T., Kominami, E., Ohsumi, Y., & Yoshimori, T. (2000) LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. EMBO Journal, 19, 5720–5728.

    Article  CAS  Google Scholar 

  • Kerr, J. F. (1972) Shrinkage necrosis of adrenal cortical cells. Journal of Pathology, 107, 217–219.

    Article  CAS  Google Scholar 

  • Kihara, A., Kabeya, Y., Ohsumi, Y., & Yoshimori, T. (2001) Beclin-phosphatidylinositol 3-kinase complex functions at the trans-Golgi network. EMBO Reports, 2, 330–335.

    Article  CAS  Google Scholar 

  • Klionsky, D. J., Cregg, J. M., Dunn, W. A., Jr., Emr, S. D., Sakai, Y., Sandoval, I. V., Sibirny, A., Subramani, S., Thumm, M., Veenhuis, M., & Ohsumi, Y. (2003) A unified nomenclature for yeast autophagy-related genes. Developmental Cell, 5, 539–545.

    Article  CAS  Google Scholar 

  • Kohler, C., Gahm, A., Noma, T., Nakazawa, A., Orrenius, S., & Zhivotovsky, B. (1999a). Release of adenylate kinase 2 from the mitochondrial intermembrane space during apoptosis. FEBS Letters, 447, 10–12.

    Article  CAS  Google Scholar 

  • Kohler, C., Håkansson, A., Svanborg, C., Orrenius, S., & Zhivotovsky, B. (1999b). Protease activation in apoptosis induced by MAL. Experiments in Cell Research, 249, 260–268.

    Article  CAS  Google Scholar 

  • Kubbutat, M. H., Jones, S. N., & Vousden, K. H. (1997) Regulation of p53 stability by Mdm2. Nature, 387, 299–303.

    Article  CAS  Google Scholar 

  • Lane, D. P. (1993) Cancer. A death in the life of p53 [news; comment]. Nature, 362, 786–787.

    Article  CAS  Google Scholar 

  • Lane, D. P., & Crawford, L. V. (1979) T antigen is bound to a host protein in SV40-transformed cells. Nature, 278, 261–263.

    Article  CAS  Google Scholar 

  • Leist, M., & Jaattela, M. (2001) Four deaths and a funeral: From caspases to alternative mechanisms. Nature Reviews of Molecular and Cell Biology, 2, 589–598.

    Article  CAS  Google Scholar 

  • Lemasters, J. J., Qian, T., Elmore, S. P., Trost, L. C., Nishimura, Y., Herman, B., Bradham, C. A., Brenner, D. A., & Nieminen, A. L. (1998) Confocal microscopy of the mitochondrial permeability transition in necrotic cell killing, apoptosis and autophagy. Biofactors, 8, 283–285.

    CAS  Google Scholar 

  • Levine, B., & Klionsky, D. J. (2004) Development by self-digestion: Molecular mechanisms and biological functions of autophagy. Developmental Cell, 6, 463–477.

    Article  CAS  Google Scholar 

  • Linzer, D. I., & Levine, A. J. (1979) Characterization of a 54K Dalton cellular SV40 tumor antigen present in SV40-transformed cells and uninfected embryonal carcinoma cells. Cell, 17, 43–52.

    Article  CAS  Google Scholar 

  • Lockshin, R. A., & Williams, C. M. (1965) Journal of Insect Physiology, 11, 123–133.

    Google Scholar 

  • Lockshin, R. A., & Zakeri, Z. (2001) Programmed cell death and apoptosis: Origins of the theory. Nature Reviews of Molecular and Cell Biology, 2, 545–550.

    Article  CAS  Google Scholar 

  • Lockshin, R. A., & Zakeri, Z. (2004) Apoptosis, autophagy, and more. International Journal of Biochemistry and Cell Biology, 36, 2405–2419.

    Article  CAS  Google Scholar 

  • Lowe, S. W., & Lin, A. W. (2000) Apoptosis in cancer. Carcinogenesis, 21, 485–495.

    Article  CAS  Google Scholar 

  • Lowe, S. W., Bodis, S., McClatchey, A., Remington, L., Ruley, H. E., Fisher, D. E., Housman, D. E., & Jacks, T. (1994) p53 Status and the efficacy of cancer therapy in vivo. Science, 266, 807–810.

    Article  CAS  Google Scholar 

  • Lozanon, J., Berra, E. M., Diaz-Meco, M. T., Dominguez, I., Sanz, L., & Moscat, J. (1994) Protein kinase C isoform is critical for kB-dependent promoter activation by sphingomyelinase. Biological Chemistry, 269, 19200–19202.

    Google Scholar 

  • Madeo, F., Frohlich, E., & Frohlich, K. U. (1997) A yeast mutant showing diagnostic markers of early and late apoptosis. Journal of Cellular Biology, 139, 729–734.

    Article  CAS  Google Scholar 

  • Martin, S. J., O'Brien, G. A., Nishioka, W. K., McGahon, A. J., Mahboubi, A., Saido, T. C., & Green, D. R. (1995) Proteolysis of fodrin (non-erythroid spectrin) during apoptosis. Journal of Biological Chemistry, 270, 6425–6428.

    Article  CAS  Google Scholar 

  • Mathiasen, I. S., Lademann, U., & Jaattela, M. (1999) poptosis induced by vitamin D compounds in breast cancer cells is inhibited by Bcl-2 but does not involve known caspases or p53. Cancer Research, 59, 4848–4856.

    CAS  Google Scholar 

  • Meek, D. W. (1999) Mechanisms of switching on p53: A role for covalent modification? Oncogene, 18, 7666–7675.

    Article  CAS  Google Scholar 

  • Meier, T., Arni, S., Malarkannan, S., Poincelet, M., & Hoessli, D. (1992) Immunodetection of biotinylated lymphocyte-surface proteins by enhanced chemiluminescence: A nonradioactive method for cell-surface protein analysis. Analytical Biochemistry, 204, 220–226.

    Article  CAS  Google Scholar 

  • Mihara, M., Erster, S., Zaika, A., Petrenko, O., Chittenden, T., Pancoska, P., & Moll, U. M. (2003) p53 Has a direct apoptogenic role at the mitochondria. Molecular Cell, 11, 577–590.

    Article  CAS  Google Scholar 

  • Miura, M., Zhu, H., Rotello, R., Hartwieg, E. A., & Yuan, J. (1993) Induction of apoptosis in fibroblasts by IL-1 beta-converting enzyme, a mammalian homolog of the C. elegans cell death gene ced-3. Cell, 75, 653–660.

    Article  CAS  Google Scholar 

  • Miura, M., Friedlander, R. M., & Yuan, J. (1995) umor necrosis factor-induced apoptosis is mediated by a CrmA-sensitive cell death pathway. Proceedings of the National Academy of Sciences USA, 92, 8318–8322.

    Article  CAS  Google Scholar 

  • Muller, M., Wilder, S., Bannasch, D., Israeli, D., Lehlbach, K., Li-Weber, M., Friedman, S. L., Galle, P. R., Stremmel, W., Oren, M., & Krammer, P. H. (1998) p53 Activates the CD95 (APO-1/Fas) gene in response to DNA damage by anticancer drugs. Journal of Experimental Medicine, 188, 2033–2045.

    Article  CAS  Google Scholar 

  • Muzio, M., Chinnaiyan, A. M., Kischkel, F. C., O'Rourke, K., Shevchenko, A., Ni, J., Scaffidi, C., Bretz, J. D., Zhang, M., Gentz, R., Mann, M., Krammer, P. H., Peter, M. E., & Dixit, V. M. (1996) FLICE, a novel FADD-homologous ICE/CED-3-like protease, is recruited to the CD95 (Fas/APO-1) death-inducing signaling complex. Cell, 85, 817–827.

    Article  CAS  Google Scholar 

  • Nagata, S. (1997) Apoptosis by death factor. Cell, 88, 355–365.

    Article  CAS  Google Scholar 

  • Nakagawa, T., & Yuan, J. (2000) Cross-talk between two cysteine protease families. Activation of caspase-12 by calpain in apoptosis. Journal of Cellular Biology, 150, 887–894.

    Article  CAS  Google Scholar 

  • Nakano, K., & Vousden, K. H. (2001) PUMA, a novel proapoptotic gene, is induced by p53. Molecular C0ell, 7, 683–694.

    Article  CAS  Google Scholar 

  • Noda, T., Suzuki, K., & Ohsumi, Y. (2002) Yeast autophagosomes: De novo formation of a membrane structure. Trends in Cellular Biology, 12, 231–235.

    Article  CAS  Google Scholar 

  • Oda, E., Ohki, R., Murasawa, H., Nemoto, J., Shibue, T., Yamashita, T., Tokino, T., Taniguchi, T., & Tanaka, N. (2000) Noxa, a BH3-only member of the Bcl-2 family and candidate mediator of p53-induced apoptosis. Science, 288, 1053–1058.

    Article  CAS  Google Scholar 

  • Paavola, L. G. (1978) The corpus luteum of the guinea pig. III. Cytochemical studies on the Golgi complex and GERL during normal postpartum regression of luteal cells, emphasizing the origin of lysosomes and autophagic vacuoles. Journal of Cell Biology, 79, 59–73.

    Article  CAS  Google Scholar 

  • Petiot, A., Ogier-Denis, E., Blommaart, E. F., Meijer, A. J., & Codogno, P. (2000) Distinct classes of phosphatidylinositol 3'-kinases are involved in signaling pathways that control macroautophagy in HT-29 cells. Journal of Biological Chemistry, 275, 992–998.

    Article  CAS  Google Scholar 

  • Roberg, K., Kagedal, K., & Ollinger, K. (2002) Microinjection of cathepsin D induces caspase-dependent apoptosis in fibroblasts. American Journal of Pathology, 161, 89–96.

    CAS  Google Scholar 

  • Roberts, L. R., Kurosawa, H., Bronk, S. F., Fesmier, P. J., Agellon, L. B., Leung, W. Y., Mao, F., & Gores, G. J. (1997) Cathepsin B contributes to bile salt-induced apoptosis of rat hepatocytes. Gastroenterology, 113, 1714–1726.

    Article  CAS  Google Scholar 

  • Robles, A. I., Bemmels, N. A., Foraker, A. B., & Harris, C. C. (2001) APAF-1 is a transcriptional target of p53 in DNA damage-induced apoptosis. Cancer Research, 61, 6660–6664.

    CAS  Google Scholar 

  • Samuels-Lev, Y., O'Connor, D. J., Bergamaschi, D., Trigiante, G., Hsieh, J. K., Zhong, S., Campargue, I., Naumovski, L., Crook, T., & Lu, X. (2001) ASPP proteins specifically stimulate the apoptotic function of p53. Molecular Cell, 8, 781–794.

    Article  CAS  Google Scholar 

  • Scaffidi, C., Fulda, S., Srinivasan, A., Friesen, C., Li, F., Tomaselli, K. J., Debatin, K. M., Krammer, P. H., & Peter, M. E. (1998) Two CD95 (APO-1/Fas) signaling pathways. EMBO Journal, 17, 1675–1687.

    Article  CAS  Google Scholar 

  • Schlumpberger, M., Schaeffeler, E., Straub, M., Bredschneider, M., Wolf, D. H., & Thumm, M. (1997) AUT1, a gene essential for autophagocytosis in the yeast Saccharomyces cerevisiae. Journal of Bacteriology, 179, 1068–1076.

    CAS  Google Scholar 

  • Schulte-Hermann, R., Bursch, W., Grasl-Kraupp, B., Marian, B., Torok, L., Kahl-Rainer, P., & Ellinger, A. (1997) Concepts of cell death and application to carcinogenesis. Toxicologic Pathology, 25, 89–93.

    CAS  Google Scholar 

  • Schweichel, J. U., & Merker, H. J. (1973) The morphology of various types of cell death in prenatal tissues. Teratology, 7, 253–266.

    Article  Google Scholar 

  • Sensibar, J. A., Griswold, M. D., Sylvester, S. R., Buttyan, R., Bardin, C. W., Cheng, C. Y., Dudek, S., & Lee, C. (1991) Prostatic ductal system in rats: regional variation in localization of an androgen-repressed gene product, sulfated glycoprotein-2. Endocrinology, 128, 2091–2102.

    Article  CAS  Google Scholar 

  • Sherr, C. J., & Weber, J. D. (2000) The ARF/p53 pathway. Current Opinion in Genetics and Development, 10, 94–99.

    Article  CAS  Google Scholar 

  • Shimizu, S., Narita, M., & Tsujimoto, Y. (1999) Bcl-2 family proteins regulate the release of apoptogenic cytochrome c by the mitochondrial channel VDAC [see comments]. Nature, 399, 483–487.

    Article  CAS  Google Scholar 

  • Shimizu, S., Kanaseki, T., Mizushima, N., Mizuta, T., Arakawa-Kobayashi, S., Thompson, C. B., & Tsujimoto, Y. (2004) Role of Bcl-2 family proteins in a non-apoptotic programmed cell death dependent on autophagy genes. Nature Cell Biology, 6, 1221–1228.

    Article  CAS  Google Scholar 

  • Stoka, V., Turk, B., Schendel, S. L., Kim, T. H., Cirman, T., Snipas, S. J., Ellerby, L. M., Bredesen, D., Freeze, H., Abrahamson, M., Bromme, D., Krajewski, S., Reed, J. C., Yin, X. M., Turk, V., & Salvesen, G. S. (2001) Lysosomal protease pathways to apoptosis. Cleavage of bid, not pro-caspases, is the most likely route. Journal of Biological Chemistry, 276, 3149–3157.

    Article  CAS  Google Scholar 

  • Susin, S. A., Lorenzo, H. K., Zamzami, N., Marzo, I., Snow, B. E., Brothers, G. M., Mangion, J., Jacotot, E., Costantini, P., Loeffler, M., Larochette, N., Goodlett, D. R., Aebersold, R., Siderovski, D. P., Penninger, J. M., & Kroemer, G. (1999) Molecular characterization of mitochondrial apoptosis-inducing factor. Nature, 397, 441–446.

    Article  CAS  Google Scholar 

  • Suzuki, Y., Imai, Y., Nakayama, H., Takahashi, K., Takio, K., & Takahashi, R. (2001) A serine protease, HtrA2, is released from the mitochondria and interacts with XIAP, inducing cell death. Molecular Cell, 8, 613–621.

    Article  CAS  Google Scholar 

  • Svanborg, C., Agerstam, H., Aronson, A., Bjerkvig, R., Duringer, C., Fischer, W., Gustafsson, L., Hallgren, O., Leijonhuvud, I., Linse, S., Mossberg, A. K., Nilsson, H., Pettersson, J., & Svensson, M. (2003) HAMLET kills tumor cells by an apoptosis-like mechanism—Cellular, molecular, and therapeutic aspects. Advances in Cancer Research, 88, 1–29.

    Article  CAS  Google Scholar 

  • Svensson, M. (1999) Studies on an apoptosis-inducing folding variant of human α-lactalbumin. In Institute og Laboratory Medicine (p. 33). Lund, Sweden: Lund University.

    Google Scholar 

  • Svensson, M., Fast, J., Mossberg, A. K., Duringer, C., Gustafsson, L., Hallgren, O., Brooks, C. L., Berliner, L., Linse, S., & Svanborg, C. (2003a). Alpha-lactalbumin unfolding is not sufficient to cause apoptosis, but is required for the conversion to HAMLET (human α-lactalbumin made lethal to tumor cells). Protein Science, 12, 2794–2804.

    Article  CAS  Google Scholar 

  • Svensson, M., Mossberg, A. K., Pettersson, J., Linse, S., & Svanborg, C. (2003b). Lipids as cofactors in protein folding: Stereo-specific lipid-protein interactions are required to form HAMLET (human α-lactalbumin made lethal to tumor cells). Protein Science, 12, 2805–2814.

    Article  CAS  Google Scholar 

  • Tanida, I., Nishitani, T., Nemoto, T., Ueno, T., & Kominami, E. (2002) Mammalian Apg12p, but not the Apg12p.Apg5p conjugate, facilitates LC3 processing. Biochemistry and Biophysics Research Community, 296, 1164–1170.

    Article  CAS  Google Scholar 

  • Tanida, I., Tanida-Miyake, E., Ueno, T., & Kominami, E. (2001) The human homolog of Saccharomyces cerevisiae Apg7p is a protein-activating enzyme for multiple substrates including human Apg12p, GATE-16, GABARAP, and MAP-LC3. Journal of Biological Chemistry, 276, 1701–1706.

    CAS  Google Scholar 

  • Tartaglia, L. A., Ayres, T. M., Wong, G. H., & Goeddel, D. V. (1993) A novel domain within the 55 kd TNF receptor signals cell death. Cell, 74, 845–853.

    Article  CAS  Google Scholar 

  • Thorlacius, S., Thorgilsson, B., Bjornsson, J., Tryggvadottir, L., Borresen, A. L., Ogmundsdottir, H. M., & Eyfjord, J. E. (1995) TP53 mutations and abnormal p53 protein staining in breast carcinomas related to prognosis. European Journal of Cancer, 31A, 1856–1861.

    Google Scholar 

  • Thornberry, N. A., & Lazebnik, Y. (1998) Caspases: Enemies within. Science, 281, 1312–1316.

    Article  CAS  Google Scholar 

  • Tsujimoto, Y. (2003) Cell death regulation by the Bcl-2 protein family in the mitochondria. Journal of Cellular Physiology, 195, 158–167.

    Article  CAS  Google Scholar 

  • Tsujimoto, Y., Cossman, J., Jaffe, E., & Croce, C. M. (1985) Involvement of the bcl-2 gene in human follicular lymphoma. Science, 228, 1440–1443.

    Article  CAS  Google Scholar 

  • Tsukada, M., & Ohsumi, Y. (1993) Isolation and characterization of autophagy-defective mutants of Saccharomyces cerevisiae. FEBS Letters, 333, 169–174.

    Article  CAS  Google Scholar 

  • Turk, B., Turk, D., & Turk, V. (2000) Lysosomal cysteine proteases: More than scavengers. Biochimica et Biophysica Acta, 1477, 98–111.

    CAS  Google Scholar 

  • Verhagen, A. M., Silke, J., Ekert, P. G., Pakusch, M., Kaufmann, H., Connolly, L. M., Day, C. L., Tikoo, A., Burke, R., Wrobel, C., Moritz, R. L., Simpson, R. J., & Vaux, D. L. (2002) HtrA2 promotes cell death through its serine protease activity and its ability to antagonize inhibitor of apoptosis proteins. Journal of Biological Chemistry, 277, 445–454.

    Article  CAS  Google Scholar 

  • Vogelstein, B., Lane, D., & Levine, A. J. (2000) Surfing the p53 network. Nature, 408, 307–310.

    Article  CAS  Google Scholar 

  • Wu, H. Y., Nahm, M. H., Guo, Y., Russell, M. W., & Briles, D. E. (1997) Intranasal immunization of mice with PspA (pneumococcal surface protein A) can prevent intranasal carriage, pulmonary infection, and sepsis with Streptococcus pneumoniae. Journal of Infectious Diseases, 175, 839–846.

    Article  CAS  Google Scholar 

  • Yuan, J., Shaham, S., Ledoux, S., Ellis, H. M., & Horvitz, H. R. (1993) The C. elegans cell death gene ced-3 encodes a protein similar to mammalian interleukin-1 beta-converting enzyme. Cell, 75, 641–652.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Hallgren, O. et al. (2008). Apoptosis and Tumor Cell Death in Response to HAMLET (Human α-Lactalbumin Made Lethal to Tumor Cells). In: Bösze, Z. (eds) Bioactive Components of Milk. Advances in Experimental Medicine and Biology, vol 606. Springer, New York, NY. https://doi.org/10.1007/978-0-387-74087-4_8

Download citation

Publish with us

Policies and ethics