Skip to main content
Log in

NMDA Receptor antagonists prevent acute ammonia toxicity in mice

  • Original Articles
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

We proposed that acute ammonia toxicity is mediated by activation of NMDA receptors. To confirm this hypothesis we have tested whether different NMDA receptor antagonists, acting on different sites of NMDA receptors, prevent death of mice induced by injection of 14 mmol/Kg of ammonium acetate, a dose that induces death of 95% of mice. MK-801, phencyclidine and ketamine, which block the ion channel of NMDA receptors, prevent death of at least 75% of mice. CPP, AP-5, CGS 19755, and CGP 40116, competitive antagonists acting on the binding site for NMDA, also prevent death of at least 75% of mice. Butanol, ethanol and methanol which block NMDA receptors, also prevent death of mice. There is an excellent correlation between the EC50 for preventing ammonia-induced death and the IC50 for inhibiting NMDA-induced currents. Acute ammonia toxicity is not prevented by antagonists of kainate/AMPA receptors, of muscarinic or nicotinic acetylcholine receptors or of GABA receptors. Inhibitors of nitric oxide synthase afford partial protection against ammonia toxicity while inhibitors of calcineurin, of glutamine synthetase or antioxidants did not prevent ammonia-induced death of mice. These results strongly support the idea that acute ammonia toxicity is mediated by activation of NMDA receptors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AMPA:

α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid

AP-5:

2-amino-5-phosphonovaleric acid

CPP:

3-(2-carboxypiperazin-4-yl)-propyl-1-phosphonic acid

CGP 40116:

D-E-4-(3-phosphonoprop-2-enyl)piperazine-2-carboxylic acid

CGS 19755:

cis-4-phosphonomethyl-2-piperidine carboxylic acid

DNQX:

6,7-dinitroquinoxaline-2,3-dione

Ketamine:

2-(2-chlorophenyl)-2-(methylamino)-cyclohexanone

Memantine:

3,5-Dimethyl-1-adamantan-amine

MK-801:

(5S, 10R)-(+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d] cyclohepten-5, 10-imine hydrogen maleate

NAME:

nitroarginine methyl ester

NBQX:

6-nitro-7-sulfamoyl-benzo(F)quinoxaline-2,3-dione

NO:

nitric oxide

NOS:

nitric oxide synthase

PBN:

N-tert-butyl-α-phenylnitrone

PCP:

1-[1-phenyl-cyclohexyl]-piperidine

References

  1. Moroni, F., Lombardi, G., Moneti, G., and Cortesini, C. 1983. The release and neosynthesis of glutamic acid are increased in experimental model of hepatic encephalopathy. J. Neurochem. 40: 850–854.

    Article  PubMed  CAS  Google Scholar 

  2. Moroni, F., Lombardi, G., Moneti, G., Pellegrini, D., and Cortesini, C. 1994. A possible role for excitatory neurotoxic amino acids in the pathogenesis of hepatic encephalopathy. Pages 41–51,in J. E. Fischer and F. Rossi-Fanelli, (eds.), Hepatic encephalopathy in chronic liver failure, ed. by L. Capocaccia, Plenum Publishing Co. New York.

    Google Scholar 

  3. Moroni, F., Lombardi, G., Carlá, V., Lal, S., Etienne, P., and Nair, N. P. V. 1986. Increase in the content of quinolinic acid in cerebrospinal fluid and frontal cortex of patients with hepatic failure. J. Neurochem. 47:1667–1671.

    PubMed  CAS  Google Scholar 

  4. Moroni, F., Lombardi, G., Carlà, V., Pellegrini, D., Carassale, G. L., and Cortesini, C. 1986. Content of quinolinic acid and of other tryptophan metabolites increases in brain regions of rats used as experimental models of hepatic encephalopathy. J. Neurochem. 46:869–874.

    PubMed  CAS  Google Scholar 

  5. Marcaida, G., Felipo, V., Hermenegildo, C., Miñana, M. D., and Grisolía, S. 1992. Acute ammonia toxicity is mediated by the NMDA type of glutamate receptors. FEBS Lett. 296:67–68.

    Article  PubMed  CAS  Google Scholar 

  6. Choi, D. W. 1987. Ionic dependence of glutamate neurotoxicity. J. Neurosci. 7:369–379.

    PubMed  CAS  Google Scholar 

  7. Novelli, A., Reilly, J. A., Lysko, P. G., and Henneberry, R. C. 1988. Glutamate becomes neurotoxic via the N-methyl-D-aspartate receptor when intracellular energy levels are reduced. Brain Res. 451:205–212.

    Article  PubMed  CAS  Google Scholar 

  8. Nagamatsu, M., Nickander, K. K., Schmelzer, J. D., Raya, A., Wittrock, D. A., Tritschler, H., and Low, P. A. 1995. Lipoic acid improves nerve blood flow, reduces oxidative stress, and improves distal nerve conduction in experimental diabetic neuropathy. Diabetes Care. 8:1160–1167.

    Google Scholar 

  9. Nickander, K. K., Schmelzer, J. D., Rohwer, D. A., and Low, P. A. 1994. Effect of α-tocopherol deficiency on indices of oxidative stress in normal and diabetic peripheral nerve. J. Neurol. Sci. 126: 6–14.

    Article  PubMed  CAS  Google Scholar 

  10. Ornaghi, F., Ferrini, S., Prati, M., and Giavini, E. 1993. The protective effects of N-acetylcysteine against methyl mercury embryotoxicity in mice. Fundam. Appl. Toxicol. 20:437–445.

    Article  PubMed  CAS  Google Scholar 

  11. Corbett, J. A., Wang, J. L., Sweetland, M. A., Lancaster, J. R., and McDaniel, M. L. 1992. Interleukin 1β induces the formation of nitric oxide by β-cells purified from rodent islets of Langerhans. J. Clin. Invest. 90:2384–2391.

    PubMed  CAS  Google Scholar 

  12. Weight, F. E., Lovinger, D. M., White, G., and Peoples, R. W. 1991. Alcohol and anesthetic actions on excitatory amino acid-activated ion channels. Pages 97–107,in E. Rubin, K. W. Miller and S. Roth. (ed.) Molecular and Cellular Mechanisms of Alcohol and Anesthetics Vol 625. Ann. N. Y. Acad. Sci.

  13. Wong, E. H. F., Knight, A. R., and Woodruff, G. N. 1988. [3H]MK-801 labels a site on the N-methyl-D-aspartate receptor channel complex in rat brain membranes. J. Neurochem. 50:274–281.

    PubMed  CAS  Google Scholar 

  14. Seiler, N., Sarhan, S., Knoedgen, B., Hornsperger, J. M., and Sablone, M. 1993. Enhanced endogenous ornithine concentrations protect against tonic seizures and coma in acute ammonia intoxication. Pharmacol. Toxicol. 72:116–123.

    Article  PubMed  CAS  Google Scholar 

  15. Itzhak, Y., and Norenberg, M. D. 1994. Attenuation of ammonia toxicity in mice by PK 11195 and pregnenolone sulfate. Neurosci. Lett. 182:251–254.

    Article  PubMed  CAS  Google Scholar 

  16. Hoffman, P. L., Rabe, C. S., Moses, F., and Tabakoff, B. 1989. N-methyl-D-aspartate receptors and ethanol: Inhibition of calcium flux and cyclic GMP production. J. Neurochem. 52:1937–1940.

    Article  PubMed  CAS  Google Scholar 

  17. Woodward, J. J., and Gonzales, R. A. 1990. Ethanol inhibition of N-methyl-D-aspartate-stimulated endogenous dopamine release from rat striatal slices: reversal by glycine. J. Neurochem. 54:712–715.

    Article  PubMed  CAS  Google Scholar 

  18. O'Connor, J. E., Guerri, C., and Grisolía, S. 1982. Protective effect of ethanol on acute ammonia intoxication in mice. Biochem. Biophys. Res. Commun. 104:410–415.

    PubMed  Google Scholar 

  19. Choi, D. W. 1985. Glutamate neurotoxicity in cortical cell culture is calcium-dependent. Neurosci. Lett. 58:293–297.

    Article  PubMed  CAS  Google Scholar 

  20. Manev, H., Favaron, M., Guidotti, A., and Costa, E. 1989. Delayed increase of Ca(2+ influx elicited by glutamate: role in neuronal death. Mol. Pharmacol. 36:106–112.

    PubMed  CAS  Google Scholar 

  21. Garthwaite, J., Charles, S. L., and Chess-Williams, R. 1991. Endothelium-derived relaxing factor release on activation of NMDA receptors suggests role as intracellular messenger in the brain. Nature. 336:385–388.

    Article  Google Scholar 

  22. Faraci, C., and Breese, K. R. 1993. Nitric oxide mediates vasodilation in response to activation of N-methyl-D-aspartatereceptors in brain. Circ. Res. 72:476–480.

    PubMed  CAS  Google Scholar 

  23. Dawson, T. M., Steiner, J. P., Dawson, V. L., Dinerman J. L., Uhl, G. R., and Snyder, S. H. 1993. Immunosuppressant FK506 enhances phosphorylation of nitric oxide synthase and protects against glutamate neurotoxicity. Proc. Natl. Acad. Sci. USA. 90: 9808–9812.

    Article  PubMed  CAS  Google Scholar 

  24. Dawson, V. L., Dawson, T. M., London, E. D., Bredt, D. S., and Snyder, S. H. 1991. Nitric oxide mediates glutamate neurotoxicity in primary cortical cultures. Proc. Natl. Acad. Sci. USA. 88:6368–6371.

    Article  PubMed  CAS  Google Scholar 

  25. Izumi, Y., Benz, A. M., Clifford, D. B., and Zorumski, C. F. 1993. Nitric oxide inhibitors attenuate N-methyl-D-aspartate excitotoxicity in rat hippocampal slices. Neurosci. Lett. 135:227–230.

    Article  Google Scholar 

  26. Marcaida, G., Miñana M. D., Grisolia, S., and Felipo, V. 1995. Lack of correlation between glutamate-induced depletion of ATP and neuronal death in primary cultures of cerebellum. Brain Res. 695:146–150.

    Article  PubMed  CAS  Google Scholar 

  27. Lerner-Natoli, M., Rondouin, G., Bock, F., and Bockaert, J., 1992. Chronic NO synthase inhibition fails to protect hippocampal neurones against NMDA toxicity. NeuroReport. 3:1109–112.

    Article  PubMed  CAS  Google Scholar 

  28. Zinkand, W. C., Stumpo, R. J., Thompson,C., Patel, J., and Pullan, L. M. 1993. Lack of involvement of nitric oxide in NMDA-induced neuronal death in cortical culture. NeuroReport. 5:148–150.

    Article  PubMed  CAS  Google Scholar 

  29. Kosenko, E., Kaminsky, Y., Grau, E., Miñana, M. D., Grisolia, S., and Felipo, V. 1995. Nitroarginine, an inhibitor of nitric oxide synthase, attenuates ammonia toxicity and ammonia-induced alterations in brain metabolism. Neurochem. Res. 20:451–456.

    Article  PubMed  CAS  Google Scholar 

  30. Lafon-Cazal, M., Pietri, S., Culcasi, M., and Bockaert, J. 1993. NMDA-dependent superoxide production and neurotoxicity. Nature. 364:535–537.

    Article  PubMed  CAS  Google Scholar 

  31. Hammer, B., Parker, W. D., and Bennett, J. P. 1993. NMDA receptors increase OH radicals in vivo by using nitric oxide synthase and protein kinase C. NeuroReport. 5:72–74.

    Article  PubMed  CAS  Google Scholar 

  32. Culcasi, M., Lafon-Cazal, M., Pietri, S., and Bockaert, J. 1994. Glutamate receptors induce a burst of superoxide via activation of nitric oxide synthase in arginine-depleted neurons. J. Biol. Chem. 269:12589–12593.

    PubMed  CAS  Google Scholar 

  33. Lafon-Cazal, M., Culcasi, M., Gaven, F., Pietri, S., and Bockaert, J. 1993. Nitric oxide and peroxynitrite: putative mediators of NMDA-induced cell death in cerebellar granule cells. Neuropharmacol. 32:1259–1266.

    Article  CAS  Google Scholar 

  34. Dugan, L. L., and Choi, D. W. 1994. Excitotoxicity, free radicals, and cell membrane changes. Ann. Neurol. 35:S17-S21.

    Article  PubMed  CAS  Google Scholar 

  35. Battelli, M. G., Buonamici, L., Abbondanza, A., Virgili, M., Contestabile, A., and Stirpe, F. 1995. Excitotoxic increase of xanthine dehydrogenase and xanthine oxidase in the rat olfactory cortex. Dev. Brain Res. 86:340–344.

    Article  CAS  Google Scholar 

  36. Cao, X., and Phillips, J. W. 1994. Alpha-phenyl-tert-butyl-nitrone reduces cortical infarct and edema in rats subjected to focal ischemia. Brain Res. 644:267–272.

    Article  PubMed  CAS  Google Scholar 

  37. Lewis, R. J., Hoy, A. W., and Sellin, M. 1993. Ciguatera and mannitol: in vivo and in vitro assessment in mice. Toxicon. 31: 1039–1050.

    Article  PubMed  CAS  Google Scholar 

  38. Williams, G. D., Palmer, C., Heitjan, D. F., and Smith, M. B. 1992. Allopurinol preserves cerebral energy metabolism during perinatal hypoxia-ischemia: a (31P NMR study in unanesthetized immature rats. Neurosci. Lett. 144:103–106.

    Article  PubMed  CAS  Google Scholar 

  39. Hawkins, R. A., and Jessy, J. 1991. Hyperammonemia does not impair brain function in the absence of net glutamine synthesis. Biochem. J. 277:697–703.

    PubMed  CAS  Google Scholar 

  40. Takahashi, H., Koehler, R. C., Brusilow, S. W., and Traystman, R. J. 1991. Inhibition of brain glutamine accumulation prevents cerebral edema in hyperammonemic rats. Am. J. Physiol. 261: H825-H829.

    PubMed  CAS  Google Scholar 

  41. Kosenko, E., Kaminsky, Y., Grau, E., Miñana M. D., Marcaida, G., Grisolia, S., and Felipo, V. 1994. Brain ATP depletion induced by acute ammonia intoxication in rats is mediated by activation of the NMDA receptor and of Na(+/K(+−ATPase. J. Neurochem. 63:2172–2178.

    Article  PubMed  CAS  Google Scholar 

  42. Miki, N., Kawabe, Y., and Kuriyama, K. 1977. Activation of cerebral guanylate cyclase by nitric oxide. Biochem. Biophys. Res. Commun. 75:851–856.

    Article  PubMed  CAS  Google Scholar 

  43. Garthwaite, J., Southam, E., and Anderton, M. 1989. A kainate receptor linked to nitric oxide synthesis from arginine. J. Neurochem. 53:1952–1954.

    Article  PubMed  CAS  Google Scholar 

  44. Drapier, J. C., and Hibbs, J. B. 1986. Murine cytotoxic activated macrophages inhibit aconitase in tumor cells. J. Clin. Invest. 78: 790–797.

    Article  PubMed  CAS  Google Scholar 

  45. Anis, N. A., Berry, S. C., Burton, N. R., and Lodge, D., 1983. The dissociative anesthetics, ketamine and phencyclidine, selectively reduce excitation of central mammalian neurones by N-methyl-D-aspartate. Br. J. Pharmacol. 79:565–575.

    PubMed  CAS  Google Scholar 

  46. Chen, H. S. V., Pellegrini, J. W., Aggarwal, S. K., Lei, S. Z., Warach, S., Jensen, F. E., and Lipton, S.A. 1992. Open-channel block of N-methyl-D-aspartate (NMDA) responses by memantine: therapeutic advantage against NMDA receptor-mediated neurotoxicity. J. Neurosci. 12:4427–4436.

    PubMed  CAS  Google Scholar 

  47. Fagg, G. E., Olpe, H. R., Pozza, M. F., Baud, J., Steinmann, M., Schmutz, M., Portet, C., Baumann, P., Thedinga, K., Bittiger, H., Allgeier, H., Heckendorn R., Brundish, D., and Dingwall, J. G. 1990. CGP 37849 and CGP 39551: novel and potent competitive N-methyl-D-aspartate receptor antagonists with oral activity. Br. J. Pharmacol. 99:791–797.

    PubMed  CAS  Google Scholar 

  48. Murphy, D. E., Hutchison, A. J., Hurt, S. D., Williams, M., and Sills, M. A. 1988. Characterization of the binding of [3H]CGS-19755, a novel N-methyl-D-aspartate antagonist with nanomolar affinity in rat brain. Br. J. Pharmacol. 95:932–938.

    PubMed  CAS  Google Scholar 

  49. Davies, J., Francis A. A., Jones, A. W., and Watkins, J. C. 1980. 2-Amino-5-phosphonovalerate (2APV), a highly potent and specific antagonist at spinal NMDA receptors. Br. J. Pharmacol. 70: 52–53.

    Google Scholar 

  50. Davies, J., Evans, R. H., Herrling, P. L., Jones, A. W., Olverman, H. J., Pook, P., and Watkins, J. C. 1986. CPP, a new potent and selective NMDA antagonist. Depression of central neuronal responses, affinity for [(3H)]D-AP5 binding sites on brain membranes and anticonvulsant activity. Brain Res. 382:169–173.

    Article  PubMed  CAS  Google Scholar 

  51. Sheardown, M. J., Nielsen, E. O., Hansen, A. J., Jacobsen, P., and Honoré, T. 1990. 2,3-Dihydroxy-6-nitro-7-sulfamoyl-benzo(F)quinoxaline: A neuroprotectant for cerebral ischemia. Science. 247:571–574.

    Article  PubMed  CAS  Google Scholar 

  52. Honoré, T., Davies, S. N., Drejer, J., Fletcher, E. J., Jacobsen P., Lodge, D., and Nielsen, F. E. 1988. Quinoxalinediones: potent competitive non-NMDA receptor antagonists. Science. 241:701–703.

    Article  PubMed  Google Scholar 

  53. Rossum, J. M. 1960. Atropine-like actions of muscarine isomers. Science. 132:954–956.

    Article  PubMed  Google Scholar 

  54. Pedersen, S. E., and Cohen, J. B. 1990. d-Tubocurarine binding sites are located at α-Γ and α-d subunit interfaces of the nicotinic acetylcholine receptor. Proc. Natl. Acad. Sci. USA, 87:2785–2789.

    Article  PubMed  CAS  Google Scholar 

  55. Johnston, G. A. R. 1978. Neuropharmacology of amino acid inhibitory trasmitters. Ann. Rev. Pharmacol. Toxicol. 18:269–289.

    Article  CAS  Google Scholar 

  56. Hill, D. R., and Bowery, N. G. 1981. (3H-baclofen and (3H-GABA bind to bicuculline-insensitive GABAB sites in rat brain. Nature. 290:149–152.

    Article  PubMed  CAS  Google Scholar 

  57. Moore, P. K., Alswayen, O. A., Choong, N. W. S., Evans, R. A., and Gibson, A. 1990. L-NG-nitroarginine, a novel 1-arginine reversible inhibitor of endothelium-dependent vasodilation in vitro. Br. J. Pharmacol. 99:408–412.

    PubMed  CAS  Google Scholar 

  58. Rees, D. D., Palmer, R. M. J., Schulz, R., Hodson, H. F., and Moncada, S. 1990. Characterization of three inhibitors of endothelial nitric oxide synthase in vitro and in vivo. Br. J. Pharmacol. 101:746–752.

    PubMed  CAS  Google Scholar 

  59. Liu, J., Farmer, J. D., Lane, W. S., Friedman, J., Weissman, I., and Schreiber, S. L. 1991. Calcineurin is a common target of cyclophilin-cyclosporin A and FKBP-FK506 complexes. Cell. 66: 807–815.

    Article  PubMed  CAS  Google Scholar 

  60. Stewart, A. A., Ingebritsen, T. S., and Cohen, P. 1983. The protein phosphatases involved in cellular regulation. Purification and properties of a Ca2+/calmodulin-dependent protein phosphatase (2B) from rabbit skeletal muscle. Eur. J. Biochem. 132:289–295.

    Article  PubMed  CAS  Google Scholar 

  61. Tate, S. S., Leu, F. Y., and Meister, A. 1972. Rat liver glutamine synthetase. Preparation, properties, and mechanism of inhibition by carbamylphosphate. J. Biol. Chem. 247:5312–5321.

    PubMed  CAS  Google Scholar 

  62. Saprin, A. N., and Piette, L. H. 1977. Spin trapping and its application in the study of lipid peroxidation and free radical production with liver microsomes. Arch. Biochem. Biophys. 180: 480–492.

    Article  PubMed  CAS  Google Scholar 

  63. Suzuki, Y. J., Tsuchida, M., and Packer, L. 1991. Thioctic acid and dihydrolipoic acid are novel antioxidants which interact with reactive oxygen species. Free Rad. Res. Commun. 15:255–263.

    CAS  Google Scholar 

  64. Riely, C. A., Cohen G., and Lieberman, M. 1974. Ethane evolution: a new index of lipid peroxidation. Science. 183:28–210.

    Article  Google Scholar 

  65. Halliwell, B., and Gutteridge, J. M. C. 1985. The role of transition metals in superoxide-mediated toxicology. Pages 45–82in Oberley, L. W., (ed.) Superoxide Dismutase Vol III, CRC Press, Boca Raton, FL, USA.

    Google Scholar 

  66. Massey, V., Komai, H., Palmer, G., and Elion, G. B. 1970. On the mechanism of inactivation of xanthine oxidase by allopurinol and other pyrazolo[3,4-d]pyrimidines. J. Biol. Chem. 245:2837–2844.

    PubMed  CAS  Google Scholar 

  67. Kornhuber, J., and Quack, G. 1995. Cerebrospinal fluid and serum concentrations of the N-methyl-D-aspartate (NMDA) receptor antagonist memantine in man. Neurosci. Lett. 195:137–139.

    Article  PubMed  CAS  Google Scholar 

  68. Pérez-Pinzón, M.A., Maier, C. M., Yoon, E. J., Sun, G. H., Giffard, R. G., and Steinberg, G. K. 1995. Correlation of CGS 19755 neuroprotection against in vitro excitotoxicity and focal cerebral ischemia. J. Cereb. Blood Flow Metab. 15:865–876.

    PubMed  Google Scholar 

  69. Yue, T. L., Gu, J. L., Lysko, P. G., Cheng, H. Y., Barone, F. C., and Feuerstein, G. 1992. Neuroprotective effects of phenyl-t-butyl-nitrone in gerbil global brain ischemia and in cultured cerebellar neurons. Brain Res. 574:193–197.

    Article  PubMed  CAS  Google Scholar 

  70. Sauer, D., Allegrini, P. R., and Fagg, G. E. 1994. The competitive NMDA receptor antagonist CGP 40116 is a potent neuroprotectant in a rat model of focal cerebral ischemia. J. Neural. Transm. [Suppl] 43:81–89.

    CAS  Google Scholar 

  71. Lees, G. J. 1995. Influence of ketamine on the neuronal death caused by NMDA in the rat hippocampus. Neuropharmacol. 34: 411–417.

    Article  CAS  Google Scholar 

  72. Lillrank S. M., O'Connor, W. T., Saransaari, P., and Ungerstedt, U. 1994. In vivo effects of local and systemic phencyclidine on the extracellular striatum of anaesthetized rats. Acta Physiol. Scand. 150:109–115.

    Article  PubMed  CAS  Google Scholar 

  73. DeKnegt, R. J., Schalm, S. W., van der Rijt, C. C. D., Fekkes, D., Dalm, E., and Hekking-Weyma, I. 1994. Extracellular brain glutamate during acute liver failure and during acute hyperammonemia simulating acute liver failure. J. Hepatol. 20:19–26.

    Article  CAS  Google Scholar 

  74. Rao, V. L. R., Murthy, Ch. R. K., and Butterworth, R. F. 1992. Glutamatergic synaptic dysfunction in hyperammonemic syndromes. Metab. Brain Dis. 7:1–20.

    Article  PubMed  CAS  Google Scholar 

  75. Mena, E. E., and Cotman, C. W. 1985. Pathologic concentrations of ammonium ions block L-glutamate uptake. Exp. Neurol. 89: 259–263.

    Article  PubMed  CAS  Google Scholar 

  76. Rao, V. L. R., and Murthy, Ch. R. K. 1991. Hyperammonemic alterations in the uptake and release of glutamate and aspartate by rat cerebellar preparations. Neurosci. Lett. 130:49–52.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vicente Felipo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hermenegildo, C., Marcaida, G., Montoliu, C. et al. NMDA Receptor antagonists prevent acute ammonia toxicity in mice. Neurochem Res 21, 1237–1244 (1996). https://doi.org/10.1007/BF02532401

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02532401

Key Words

Navigation