Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Direct coupling of the cell cycle and cell death machinery by E2F

Abstract

Unrestrained E2F activity forces S phase entry and promotes apoptosis through p53-dependent and -independent mechanisms. Here, we show that deregulation of E2F by adenovirus E1A, loss of Rb or enforced E2F-1 expression results in the accumulation of caspase proenzymes through a direct transcriptional mechanism. Increased caspase levels seem to potentiate cell death in the presence of p53-generated signals that trigger caspase activation. Our results demonstrate that mitogenic oncogenes engage a tumour suppressor network that functions at multiple levels to efficiently induce cell death. The data also underscore how cell cycle progression can be coupled to the apoptotic machinery.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: E1A induces caspases independently of ARF and p53.
Figure 2: Rb controls caspase expression.
Figure 3: Caspases display characteristics of E2F target-genes.
Figure 4: Caspase 7 is a direct E2F-1 target.
Figure 5: Loss of Rb sensitizes cells to apoptosis after cytochrome c release.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Evan, G. I. & Vousden, K. H. Proliferation, cell cycle and apoptosis in cancer. Nature 411, 342–348 (2001).

    Article  CAS  PubMed  Google Scholar 

  2. Sherr, C. J. The INK4a/ARF network in tumour suppression. Nature Rev. Mol. Cell Biol. 2, 731–737 (2001).

    Article  CAS  Google Scholar 

  3. Trimarchi, J. M. & Lees, J. A. Sibling rivalry in the E2F family. Nature Rev. Mol. Cell Biol. 3, 11–20 (2002).

    Article  CAS  Google Scholar 

  4. Tolbert, D., Lu, X., Yin, C., Tantama, M. & Van Dyke, T. p19(ARF) is dispensable for oncogenic stress-induced p53-mediated apoptosis and tumour suppression in vivo. Mol. Cell. Biol. 22, 370–377 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Russell, J. L. et al. ARF differentially modulates apoptosis induced by E2F1 and Myc. Mol. Cell. Biol. 22, 1360–1368 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Tsai, K. Y. et al. Mutation of E2f-1 suppresses apoptosis and inappropriate S phase entry and extends survival of Rb-deficient mouse embryos. Mol. Cell 2, 293–304 (1998).

    Article  CAS  PubMed  Google Scholar 

  7. Dyson, N. The regulation of E2F by pRB-family proteins. Genes Dev. 12, 2245–2262 (1998).

    Article  CAS  PubMed  Google Scholar 

  8. Phillips, A. C., Ernst, M. K., Bates, S., Rice, N. R. & Vousden, K. H. E2F-1 potentiates cell death by blocking anti-apoptotic signalling pathways. Mol. Cell 4, 771–781 (1999).

    Article  CAS  PubMed  Google Scholar 

  9. Irwin, M. et al. Role for the p53 homologue p73 in E2F-1-induced apoptosis. Nature 407, 645–648 (2000).

    Article  CAS  PubMed  Google Scholar 

  10. Stiewe, T. & Putzer, B. M. Role of the p53-homologue p73 in E2F1-induced apoptosis. Nature Genet. 26, 464–469 (2000).

    Article  CAS  PubMed  Google Scholar 

  11. Bates, S. et al. p14ARF links the tumour suppressors RB and p53. Nature 395, 124–125 (1998).

    Article  CAS  PubMed  Google Scholar 

  12. Thornberry, N. A. & Lazebnik, Y. Caspases: enemies within. Science 281, 1312–1316 (1998).

    Article  CAS  PubMed  Google Scholar 

  13. Soengas, M. S. et al. Apaf-1 and caspase-9 in p53-dependent apoptosis and tumour inhibition. Science 284, 156–159 (1999).

    Article  CAS  PubMed  Google Scholar 

  14. Fearnhead, H. O. et al. Oncogene-dependent apoptosis is mediated by caspase-9. Proc. Natl Acad. Sci. USA 95, 13664–13669 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. de Stanchina, E. et al. E1A signalling to p53 involves the p19(ARF) tumour suppressor. Genes Dev. 12, 2434–2442 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Moroni, M. C. et al. Apaf-1 is a transcriptional target for E2F and p53. Nature Cell Biol. 3, 552–558 (2001).

    Article  CAS  PubMed  Google Scholar 

  17. Robles, A. I., Bemmels, N. A., Foraker, A. B. & Harris, C. C. APAF-1 is a transcriptional target of p53 in DNA damage-induced apoptosis. Cancer Res. 61, 6660–6664 (2001).

    CAS  PubMed  Google Scholar 

  18. Samuelson, A. V. & Lowe, S. W. Selective induction of p53 and chemosensitivity in RB-deficient cells by E1A mutants unable to bind the RB-related proteins. Proc. Natl Acad. Sci. USA 94, 12094–12099 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Vigo, E. et al. CDC25A phosphatase is a target of E2F and is required for efficient E2F-induced S phase. Mol. Cell. Biol. 19, 6379–6395 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Muller, H. et al. E2Fs regulate the expression of genes involved in differentiation, development, proliferation and apoptosis. Genes Dev. 15, 267–285 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kel, A. E. et al. Computer-assisted identification of cell cycle-related genes: New targets for E2F transcription factors. J. Mol. Biol. 309, 99–120 (2001).

    Article  CAS  PubMed  Google Scholar 

  22. Takahashi, Y., Rayman, J. B. & Dynlacht, B. D. Analysis of promoter binding by the E2F and pRB families in vivo: distinct E2F proteins mediate activation and repression. Genes Dev. 14, 804–816 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Hakem, R. et al. Differential requirement for caspase 9 in apoptotic pathways in vivo. Cell 94, 339–352 (1998).

    Article  CAS  PubMed  Google Scholar 

  24. Varfolomeev, E. E. et al. Targeted disruption of the mouse Caspase 8 gene ablates cell death induction by the TNF receptors, Fas/Apo1, and DR3 and is lethal prenatally. Immunity 9, 267–276 (1998).

    Article  CAS  PubMed  Google Scholar 

  25. McCurrach, M. E., Connor, T. M., Knudson, C. M., Korsmeyer, S. J. & Lowe, S. W. bax-deficiency promotes drug resistance and oncogenic transformation by attenuating p53-dependent apoptosis. Proc. Natl Acad. Sci. USA 94, 2345–2349 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Narita, M. et al. Bax interacts with the permeability transition pore to induce permeability transition and cytochrome c release in isolated mitochondria. Proc. Natl Acad. Sci. USA 95, 14681–14686 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Yang, X., Chang, H. Y. & Baltimore, D. Autoproteolytic activation of pro-caspases by oligomerization. Mol. Cell 1, 319–325 (1998).

    Article  CAS  PubMed  Google Scholar 

  28. Muzio, M., Stockwell, B. R., Stennicke, H. R., Salvesen, G. S. & Dixit, V. M. An induced proximity model for caspase-8 activation. J. Biol. Chem. 273, 2926–2930 (1998).

    Article  CAS  PubMed  Google Scholar 

  29. Wu, X. & Levine, A. J. p53 and E2F-1 cooperate to mediate apoptosis. Proc. Natl Acad. Sci. USA 91, 3602–3606 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Routes, J. M. et al. Adenovirus E1A oncogene expression in tumour cells enhances killing by TNF-related apoptosis-inducing ligand (TRAIL). J. Immunol. 165, 4522–4527 (2000).

    Article  CAS  PubMed  Google Scholar 

  31. Lin, A. W. & Lowe, S. W. Oncogenic ras activates the ARF-p53 pathway to suppress epithelial cell transformation. Proc. Natl Acad. Sci. USA 98, 5025–5030 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Serrano, M., Lin, A. W., McCurrach, M. E., Beach, D. & Lowe, S. W. Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Cell 88, 593–602 (1997).

    Article  CAS  PubMed  Google Scholar 

  33. Schwarz, J. K. et al. Expression of the E2F1 transcription factor overcomes type β transforming growth factor-mediated growth suppression. Proc. Natl Acad. Sci. USA 92, 483–487 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Harlow, E., Franza, B. R. & Schley, C. Monoclonal antibodies specific for adenovirus early region 1A proteins: extensive heterogeneity in early region 1A products. J. Virol. 55, 533–546 (1985).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Joneson, T. & Bar-Sagi, D. Suppression of Ras-induced apoptosis by the Rac GTPase. Mol. Cell. Biol. 19, 5892–5901 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Clackson, T. et al. Transcriptional squelching re-examined. Nature Med. 2, 1028–1032 (1996).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank J. Nevins and K. Helin for E2F-1 expression vectors and L. Faleiro for contributions to the early stages of this work. We also thank J. Pelletier for helpful discussions, and E. de Stanchina and other members of the Lowe laboratory for encouragement and support. We thank J. Duffy for help in preparing the figures. This work was supported by Department of Defence Breast Cancer Research Program predoctoral fellowships (Z.N. and J.P.) and also by a programme project grant CA13106 from the National Cancer Institute (Y.L. and S.W.L.), and NIH-HG01696 from the National Institutes of Health (R.V.D. and M.Q.Z.). Z.N. is a DOD-BCRP fellow. S.W.L. is a Rita Allen Scholar.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Scott W. Lowe.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nahle, Z., Polakoff, J., Davuluri, R. et al. Direct coupling of the cell cycle and cell death machinery by E2F. Nat Cell Biol 4, 859–864 (2002). https://doi.org/10.1038/ncb868

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb868

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing