Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Frequent activation of N-myc genes by hepadnavirus insertion in woodchuck liver tumours

Abstract

THE recent finding of c-myc activation by insertion of woodchuck hepatitis virus DNA in two independent hepatocellular carcinoma1 has given support to the hypothesis that integration of hepatitis B viruses into the host genome, observed in most human and woodchuck liver tumours2,3, might contribute to oncogenesis. We report here high frequency of woodchuck hepatitis virus DNA integrations in two newly identified N-myc genes: N-myc1, the homologue of known mammalian N-myc genes, and N-myc2, an intronless 'complementary DNA gene' or 'retroposon' that has retained extensive coding and transforming homology with N-myc. N-myc2 is totally silent in normal liver, but is overexpressed without genetic rearrangements in most liver tumours. Moreover, viral integrations occur within either N-myc1 or N-myc2 in about 20% of the tumours, giving rise to chimaeric messenger RNAs in which the 3' untranslated region of N-myc was replaced by wood-chuck hepatitis virus sequences encompassing the viral enhancer. Insertion sites were clustered in a short sequence of the third exon that coincides with a retroviral integration hotspot within the murine N-myc gene, recently described in T-cell lymphomas induced by murine leukaemia virus4–6. Thus, comparable mechan-isms, leading to deregulated expression of N-myc genes, may operate in the development of tumours induced either by hepatitis virus or by nonacute retroviruses in rodents. Activation of myc genes by insertion of hepadnavirus DNA now emerges as a common event in the genesis of woodchuck hepatocellular carcinoma.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Hsu, T. Y. et al. Cell 55, 627–635 (1988).

    Article  CAS  Google Scholar 

  2. Tiollais, P., Pourcel, C. & Dejean, A. Nature 317, 489–495 (1985).

    Article  ADS  CAS  Google Scholar 

  3. Ganem, D. & Varmus, H. E. A. Rev. Biochem. 56, 651–693 (1987).

    Article  CAS  Google Scholar 

  4. Van Lohuizen, M., Breuer, M. & Berns, A. EMBO J. 8, 133–136 (1989).

    Article  CAS  Google Scholar 

  5. Dolcetti, R. et al. Oncogene 4, 1009–1014 (1989).

    CAS  PubMed  Google Scholar 

  6. Setoguchi, M. et al. Molec. cell. Biol. 9, 4515–4522 (1989).

    Article  CAS  Google Scholar 

  7. Kohl, N. E. et al. Nature 319, 73–77 (1986).

    Article  ADS  CAS  Google Scholar 

  8. Stanton, L. W., Schwab, M. & Bishop, J. M. Proc. natn. Acad. Sci. US.A. 83, 1772–1776 (1986).

    Article  ADS  CAS  Google Scholar 

  9. De Pinho, R. A. et al. Proc. natn. Acad Sci. U.S.A. 83, 1827–1831 (1986).

    Article  ADS  CAS  Google Scholar 

  10. Stanton, L. W. & Bishop, J. M. Molec. cell. Biol. 7, 4266–4272 (1987).

    Article  CAS  Google Scholar 

  11. Vanin, E. F. A. Rev. Genet. 19, 253–272 (1985).

    Article  CAS  Google Scholar 

  12. Mäkelä, T. P., Saksela, K. & Alitalo, K. Molec. cell. Biol. 9, 1545–1552 (1989).

    Article  Google Scholar 

  13. Struhl, K. Cell 49, 295–297 (1987).

    Article  CAS  Google Scholar 

  14. Rechsteiner, M., Rogers, S. & Rote, K. Trends biochem. Sci. 12, 390–394 (1987).

    CAS  Google Scholar 

  15. Mure, C., McCaw, P. S. & Baltimore, D. Cell 56, 777–783 (1989).

    Article  Google Scholar 

  16. Prendergast, G. C. & Ziff, E. B. Nature 341, 392 (1989).

    Article  ADS  CAS  Google Scholar 

  17. Dang, C. V., McGuire, M., Buckmire, M. & Lee, W. M. F. Nature 337, 664–666 (1989).

    Article  ADS  CAS  Google Scholar 

  18. Nakajima, H., Ikeda, M., Tsuchida, N., Nishimura, S. & Taya, Y. Oncogene 4, 999–1002 (1989).

    CAS  PubMed  Google Scholar 

  19. Land, H., Parada, L. F. & Weinberg, R. A. Nature 304, 596–602 (1983).

    Article  ADS  CAS  Google Scholar 

  20. Schwab, M., Varmus, H. E. & Bishop, J. M. Nature 316, 160–162 (1985).

    Article  ADS  CAS  Google Scholar 

  21. Yancopoulos, G. D. et al. Proc. natn. Acad. Sci. U.S.A. 82, 5455–5459 (1985).

    Article  ADS  CAS  Google Scholar 

  22. Shih, C. & Weinberg, R. A. Cell 29, 161–169 (1982).

    Article  CAS  Google Scholar 

  23. Land, H., Chen, A. C., Morgenstein, J. P., Parada, L. F. & Weinberg, R. A. Molec. cell. Biol. 6, 1917–1925 (1986).

    Article  CAS  Google Scholar 

  24. Shaul, Y., Rutter, W. J. & Laub, O. EMBO J. 4, 427–430 (1985).

    Article  CAS  Google Scholar 

  25. Robinson, M. O., McCarrey, J. R. & Simon, M. I. Proc. natn. Acad Sci. USA. 86, 8437–8441 (1989).

    Article  ADS  CAS  Google Scholar 

  26. Ashworth, A., Skene, B., Swift, S. & Lovell-Badge, R. EMBO J. 9, 1529–1534 (1990).

    Article  CAS  Google Scholar 

  27. McCarrey, J. R. & Thomas, K. Nature 326, 501–505 (1987).

    Article  ADS  CAS  Google Scholar 

  28. Sugiyama, A. et al. Proc. natn. Acad. Sci. U.S.A. 86, 9144–9148 (1989).

    Article  ADS  CAS  Google Scholar 

  29. Kekulé, A. S. et al. Nature 343, 457–461 (1990).

    Article  ADS  Google Scholar 

  30. Wollersheim, M., Debelka, U. & Hofschneider, P. H. Oncogene 3, 545–552 (1988).

    CAS  PubMed  Google Scholar 

  31. Chisari, F. V. et al. Cell 59, 1145–1156 (1989).

    Article  CAS  Google Scholar 

  32. Dejean, A., Bougueleret, L., Grzeschik, K. H. & Tiollais, P. Nature 322, 70–72 (1986).

    Article  ADS  CAS  Google Scholar 

  33. Wang, J., Chenivesse, X., Henglein, B. & Bréchot, C. Nature 343, 555–557 (1990).

    Article  ADS  CAS  Google Scholar 

  34. Galibert, F., Chen, T. & Mandart, E. J. Virol. 39, 447–454 (1982).

    Google Scholar 

  35. Sanger, F., Nicklen, S. & Coulson, A. R. Proc. natn. Acad. Sci. U.S.A. 74, 5463–5467 (1977).

    Article  ADS  CAS  Google Scholar 

  36. Deininger, P. L. Analyt. Biochem. 129, 216–233 (1983).

    Article  CAS  Google Scholar 

  37. Kawasaki, E. S. et al. Proc. natn. Acad. Sci. US.A. 85, 5698–5702 (1988).

    Article  ADS  CAS  Google Scholar 

  38. Church, G. M. & Gilbert, W. Proc. natn. Acad. Sci. U.S.A. 81, 1991–1995 (1984).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fourel, G., Trepo, C., Bougueleret, L. et al. Frequent activation of N-myc genes by hepadnavirus insertion in woodchuck liver tumours. Nature 347, 294–298 (1990). https://doi.org/10.1038/347294a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/347294a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing