Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Restoration of lymphoid organ integrity through the interaction of lymphoid tissue–inducer cells with stroma of the T cell zone

Abstract

The generation of lymphoid microenvironments in early life depends on the interaction of lymphoid tissue–inducer cells with stromal lymphoid tissue–organizer cells. Whether this cellular interface stays operational in adult secondary lymphoid organs has remained elusive. We show here that during acute infection with lymphocytic choriomeningitis virus, antiviral cytotoxic T cells destroyed infected T cell zone stromal cells, which led to profound disruption of secondary lymphoid organ integrity. Furthermore, the ability of the host to respond to secondary antigens was lost. Restoration of the lymphoid microanatomy was dependent on the proliferative accumulation of lymphoid tissue–inducer cells in secondary lymphoid organs during the acute phase of infection and lymphotoxin α1β2 signaling. Thus, crosstalk between lymphoid tissue–inducer cells and stromal cells is reactivated in adults to maintain secondary lymphoid organ integrity and thereby contributes to the preservation of immunocompetence.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Disruption and restoration of lymphoid organization during LCMV infection.
Figure 2: CTL-mediated lysis of T cell zone stromal cells in vitro.
Figure 3: Loss of T zone stromal cells in LCMV-infected mice.
Figure 4: Gene-expression patterns in LCMV-infected spleens.
Figure 5: Accumulation and proliferation of LTi cells in SLOs after LCMV infection.
Figure 6: Lymphoid organ reorganization is supported by LTi cells.
Figure 7: Interaction of LTi cells with stromal cells.

Similar content being viewed by others

References

  1. Junt, T. et al. Antiviral immune responses in the absence of organized lymphoid T cell zones in plt/plt mice. J. Immunol. 168, 6032–6040 (2002).

    Article  CAS  PubMed  Google Scholar 

  2. Junt, T. et al. Impact of CCR7 on priming and distribution of antiviral effector and memory CTL. J. Immunol. 173, 6684–6693 (2004).

    Article  CAS  PubMed  Google Scholar 

  3. Junt, T. et al. CXCR5-dependent seeding of follicular niches by B and Th cells augments antiviral B cell responses. J. Immunol. 175, 7109–7116 (2005).

    Article  CAS  PubMed  Google Scholar 

  4. Junt, T. et al. Expression of lymphotoxin beta governs immunity at two distinct levels. Eur. J. Immunol. 36, 2061–2075 (2006).

    Article  CAS  PubMed  Google Scholar 

  5. Scandella, E. et al. Dendritic cell-independent B cell activation during acute virus infection: a role for early CCR7-driven B-T helper cell collaboration. J. Immunol. 178, 1468–1476 (2007).

    Article  CAS  PubMed  Google Scholar 

  6. Gunn, M.D. et al. Mice lacking expression of secondary lymphoid organ chemokine have defects in lymphocyte homing and dendritic cell localization. J. Exp. Med. 189, 451–460 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Mebius, R.E. & Kraal, G. Structure and function of the spleen. Nat. Rev. Immunol. 5, 606–616 (2005).

    Article  CAS  PubMed  Google Scholar 

  8. Ansel, K.M. et al. A chemokine-driven positive feedback loop organizes lymphoid follicles. Nature 406, 309–314 (2000).

    Article  CAS  PubMed  Google Scholar 

  9. Ohl, L. et al. Cooperating mechanisms of CXCR5 and CCR7 in development and organization of secondary lymphoid organs. J. Exp. Med. 197, 1199–1204 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Forster, R. et al. CCR7 coordinates the primary immune response by establishing functional microenvironments in secondary lymphoid organs. Cell 99, 23–33 (1999).

    Article  CAS  PubMed  Google Scholar 

  11. Ato, M., Nakano, H., Kakiuchi, T. & Kaye, P.M. Localization of marginal zone macrophages is regulated by C–C chemokine ligands 21/19. J. Immunol. 173, 4815–4820 (2004).

    Article  CAS  PubMed  Google Scholar 

  12. Cyster, J.G. et al. Follicular stromal cells and lymphocyte homing to follicles. Immunol. Rev. 176, 181–193 (2000).

    Article  CAS  PubMed  Google Scholar 

  13. Katakai, T. et al. A novel reticular stromal structure in lymph node cortex: an immuno-platform for interactions among dendritic cells, T cells and B cells. Int. Immunol. 16, 1133–1142 (2004).

    Article  CAS  PubMed  Google Scholar 

  14. Bajenoff, M. et al. Stromal cell networks regulate lymphocyte entry, migration, and territoriality in lymph nodes. Immunity 25, 989–1001 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Gretz, J.E., Norbury, C.C., Anderson, A.O., Proudfoot, A.E. & Shaw, S. Lymph-borne chemokines and other low molecular weight molecules reach high endothelial venules via specialized conduits while a functional barrier limits access to the lymphocyte microenvironments in lymph node cortex. J. Exp. Med. 192, 1425–1440 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Sixt, M. et al. The conduit system transports soluble antigens from the afferent lymph to resident dendritic cells in the T cell area of the lymph node. Immunity 22, 19–29 (2005).

    Article  CAS  PubMed  Google Scholar 

  17. Nolte, M.A. et al. A conduit system distributes chemokines and small blood-borne molecules through the splenic white pulp. J. Exp. Med. 198, 505–512 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Link, A. et al. Fibroblastic reticular cells in lymph nodes regulate the homeostasis of naive T cells. Nat. Immunol. 8, 1255–1265 (2007).

    Article  CAS  PubMed  Google Scholar 

  19. Lee, J.W. et al. Peripheral antigen display by lymph node stroma promotes T cell tolerance to intestinal self. Nat. Immunol. 8, 181–190 (2007).

    Article  CAS  PubMed  Google Scholar 

  20. Svensson, M., Maroof, A., Ato, M. & Kaye, P.M. Stromal cells direct local differentiation of regulatory dendritic cells. Immunity 21, 805–816 (2004).

    Article  CAS  PubMed  Google Scholar 

  21. Cupedo, T. & Mebius, R.E. Cellular interactions in lymph node development. J. Immunol. 174, 21–25 (2005).

    Article  CAS  PubMed  Google Scholar 

  22. Finke, D. Fate and function of lymphoid tissue inducer cells. Curr. Opin. Immunol. 17, 144–150 (2005).

    Article  CAS  PubMed  Google Scholar 

  23. Gommerman, J.L. & Browning, J.L. Lymphotoxin/light, lymphoid microenvironments and autoimmune disease. Nat. Rev. Immunol. 3, 642–655 (2003).

    Article  CAS  PubMed  Google Scholar 

  24. Eberl, G. & Littman, D.R. Thymic origin of intestinal αβ T cells revealed by fate mapping of RORγt+ cells. Science 305, 248–251 (2004).

    Article  CAS  PubMed  Google Scholar 

  25. Kim, M.Y. et al. Function of CD4+CD3 cells in relation to B- and T-zone stroma in spleen. Blood 109, 1602–1610 (2007).

    Article  CAS  PubMed  Google Scholar 

  26. Eberl, G. et al. An essential function for the nuclear receptor RORγt in the generation of fetal lymphoid tissue inducer cells. Nat. Immunol. 5, 64–73 (2004).

    Article  CAS  PubMed  Google Scholar 

  27. Kim, M.Y. et al. CD4+CD3 accessory cells costimulate primed CD4 T cells through OX40 and CD30 at sites where T cells collaborate with B cells. Immunity 18, 643–654 (2003).

    Article  CAS  PubMed  Google Scholar 

  28. Kim, M.Y. et al. OX40 ligand and CD30 ligand are expressed on adult but not neonatal CD4+CD3 inducer cells: evidence that IL-7 signals regulate CD30 ligand but not OX40 ligand expression. J. Immunol. 174, 6686–6691 (2005).

    Article  CAS  PubMed  Google Scholar 

  29. Cohen, D.E. & Walker, B.D. Human immunodeficiency virus pathogenesis and prospects for immune control in patients with established infection. Clin. Infect. Dis. 32, 1756–1768 (2001).

    Article  CAS  PubMed  Google Scholar 

  30. Yanagi, Y., Takeda, M. & Ohno, S. Measles virus: cellular receptors, tropism and pathogenesis. J. Gen. Virol. 87, 2767–2779 (2006).

    Article  CAS  PubMed  Google Scholar 

  31. Alos, L. et al. Immunoarchitecture of lymphoid tissue in HIV-infection during antiretroviral therapy correlates with viral persistence. Mod. Pathol. 18, 127–136 (2005).

    Article  CAS  PubMed  Google Scholar 

  32. Estes, J.D. et al. Simian immunodeficiency virus-induced lymphatic tissue fibrosis is mediated by transforming growth factor β1-positive regulatory T cells and begins in early infection. J. Infect. Dis. 195, 551–561 (2007).

    Article  CAS  PubMed  Google Scholar 

  33. Ato, M., Stager, S., Engwerda, C.R. & Kaye, P.M. Defective CCR7 expression on dendritic cells contributes to the development of visceral leishmaniasis. Nat. Immunol. 3, 1185–1191 (2002).

    Article  CAS  PubMed  Google Scholar 

  34. Kagi, D. et al. Fas and perforin pathways as major mechanisms of T cell-mediated cytotoxicity. Science 265, 528–530 (1994).

    Article  CAS  PubMed  Google Scholar 

  35. Barchet, W. et al. Direct quantitation of rapid elimination of viral antigen-positive lymphocytes by antiviral CD8+ T cells in vivo. Eur. J. Immunol. 30, 1356–1363 (2000).

    Article  CAS  PubMed  Google Scholar 

  36. Odermatt, B., Eppler, M., Leist, T.P., Hengartner, H. & Zinkernagel, R.M. Virus-triggered acquired immunodeficiency by cytotoxic T-cell- dependent destruction of antigen-presenting cells and lymph follicle structure. Proc. Natl. Acad. Sci. USA 88, 8252–8256 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Probst, H.C. & van den, B.M. Priming of CTLs by lymphocytic choriomeningitis virus depends on dendritic cells. J. Immunol. 174, 3920–3924 (2005).

    Article  CAS  PubMed  Google Scholar 

  38. Hangartner, L. et al. Antiviral immune responses in gene-targeted mice expressing the immunoglobulin heavy chain of virus-neutralizing antibodies. Proc. Natl. Acad. Sci. USA 100, 12883–12888 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Bocharov, G. et al. Underwhelming the immune response: effect of slow virus growth on CD8+-T-lymphocyte responses. J. Virol. 78, 2247–2254 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Sevilla, N. et al. Immunosuppression and resultant viral persistence by specific viral targeting of dendritic cells. J. Exp. Med. 192, 1249–1260 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Wherry, E.J. & Ahmed, R. Memory CD8 T-cell differentiation during viral infection. J. Virol. 78, 5535–5545 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Mueller, S.N. et al. Viral targeting of fibroblastic reticular cells contributes to immunosuppression and persistence during chronic infection. Proc. Natl. Acad. Sci. USA 104, 15430–15435 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Luther, S.A., Tang, H.L., Hyman, P.L., Farr, A.G. & Cyster, J.G. Coexpression of the chemokines ELC and SLC by T zone stromal cells and deletion of the ELC gene in the plt/plt mouse. Proc. Natl. Acad. Sci. USA 97, 12694–12699 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Mueller, S.N. et al. Regulation of homeostatic chemokine expression and cell trafficking during immune responses. Science 317, 670–674 (2007).

    Article  CAS  PubMed  Google Scholar 

  45. Wu, Q. et al. The requirement of membrane lymphotoxin for the presence of dendritic cells in lymphoid tissues. J. Exp. Med. 190, 629–638 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Katakai, T., Hara, T., Sugai, M., Gonda, H. & Shimizu, A. Lymph node fibroblastic reticular cells construct the stromal reticulum via contact with lymphocytes. J. Exp. Med. 200, 783–795 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Withers, D.R. et al. The role of lymphoid tissue inducer cells in splenic white pulp development. Eur. J. Immunol. 37, 3240–3245 (2007).

    Article  CAS  PubMed  Google Scholar 

  48. Kim, M.Y. et al. Neonatal and adult CD4+CD3 cells share similar gene expression profile, and neonatal cells up-regulate OX40 ligand in response to TL1A (TNFSF15). J. Immunol. 177, 3074–3081 (2006).

    Article  CAS  PubMed  Google Scholar 

  49. Benedict, C.A. et al. Specific remodeling of splenic architecture by cytomegalovirus. PLoS Pathog. 2, e16 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Meier, D. et al. Ectopic lymphoid-organ development occurs through interleukin 7-mediated enhanced survival of lymphoid-tissue-inducer cells. Immunity 26, 643–654 (2007).

    Article  CAS  PubMed  Google Scholar 

  51. Luther, S.A., Ansel, K.M. & Cyster, J.G. Overlapping roles of CXCL13, interleukin 7 receptor α, and CCR7 ligands in lymph node development. J. Exp. Med. 197, 1191–1198 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Sorg, R.V., McLellan, A.D., Hock, B.D., Fearnley, D.B. & Hart, D.N. Human dendritic cells express functional interleukin-7. Immunobiology 198, 514–526 (1998).

    Article  CAS  PubMed  Google Scholar 

  53. Koopman, G., Haaksma, A.G., ten Velden, J., Hack, C.E. & Heeney, J.L. The relative resistance of HIV type 1-infected chimpanzees to AIDS correlates with the maintenance of follicular architecture and the absence of infiltration by CD8+ cytotoxic T lymphocytes. AIDS Res. Hum. Retroviruses 15, 365–373 (1999).

    Article  CAS  PubMed  Google Scholar 

  54. Eberl, G. & Littman, D.R. The role of the nuclear hormone receptor RORγt in the development of lymph nodes and Peyer's patches. Immunol. Rev. 195, 81–90 (2003).

    Article  CAS  PubMed  Google Scholar 

  55. Ludewig, B. et al. Dendritic cells efficiently induce protective antiviral immunity. J. Virol. 72, 3812–3818 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Bailey, M.J., McLeod, D.A., Kang, C.Y. & Bishop, D.H. Glycosylation is not required for the fusion activity of the G protein of vesicular stomatitis virus in insect cells. Virology 169, 323–331 (1989).

    Article  CAS  PubMed  Google Scholar 

  57. Ludewig, B. et al. Induction of optimal anti-viral neutralizing B cell responses by dendritic cells requires transport and release of virus particles in secondary lymphoid organs. Eur. J. Immunol. 30, 185–196 (2000).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank X.Y. Fu (University of Chicago) for providing soluble LTβR-hIg, and R.M. Zinkernagel (University of Zürich) for providing the VL4 hybridoma and the original LCMV WE stock. Supported by the Kanton of St. Gallen and the Swiss Life Foundation.

Author information

Authors and Affiliations

Authors

Contributions

B.L. directed the study and wrote the manuscript; E.S. designed the study, did experiments and wrote the manuscript; T.J. did research and contributed to manuscript writing; E.L. contributed to low-density array analysis and real-time PCR; E.L., B.B., S.M., D.F. and S.F. did research; S.A.L. contributed to data analysis and provided reagents; and D.R.L. provided Rorc−/− mice.

Corresponding author

Correspondence to Burkhard Ludewig.

Ethics declarations

Competing interests

T.J. is an employee of the Novartis Institutes for BioMedical Research.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–10 and Tables 1–2 (PDF 4318 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Scandella, E., Bolinger, B., Lattmann, E. et al. Restoration of lymphoid organ integrity through the interaction of lymphoid tissue–inducer cells with stroma of the T cell zone. Nat Immunol 9, 667–675 (2008). https://doi.org/10.1038/ni.1605

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni.1605

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing