Skip to main content
Log in

Pancreatic cancer and the FAMMM syndrome

  • Published:
Familial Cancer Aims and scope Submit manuscript

Abstract

Hereditary cancer syndromes provide excellent models for molecular genetic studies that may aid significantly in case detection, surveillance, and management. Ultimately, molecularly based designer pharmaceuticals may emerge from this research, such as the case of trastuzumab (Herceptin) in HER-2/neu positive breast cancer, and imatinib (Gleevec) in chronic myelocytic leukemia and gastrointestinal stromal tumors. Importantly, these molecular findings may fuel significant clues to cancer control. This background is mentioned since surveillance and management of pancreatic cancer, a major concern of this manuscript, has been uniformly unsuccessful as evidenced by the close correspondence between its incidence and its mortality. Yet knowledge about its genetic and molecular pathology will hopefully ameliorate this vexing problem. One molecular genetic clue is the recently identified palladin mutation in two pancreatic cancer prone families. However, caution must be used toward the palladin mutation, as several recent publications have questioned its significance as a pancreatic cancer causing mutation. We provide a concise description of pancreatic cancer in concert with malignant melanoma in the familial atypical multiple mole melanoma (FAMMM) syndrome as a potential preventive model. This knowledge should help clinicians and basic scientists seize on the opportunity to develop more sensitive and specific screening and management programs in this disease; while a relatively small subset of pancreatic cancer may be readily identifiable through its FAMMM phenotype, coupled with its CDKN2A mutation, this hereditary disorder, given a keen knowledge of its natural history and molecular genetics, may prove to be an effective clinical preventive model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Jemal A, Siegel R, Ward E et al (2006) Cancer statistics, 2006. CA Cancer J Clin 56:106–130

    Article  PubMed  Google Scholar 

  2. International Agency for Research on Cancer (2002) Globocan 2002. Available at: http://www-dep.iarc.fr/ Cited 16 Oct 2006

  3. Lynch HT, Shaw TG, Lynch JF (2004) Inherited predisposition to cancer: a historical overview. Am J Med Genet 129C:5–22

    Article  PubMed  Google Scholar 

  4. Paré A (1585) Les oeuvres d’Ambroise Paré, Conseiller et premier Chirurgien du Roy. Divisées en vingt huigt livres. Avec les figures et portraicts, tant de l’Anatomie, que des instruments de Chirurgie, et des plusiers Monstres. chez Gabriel Buon, Paris

    Google Scholar 

  5. Aldrovandi U (1642) Monstrorum Historia cum Paralipomenis Historiae Omnium Animalium. Typis Nicolai Tibaldini, Bononaiae

  6. Leclerc de Busson GL (1749) Histoire naturelle générale et particuliére. Imprint Royale, Paris

    Google Scholar 

  7. Tilesius von Tilenau WG (1793) Historia Pathologica Singlularis Cutis Turpitudinis: Jo Godofredi Rheinhardt viri Lannorum. SL Crucius, Leipzig

    Google Scholar 

  8. McKusick VA (1998) Mendelian inheritance in man: a catalog of human genes and genetic disorders. The Johns Hopkins University Press, Baltimore

    Google Scholar 

  9. Ruggieri M, Polizzi A (2003) From Aldrovandi’s “Homuncio” (1592) to Buffon’s girl (1749) and the “Wart Man” of Tilesius (1793): antique illustrations of mosaicism in neurofibromatosis? J Med Genet 40:227–232

    Google Scholar 

  10. Macklin MT (1960) Inheritance of cancer of stomach and large intestine in man. J Natl Cancer Inst 24:551–571

    PubMed  CAS  Google Scholar 

  11. Norris W (1820) Case of fungoid disease. Edinb Med Surg J 16:562–565

    Google Scholar 

  12. Greene MH, Fraumeni JF (1979) The hereditary variant of malignant melanoma. In: Clark WH Jr (ed) Human malignant melanoma. Grune & Stratton, New York

    Google Scholar 

  13. Lynch HT, Brand RE, Hogg D et al (2002) Phenotypic variation in eight extended CDKN2A germline mutation familial atypical multiple mole melanoma-pancreatic carcinoma-prone families: the familial atypical multiple mole melanoma-pancreatic carcinoma syndrome. Cancer 94:84–96

    Article  PubMed  CAS  Google Scholar 

  14. Goldstein AM, Chan M, Harland M et al (2006) High-risk melanoma susceptibility genes and pancreatic cancer, neural system tumors, and uveal melanoma across GenoMEL. Res 66:9818–9828

    CAS  Google Scholar 

  15. Goldstein AM (2004) Familial melanoma, pancreatic cancer, and germline CDKN2A mutations. Hum Mutat 23:630

    Article  PubMed  CAS  Google Scholar 

  16. Parker JF, Florell SR, Alexander A et al (2003) Pancreatic carcinoma surveillance in patients with familial melanoma. Arch Dermatol 139:1019–1025

    Article  PubMed  CAS  Google Scholar 

  17. Cubilla AL, Fitzgerald PJ (1976) Morphological lesions associated with human primary invasive nonendocrine pancreas cancer. Cancer Res 36:2690–2698

    PubMed  CAS  Google Scholar 

  18. Furukawa T, Chiba R, Kobari M et al (1994) Varying grades of epithelial atypia in the pancreatic ducts of humans. Classification based on morphometry and multivariate analysis and correlated with positive reactions of carcinoembryonic antigen. Arch Pathol Lab Med 118:227–234

    PubMed  CAS  Google Scholar 

  19. Hruban RH, Goggins M, Parsons J et al (2000) Progression model for pancreatic cancer. Clin Cancer Res 6:2969–2972

    PubMed  CAS  Google Scholar 

  20. Vogelstein B, Fearon ER, Hamilton SR et al (1988) Genetic alterations during colorectal-tumor development. N Engl J Med 319:525–532

    Article  PubMed  CAS  Google Scholar 

  21. Klimstra DS, Longnecker DS (1994) K-ras mutations in pancreatic ductal proliferative lesions. Am J Pathol 145:1547–1550

    PubMed  CAS  Google Scholar 

  22. Brat DJ, Lillemoe KD, Yeo CJ et al (1998) Progression of pancreatic intraductal neoplasias to infiltrating adenocarcinoma of the pancreas. Am J Surg Pathol 22:163–169

    Article  PubMed  CAS  Google Scholar 

  23. Brockie E, Anand A, Albores-Saavedra J (1998) Progression of atypical ductal hyperplasia/carcinoma in situ of the pancreas to invasive adenocarcinoma. Ann Diagn Pathol 2:286–292

    Article  PubMed  CAS  Google Scholar 

  24. Hruban RH, Canto MI, Yeo CJ (2001) Prevention of pancreatic cancer and strategies for management of familial pancreatic cancer. Dig Dis 19:76–84

    Article  PubMed  CAS  Google Scholar 

  25. Almoguera C, Shibata D, Forrester K et al (1988) Most human carcinomas of the exocrine pancreas contain mutant c-K-ras genes. Cell 53:549–554

    Article  PubMed  CAS  Google Scholar 

  26. Manu M, Buckels J, Bramhall S (2000) Molecular technology and pancreatic cancer. Br J Surg 87:840–853

    Article  PubMed  CAS  Google Scholar 

  27. Caldas C, Hahn SA, Hruban RH et al (1994) Detection of K-ras mutations in the stool of patients with pancreatic adenocarcinoma and pancreatic ductal hyperplasia. Cancer Res 54:3568–3573

    PubMed  CAS  Google Scholar 

  28. Mulcahy HE, Lyautey J, Lederrey C et al (1998) A prospective study of K-ras mutations in the plasma of pancreatic cancer patients. Clin Cancer Res 4:271–275

    PubMed  CAS  Google Scholar 

  29. Mulcahy H, Farthing MJ (1999) Diagnosis of pancreatico-biliary malignancy: detection of gene mutations in plasma and stool. Ann Oncol 10(Suppl 4):114–117

    Article  PubMed  Google Scholar 

  30. Nakaizumi A, Uehara H, Takenaka A et al (1999) Diagnosis of pancreatic cancer by cytology and measurement of oncogene and tumor markers in pure pancreatic juice aspirated by endoscopy. Hepatogastroenterology 46:31–37

    PubMed  CAS  Google Scholar 

  31. Tada M, Omata M, Kawai S et al (1993) Detection of ras gene mutations in pancreatic juice and peripheral blood of patients with pancreatic adenocarcinoma. Cancer Res 53:2472–2474

    PubMed  CAS  Google Scholar 

  32. Wakabayashi T, Sawabu N, Watanabe H et al (1996) Detection of K-ras point mutation at codon 12 in pure pancreatic juice collected 3 years and 6 months before the clinical diagnosis of pancreatic cancer. Am J Gastroenterol 91:1848–1851

    PubMed  CAS  Google Scholar 

  33. Watanabe H, Sawabu N, Ohta H et al (1993) Identification of K-ras oncogene mutations in the pure pancreatic juice of patients with ductal pancreatic cancers. Jpn J Cancer Res 84:961–965

    PubMed  CAS  Google Scholar 

  34. Yamada T, Nakamori S, Ohzato H et al (1998) Detection of K-ras gene mutations in plasma DNA of patients with pancreatic adenocarcinoma: correlation with clinicopathological features. Clin Cancer Res 4:1527–1532

    PubMed  CAS  Google Scholar 

  35. Caldas C (1999) Biliopancreatic malignancy: screening the at risk patient with molecular markers. Ann Oncol 10(Suppl 4):156

    Google Scholar 

  36. Hiyama E, Kodama T, Shinbara K et al (1997) Telomerase activity is detected in pancreatic cancer but not in benign tumors. Cancer Res 57:326–331

    PubMed  CAS  Google Scholar 

  37. Uehara H, Nakaizumi A, Tatsuta M et al (1999) Diagnosis of pancreatic cancer by detecting telomerase activity in pancreatic juice: comparison with K-ras mutations. Am J Gastroenterol 94:2513–2518

    Article  PubMed  CAS  Google Scholar 

  38. Brand R (2001) The diagnosis of pancreatic cancer. Cancer J 7:287–297

    PubMed  CAS  Google Scholar 

  39. Saisho H, Yamaguchi T (2004) Diagnostic imaging for pancreatic cancer: computed tomography, magnetic resonance imaging, and positron emission tomography. Pancreas 28:273–278

    Article  PubMed  Google Scholar 

  40. Murr MM, Sarr MG, Oishi AJ et al (1994) Pancreatic cancer. CA Cancer J Clin 44:304–318

    Article  PubMed  CAS  Google Scholar 

  41. Niederau C, Grendell JH (1992) Diagnosis of pancreatic carcinoma: imaging techniques and tumor markers. Pancreas 7:66–86

    Article  PubMed  CAS  Google Scholar 

  42. Aliperti G (1996) Complications related to diagnostic and therapeutic endoscopic retrograde cholangiopancreatography. Gastrointest Endosc Clin North Am 6:379–407

    CAS  Google Scholar 

  43. Yasuda K, Mukai H, Nakajima M (1995) Endoscopic ultrasonography diagnosis of pancreatic cancer. Gastrointest Endosc Clin North Am 5:699–712

    CAS  Google Scholar 

  44. DeWitt J, Devereaux B, Chriswell M et al (2004) Comparison of endoscopic ultrasonography and multidetector computed tomography for detecting and staging pancreatic cancer. Ann Intern Med 141:753–763

    PubMed  Google Scholar 

  45. Brentnall TA, Bronner MP, Byrd DR et al (1999) Early diagnosis and treatment of pancreatic dysplasia in patients with a family history of pancreatic cancer. Ann Intern Med 131:247–255

    PubMed  CAS  Google Scholar 

  46. Canto MI, Goggins M, Hruban RH et al (2006) Screening for early pancreatic neoplasia in high-risk individuals: a prospective controlled study. Clin Gastroenterol Hepatol 4:766–781

    Article  PubMed  Google Scholar 

  47. Bhutani MS (1999) Endoscopic ultrasonography: changes of chronic pancreatitis in asymptomatic and symptomatic alcoholic patients. J Ultrasound Med 18:455–462

    PubMed  CAS  Google Scholar 

  48. Kimmey MB, Bronner MP, Byrd DR et al (2002) Endoscopic ultrasound screening for familial pancreatic cancer. Gastrointest Endosc 56(Suppl 4):S82–S86

    Article  PubMed  Google Scholar 

  49. Steinberg W (1990) The clinical utility of the CA 19-9 tumor-associated antigen. Am J Gastroenterol 85:350–355

    PubMed  CAS  Google Scholar 

  50. Kim JE, Lee KT, Lee JK et al (2004) Clinical usefulness of carbohydrate antigen 19-9 as a screening test for pancreatic cancer in an asymptomatic population. J Gastroenterol Hepatol 19:182–186

    Article  PubMed  Google Scholar 

  51. Cho E, Chen WY, Hunter DJ et al (2006) Red meat intake and risk of breast cancer among premenopausal women. Arch Intern Med 166:2253–2259

    Article  PubMed  Google Scholar 

  52. Lowenfels AB, Maisonneuve P, Whitcomb DC et al (2001) Cigarette smoking as a risk factor for pancreatic cancer in patients with hereditary pancreatitis. JAMA 286:169–170

    Article  PubMed  CAS  Google Scholar 

  53. Rulyak SJ, Lowenfels AB, Maisonneuve P et al (2003) Risk factors for the development of pancreatic cancer in familial pancreatic cancer kindreds. Gastroenterology 124:1292–1299

    Article  PubMed  Google Scholar 

  54. Pogue-Geile KL, Chen R, Bronner MP et al (2006) Palladin mutation causes familial pancreatic cancer and suggests a new cancer mechanism. PLoS Med 3:e516

    Article  PubMed  CAS  Google Scholar 

  55. Eberle MA, Pfützer R, Pogue-Geile KL et al (2002) A new susceptibility locus for autosomal dominant pancreatic cancer maps to chromosome 4q32-34. Am J Hum Genet 70:1044–1048

    Article  PubMed  CAS  Google Scholar 

  56. Otey CA, Rachlin A, Moza M et al (2005) The palladin/myotilin/myopalladin family of actin-associated scaffolds. Int Rev Cytol 246:31–58

    Article  PubMed  CAS  Google Scholar 

  57. Slater E, Amrillaeva V, Fendrich V et al (2007) Palladin mutation causes familial pancreatic cancer: absence in European families. PLoS Med 4:e164

    Article  PubMed  Google Scholar 

  58. Zogopoulos G, Rothenmund H, Eppel A et al (2007) The P239S palladin variant does not account for a significant fraction of hereditary or early onset pancreas cancer. Hum Genet 121:635–637

    Article  PubMed  Google Scholar 

  59. Salaria SN, Illei P, Sharma R et al (2007) Palladin is overexpressed in the non-neoplastic stroma of infiltrating ductal adenocarcinomas of the pancreas, but is only rarely overexpressed in neoplastic cells. Cancer Biol Ther 6:324–328

    Article  PubMed  CAS  Google Scholar 

  60. Li D, Xie K, Wolff R et al (2004) Pancreatic cancer. Lancet 363:1049–1057

    Article  PubMed  CAS  Google Scholar 

  61. Yeo CJ, Cameron JL, Lillemoe KD et al (1995) Pancreaticoduodenectomy for cancer of the head of the pancreas: 201 patients. Ann Surg 221:721–733

    Article  PubMed  CAS  Google Scholar 

  62. Cameron JL, Tiall TS, Coleman J et al (2006) One thousand consecutive pancreaticoduodenenectomies. Ann Surg 244:10–15

    Article  PubMed  Google Scholar 

  63. Bartsch DK, Sina-Frey M, Lang S et al (2002) CDKN2A germline mutations in familial pancreatic cancer. Ann Surg 236:730–737

    Article  PubMed  Google Scholar 

  64. Kim J, Reber HA, Dry SM et al (2006) Unfavourable prognosis associated with K-ras gene mutation in pancreatic cancer surgical margins. Gut 55:1598–1605

    Article  PubMed  CAS  Google Scholar 

  65. Kaelin WG Jr (2004) The von Hippel-Lindau tumor suppressor gene and kidney cancer. Clin Cancer Res 10:6290s–6295s

    Article  PubMed  CAS  Google Scholar 

  66. Yee NS, Furth EE, Pack M (2003) Clinicopathologic and molecular features of pancreatic adenocarcinoma associated with Peutz-Jeghers syndrome. Cancer Biol Ther 2:38–47

    PubMed  Google Scholar 

Download references

Acknowledgments

This article was supported by revenue from Nebraska cigarette taxes awarded to Creighton University by the Nebraska Department of Health and Human Services. Its contents are solely the responsibility of the authors and do not necessarily represent the official views of the State of Nebraska or the Nebraska Department of Health and Human Services. Support was also given by the Jacqueline Seroussi Memorial Foundation for Cancer Research, and by the National Institutes of Health through grant #1U01 CA 86389. Dr. Henry Lynch’s work is partially funded through the Charles F. and Mary C. Heider Chair in Cancer Research, which he holds at Creighton University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henry T. Lynch.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lynch, H.T., Fusaro, R.M., Lynch, J.F. et al. Pancreatic cancer and the FAMMM syndrome. Familial Cancer 7, 103–112 (2008). https://doi.org/10.1007/s10689-007-9166-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10689-007-9166-4

Keywords

Navigation