Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Genetic basis of variable exon 9 skipping in cystic fibrosis transmembrane conductance regulator mRNA

Abstract

Variable in–frame skipping of exon 9 in cystic fibrosis transmembrane conductance regulator (CFTR) mRNA transcripts (exon 9) occurs in the respiratory epithelium. To explore the genetic basis of this event, we evaluated respiratory epithelial cells and blood leukocytes from 124 individuals (38 with cystic fibrosis (CF), 86 without CF). We found an inverse relationship between the length of the polythymidine tract at the exon 9 splice branch/acceptor site and the proportion of exon 9 CFTR mRNA transcripts. These results strongly indicate a genetic basis in vivo modulating post–transcriptional processing of CFTR mRNA transcripts.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Rommens, J.M. et al. Identification of the cystic fibrosis gene: chromosome walking and jumping. Science 245, 1059–1065 (1989).

    Article  CAS  PubMed  Google Scholar 

  2. Riordan, J.R. et al. Identification of the cystic fibrosis gene: cloning and characterization of complementary DNA. Science 245, 1066–1073 (1989).

    Article  CAS  PubMed  Google Scholar 

  3. Kerem, B.-S. et al. Identification of the cystic fibrosis gene: genetic analysis. Science 245, 1073–1080 (1989).

    Article  CAS  PubMed  Google Scholar 

  4. Zielenski, J. et al. Genomic DMA sequence of the cystic fibrosis transmembrane conductance regulator (CFTR) gene. Genomics 10, 214–228 (1991).

    Article  CAS  PubMed  Google Scholar 

  5. Rich, D.P. et al. Expression of cystic fibrosis transmembrane conductance regulator corrects defective chloride channel regulation in cystic fibrosis airway epithelial cells. Nature 347, 358–363 (1991).

    Article  Google Scholar 

  6. Anderson, M.P., Rich, D.P., Gregory, R.J., Smith, A.E. & Welsh, M.J. Generation of cAMP-activated chloride currents by expression of CFTR. Science 251, 679–682 (1990).

    Article  Google Scholar 

  7. Kartner, N. et al. Expression of the cystic fibrosis gene in non-epithelial invertebrate cells produces a regulated anion conductance. Cell 64, 681–691 (1991).

    Article  CAS  PubMed  Google Scholar 

  8. Anderson, M.P. et al. Demonstration that CFTR is a chloride channel by alteration of its anion selectivity. Science 253, 202–205 (1991).

    Article  CAS  PubMed  Google Scholar 

  9. Tabcharani, J.A., Chang, X.-B., Riordan, J.R. & Hanrahan, J.W. Phosphorylation-regualted Cl channel in CHO cells stably expressing the cystic fibrosis gene. Nature 352, 628–631 (1991).

    Article  CAS  PubMed  Google Scholar 

  10. Bear, C.E. et al. Cl− channel activity in Xenopus oocytes expressing the cystic fibrosis gene. J. biol. Chem. 266, 19142–19145 (1991).

    CAS  PubMed  Google Scholar 

  11. Bear, C.E. et al. Purification and functional reconstitution of the cystic fibrosis transmembrane conductance regulator (CFTR). Cell 68, 809–818 (1992).

    Article  CAS  PubMed  Google Scholar 

  12. Denning, G.M., Ostedgaard, L.S., Cheng, S.H., Smith, A.E. & Welsh, M.J. Localization of cystic fibrosis transmembrane conductance regulator in chloride secretory epithelia. J. clin. Invest. 89, 339–349 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Boat, T.F., Welsh, M.J. & Beaudet, A.L. in The Metabolic Basis of Inherited Diseases 6th edn (eds Scriver, C.R., Beaudet, A.L., Sly, W.S. & Valle, D.) 2649–2680 (McGraw-Hill, New York, 1989).

    Google Scholar 

  14. Welsh, M.J. & Fick, R.B. Cystic fibrosis. J. clin. Invest. 80, 1523–1526 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Quinton, P.M. Cystic fibrosis: a disease in electrolyte transport. FASEB J. 4, 2709–2717 (1990).

    Article  CAS  PubMed  Google Scholar 

  16. Drumm, M.L. et al. Chloride conductance expressed by ΔF508 and other mutant CFTRs in Xenopus oocytes. Science 254, 1797–1799 (1991).

    Article  CAS  PubMed  Google Scholar 

  17. Barinaga, M. Novel function discovered for the cystic fibrosis gene. Science 256, 444–445 (1992).

    Article  CAS  PubMed  Google Scholar 

  18. Yoshimura, K. et al. Expression of the cystic fibrosis transmembrane conductance regulator gene in cells of non-epithelial origin. Nucl. Acids Res. 19, 5417–5423 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Yoshimura, K. et al. The cystic fibrosis gene has a “housekeeping”-type promoter and is expressed at low levels in cells of epithelial origin. J. biol. Chem. 266, 9140–9144 (1991).

    CAS  PubMed  Google Scholar 

  20. Trapnell, B.C. et al. Expression of the cystic fibrosis transmembrane conductance regulator gene in the respiratory tract of normal individuals and individuals with cystic fibrosis. Proc. natn. Acad. Sci. U.S.A. 88, 6565–6569 (1991).

    Article  CAS  Google Scholar 

  21. Trapnell, B.C. et al. Down-regulation of cystic fibrosis gene mRNA transcript levels and induction of the cystic fibrosis chloride secretory phenotype in epithelial cells by phorbol ester. J. biol. Chem. 266, 10319–10323 (1991).

    CAS  PubMed  Google Scholar 

  22. Bargon, J. et al. Down-regulation of cystic fibrosis transmembrane conductance regulator gene expression by agents that modulate intracellular divalent cations. Molec. cell Biol. 12, 1872–1878 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Bargon, J. et al. Expression of the cystic fibrosis transmembrane conductance regulator gene can be regulated by protein kinase C. J. biol. Chem. 267, 16056–16060 (1992).

    CAS  PubMed  Google Scholar 

  24. Chu, C.-S. et al. Variable deletion of exon 9 coding sequences in cystic fibrosis transmembrane conductance regulator gene mRNA transcripts in normal bronchial epithelium. EMBO J. 10, 1355–1363 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Chu, C.-S., Trapnell, B.C., Curristin, S.M., Cutting, G.R. & Crystal, R.G. Extensive post-transcriptional deletion of the coding sequences for part of nucelotide-binding fold 1 in respiratory epithelial mRNA transcripts of the cystic fibrosis transmembrane conductance regulator gene is not associated with the clinical manifestations of cystic fibrosis. J. clin. Invest. 90, 785–790 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Cutting, G.R. et al. A cluster of cystic fibrosis mutations in the first nucleotide-binding fold of the cystic fibrosis conductance regulator protein. Nature 346, 366–369 (1990).

    Article  CAS  PubMed  Google Scholar 

  27. Kerem, B.-S. et al. Identification of mutations in regions corresponding to the two putative nucleotide (ATP)-binding folds of the cystic fibrosis gene. Proc. natn. Acad. Sci. U.S.A. 87, 8447–8451 (1990).

    Article  CAS  Google Scholar 

  28. Cuppens, H. et al. A child, homozygous for a stop codon in exon 11, shows milder cystic fibrosis symptoms than her heterozygous nephew. J. med. Genet. 27, 717–719 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Gregory, R.J. et al. Maturation and function of cystic fibrosis transmembrane conductance regulator variants bearing mutations in putative nucleotide-binding domains 1 and 2. Molec. cell Biol. 11, 3886–3893 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Padgett, R.A. et al. Splicing of messenger RNA precursors. Ann. Rev. Biochem. 55, 1119–1150 (1986).

    Article  CAS  PubMed  Google Scholar 

  31. Krainer, A.R. & Maniatis, T. in Transcription and Splicing (eds Hames, B.D. & Glover, D.M.) 131–206 (IRL Press, Oxford, 1988).

    Google Scholar 

  32. Guthrie, C. Messenger RNA splicing in yeast: clues to why the spliceosome is a ribonucleoprotein. Science 253, 157–163 (1991).

    Article  CAS  PubMed  Google Scholar 

  33. Ruby, S.W. & Abelson, J. Pre-mRNA splicing in yeast. Trends Genet. 7, 79–85 (1991).

    Article  CAS  PubMed  Google Scholar 

  34. Smith, C.W.J., Porro, E.B., Patton, J.G. & Nadal-Ginard, B. Scanning from an independently specified branch point defines the 3′ splice site of mammalian introns. Nature 342, 243–247 (1989).

    Article  CAS  PubMed  Google Scholar 

  35. Reed, R. The organization of 3′ splice-site sequences in mammalian introns. Genes Dev. 3, 2113–2123 (1989).

    Article  CAS  PubMed  Google Scholar 

  36. Reed, R. & Maniatis, T. Intron sequences involved in lariat formation during pre-mRNA splicing. Cell 41, 95–105 (1985).

    Article  CAS  PubMed  Google Scholar 

  37. Frendewey, D. & Keller, W. Stepwise assembly of a pre-mRNA splicing complex requires U-snRNPs and specific intron sequences. Cell 42, 355–367 (1985).

    Article  CAS  PubMed  Google Scholar 

  38. Ruskin, B. & Green, M.R. Role of the 3′ splice site consensus sequence in mammalian pre-mRNA splicing. Nature 317, 732–734 (1985).

    Article  CAS  PubMed  Google Scholar 

  39. Bindereif, A. & Green, M.R. Ribonucleoprotein complex formation during pre-mRNA splicing in vitro. Molec. cell Biol. 6, 2582–2592 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Patterson, B. & Guthrie, C. A U-rich tract enhances usage of an alternative 3′ splice site in yeast. Cell 64, 181–187 (1991).

    Article  CAS  PubMed  Google Scholar 

  41. Kerem, E. et al. The relation between genotype and phenotype in cystic fibrosis – analysis of the most common mutation (ΔF508). New Engl. J. Med. 323, 1517–1522 (1990).

    Article  CAS  PubMed  Google Scholar 

  42. Zamore, P.D. & Green, M.R. Identification, purification, and biochemical characterization of U2 small nuclear ribonucleoprotein auxiliary factor. Proc. natn. Acad. Sci. U.S.A. 86, 9243–9247 (1989).

    Article  CAS  Google Scholar 

  43. Garcia-Blanco, M.A., Jamison, S.F. & Sharp, P.A. Identification and purification of a 62,000-dalton protein that binds specifically to the polypyrimidine tract of introns. Genes Dev. 3, 1874–1886 (1989).

    Article  CAS  PubMed  Google Scholar 

  44. Wang, J. & Pederson, T. A 62,000 molecular weight spliceosome prote in crosslinks to the intron polypyrimidine tract. Nucl. Acids Res. 18, 5995–6001 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Chehab, F.F. et al. A dimorphic 4-bp repeat in the cystic fibrosis gene is in absolute linkage disequilibrium with the ΔF508 mutation: implications for prenatal diagnosis and mutation origin. Am. J. hum. Genet. 48, 223–226 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Estivill, X. et al. Patterns of polymorphism and linkage disequilibrium for cystic fibrosis. Genomics 1, 257–163 (1987).

    Article  CAS  PubMed  Google Scholar 

  47. Estivill, X. et al. A candidate for the cystic fibrosis locus isolated by selection for methylation-free islands. Nature 326, 840–845.

    Article  CAS  PubMed  Google Scholar 

  48. Morral, N., Nunes, V., Casals, T. & Estivill, X. CA/GT microsatellite alleles within the cystic fibrosis transmembrane conductance regulator (CFTR) gene are not generated by unequal crossingover. Genomics 10, 692–698 (1991).

    Article  CAS  PubMed  Google Scholar 

  49. Saiki, R.K. et al. Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science 239, 487–491 (1988).

    Article  CAS  PubMed  Google Scholar 

  50. Chomczynski, P. & Sacchi, N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal. Biochem. 162, 156–159 (1987).

    Article  CAS  PubMed  Google Scholar 

  51. Southern, E.M. Detection of specific sequences among DNA fragments separated by gel electrophoresis. J. molec. Biol. 98, 503–517 (1975).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chu, CS., Trapnell, B., Curristin, S. et al. Genetic basis of variable exon 9 skipping in cystic fibrosis transmembrane conductance regulator mRNA. Nat Genet 3, 151–156 (1993). https://doi.org/10.1038/ng0293-151

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng0293-151

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing