Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A critical function for transforming growth factor-β, interleukin 23 and proinflammatory cytokines in driving and modulating human TH-17 responses

Abstract

Interleukin 17 (IL-17)–producing T helper 17 cells (TH-17 cells) have been described as a T helper cell subset distinct from T helper type 1 (TH1) and TH2 cells, with specific functions in antimicrobial defense and autoimmunity. The factors driving human TH-17 differentiation remain controversial. Using a systematic approach combining experimental and computational methods, we show here that transforming growth factor-β, interleukin 23 (IL-23) and proinflammatory cytokines (IL-1β and IL-6) were all essential for human TH-17 differentiation. However, individual TH-17 cell–derived cytokines, such as IL-17, IL-21, IL-22 and IL-6, as well as the global TH-17 cytokine profile, were differentially modulated by TH-17-promoting cytokines. Transforming growth factor-β was critical, and its absence induced a shift from a TH-17 profile to a TH1-like profile. Our results shed new light on the regulation of human TH-17 differentiation and provide a framework for the global analysis of T helper responses.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: TGF-β, IL-23 and proinflammatory cytokines are required for the differentiation of human CD4+ TH-17 cells.
Figure 2: TGF-β, IL-23 and proinflammatory cytokines induce typical TH-17 features.
Figure 3: The TH-17 cytokine profile has specific features but also features that overlap with those of other T helper cell–polarizing conditions.
Figure 4: TH-17 cell–derived cytokines are differentially regulated by TH-17-promoting cytokines.
Figure 5: IL-23 and proinflammatory cytokines induce a TH1-like profile that 'converts' to a TH-17 profile after the addition of TGF-β.

Similar content being viewed by others

References

  1. Mosmann, T.R. & Coffman, R.L. TH1 and TH2 cells: different patterns of lymphokine secretion lead to different functional properties. Annu. Rev. Immunol. 7, 145–173 (1989).

    Article  CAS  PubMed  Google Scholar 

  2. O'Garra, A. Cytokines induce the development of functionally heterogeneous T helper cell subsets. Immunity 8, 275–283 (1998).

    Article  CAS  PubMed  Google Scholar 

  3. Park, H. et al. A distinct lineage of CD4 T cells regulates tissue inflammation by producing interleukin 17. Nat. Immunol. 6, 1133–1141 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Harrington, L.E. et al. Interleukin 17–producing CD4+ effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages. Nat. Immunol. 6, 1123–1132 (2005).

    Article  CAS  PubMed  Google Scholar 

  5. Aujla, S.J., Dubin, P.J. & Kolls, J.K. Th17 cells and mucosal host defense. Semin. Immunol. 19, 377–382 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. LeibundGut-Landmann, S. et al. Syk- and CARD9-dependent coupling of innate immunity to the induction of T helper cells that produce interleukin 17. Nat. Immunol. 8, 630–638 (2007).

    Article  CAS  PubMed  Google Scholar 

  7. Murphy, C.A. et al. Divergent pro- and antiinflammatory roles for IL-23 and IL-12 in joint autoimmune inflammation. J. Exp. Med. 198, 1951–1957 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Bettelli, E. et al. Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature 441, 235–238 (2006).

    Article  CAS  PubMed  Google Scholar 

  9. Langrish, C.L. et al. IL-23 drives a pathogenic T cell population that induces autoimmune inflammation. J. Exp. Med. 201, 233–240 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Mangan, P.R. et al. Transforming growth factor-β induces development of the TH17 lineage. Nature 441, 231–234 (2006).

    Article  CAS  PubMed  Google Scholar 

  11. Veldhoen, M., Hocking, R.J., Atkins, C.J., Locksley, R.M. & Stockinger, B. TGFβ in the context of an inflammatory cytokine milieu supports de novo differentiation of IL-17-producing T cells. Immunity 24, 179–189 (2006).

    Article  CAS  PubMed  Google Scholar 

  12. Zhou, L. et al. IL-6 programs TH-17 cell differentiation by promoting sequential engagement of the IL-21 and IL-23 pathways. Nat. Immunol. 8, 967–974 (2007).

    Article  CAS  PubMed  Google Scholar 

  13. Nurieva, R. et al. Essential autocrine regulation by IL-21 in the generation of inflammatory T cells. Nature 448, 480–483 (2007).

    Article  CAS  PubMed  Google Scholar 

  14. Korn, T. et al. IL-21 initiates an alternative pathway to induce proinflammatory TH17 cells. Nature 448, 484–487 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Wei, L., Laurence, A., Elias, K.M. & O'Shea, J.J. IL-21 is produced by Th17 cells and drives IL-17 production in a STAT3-dependent manner. J. Biol. Chem. 282, 34605–34610 (2007).

    Article  CAS  PubMed  Google Scholar 

  16. Liang, S.C. et al. Interleukin (IL)-22 and IL-17 are coexpressed by Th17 cells and cooperatively enhance expression of antimicrobial peptides. J. Exp. Med. 203, 2271–2279 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. McGeachy, M.J. et al. TGF-β and IL-6 drive the production of IL-17 and IL-10 by T cells and restrain TH-17 cell–mediated pathology. Nat. Immunol. 8, 1390–1397 (2007).

    Article  CAS  PubMed  Google Scholar 

  18. Acosta-Rodriguez, E.V., Napolitani, G., Lanzavecchia, A. & Sallusto, F. Interleukins 1β and 6 but not transforming growth factor-β are essential for the differentiation of interleukin 17–producing human T helper cells. Nat. Immunol. 8, 942–949 (2007).

    Article  CAS  PubMed  Google Scholar 

  19. Wilson, N.J. et al. Development, cytokine profile and function of human interleukin 17–producing helper T cells. Nat. Immunol. 8, 950–957 (2007).

    Article  CAS  PubMed  Google Scholar 

  20. Chen, Z., Tato, C.M., Muul, L., Laurence, A. & O'Shea, J.J. Distinct regulation of interleukin-17 in human T helper lymphocytes. Arthritis Rheum. 56, 2936–2946 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Evans, H.G., Suddason, T., Jackson, I., Taams, L.S. & Lord, G.M. Optimal induction of T helper 17 cells in humans requires T cell receptor ligation in the context of Toll-like receptor-activated monocytes. Proc. Natl. Acad. Sci. USA 104, 17034–17039 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. van Beelen, A.J. et al. Stimulation of the intracellular bacterial sensor NOD2 programs dendritic cells to promote interleukin-17 production in human memory T cells. Immunity 27, 660–669 (2007).

    Article  CAS  PubMed  Google Scholar 

  23. Laurence, A. & O'Shea, J.J. TH-17 differentiation: of mice and men. Nat. Immunol. 8, 903–905 (2007).

    Article  CAS  PubMed  Google Scholar 

  24. Weaver, C.T., Hatton, R.D., Mangan, P.R. & Harrington, L.E. IL-17 family cytokines and the expanding diversity of effector T cell lineages. Annu. Rev. Immunol. 25, 821–852 (2007).

    Article  CAS  PubMed  Google Scholar 

  25. Wang, Y.H. et al. IL-25 augments type 2 immune responses by enhancing the expansion and functions of TSLP-DC-activated Th2 memory cells. J. Exp. Med. 204, 1837–1847 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ivanov, I.I. et al. The orphan nuclear receptor RORγt directs the differentiation program of proinflammatory IL-17+ T helper cells. Cell 126, 1121–1133 (2006).

    Article  CAS  PubMed  Google Scholar 

  27. Ivanov, I.I., Zhou, L. & Littman, D.R. Transcriptional regulation of Th17 cell differentiation. Semin. Immunol. 19, 409–417 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ringner, M. What is principal component analysis? Nat. Biotechnol. 26, 303–304 (2008).

    Article  CAS  PubMed  Google Scholar 

  29. Zaba, L.C. et al. Amelioration of epidermal hyperplasia by TNF inhibition is associated with reduced Th17 responses. J. Exp. Med. 204, 3183–3194 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Yen, D. et al. IL-23 is essential for T cell-mediated colitis and promotes inflammation via IL-17 and IL-6. J. Clin. Invest. 116, 1310–1316 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Khader, S.A. et al. IL-23 and IL-17 in the establishment of protective pulmonary CD4+ T cell responses after vaccination and during Mycobacterium tuberculosis challenge. Nat. Immunol. 8, 369–377 (2007).

    Article  CAS  PubMed  Google Scholar 

  32. Amadi-Obi, A. et al. TH17 cells contribute to uveitis and scleritis and are expanded by IL-2 and inhibited by IL-27/STAT1. Nat. Med. 13, 711–718 (2007).

    Article  CAS  PubMed  Google Scholar 

  33. Chen, Z. & O'Shea, J.J. Th17 cells: a new fate for differentiating helper T cells. Immunol. Res. published online 3 January 2008 (doi:10.1007/s12026-007-8014-9).

    Article  CAS  PubMed  Google Scholar 

  34. Kastelein, R.A., Hunter, C.A. & Cua, D.J. Discovery and biology of IL-23 and IL-27: related but functionally distinct regulators of inflammation. Annu. Rev. Immunol. 25, 221–242 (2007).

    Article  CAS  PubMed  Google Scholar 

  35. Veldhoen, M., Hocking, R.J., Flavell, R.A. & Stockinger, B. Signals mediated by transforming growth factor-β initiate autoimmune encephalomyelitis, but chronic inflammation is needed to sustain disease. Nat. Immunol. 7, 1151–1156 (2006).

    Article  CAS  PubMed  Google Scholar 

  36. Xie, M.H. et al. Interleukin (IL)-22, a novel human cytokine that signals through the interferon receptor-related proteins CRF2–4 and IL-22R. J. Biol. Chem. 275, 31335–31339 (2000).

    Article  CAS  PubMed  Google Scholar 

  37. Gurney, A.L. IL-22, a Th1 cytokine that targets the pancreas and select other peripheral tissues. Int. Immunopharmacol. 4, 669–677 (2004).

    Article  CAS  PubMed  Google Scholar 

  38. Zenewicz, L.A. et al. Interleukin-22 but not interleukin-17 provides protection to hepatocytes during acute liver inflammation. Immunity 27, 647–659 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Kreymborg, K. et al. IL-22 is expressed by Th17 cells in an IL-23-dependent fashion, but not required for the development of autoimmune encephalomyelitis. J. Immunol. 179, 8098–8104 (2007).

    Article  CAS  PubMed  Google Scholar 

  40. Leonard, W.J. & Spolski, R. Interleukin-21: a modulator of lymphoid proliferation, apoptosis and differentiation. Nat. Rev. Immunol. 5, 688–698 (2005).

    Article  CAS  PubMed  Google Scholar 

  41. Moore, K.W., de Waal Malefyt, R., Coffman, R.L. & O'Garra, A. Interleukin-10 and the interleukin-10 receptor. Annu. Rev. Immunol. 19, 683–765 (2001).

    Article  CAS  PubMed  Google Scholar 

  42. Ito, T. et al. TSLP-activated dendritic cells induce an inflammatory T helper type 2 cell response through OX40 ligand. J. Exp. Med. 202, 1213–1223 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Trinchieri, G. Interleukin-10 production by effector T cells: Th1 cells show self control. J. Exp. Med. 204, 239–243 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Jankovic, D. & Trinchieri, G. IL-10 or not IL-10: that is the question. Nat. Immunol. 8, 1281–1283 (2007).

    Article  CAS  PubMed  Google Scholar 

  45. O'Garra, A. & Vieira, P. TH1 cells control themselves by producing interleukin-10. Nat. Rev. Immunol. 7, 425–428 (2007).

    Article  CAS  PubMed  Google Scholar 

  46. Lin, J.T., Martin, S.L., Xia, L. & Gorham, J.D. TGF-β1 uses distinct mechanisms to inhibit IFN-γ expression in CD4+ T cells at priming and at recall: differential involvement of Stat4 and T-bet. J. Immunol. 174, 5950–5958 (2005).

    Article  CAS  PubMed  Google Scholar 

  47. Gorelik, L., Constant, S. & Flavell, R.A. Mechanism of transforming growth factor β-induced inhibition of T helper type 1 differentiation. J. Exp. Med. 195, 1499–1505 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Manel, N., Unutmaz, D. & Littman, D.R. Human TH-17 differentiation requires transforming growth factor-β and induction of the nuclear receptor RORγt. Nat. Immunol. (in the press).

Download references

Acknowledgements

We thank O. Lantz, S. Denépoux, F. Barrat, C. Théry, P. Benaroch, I. Fernandez, Z. Maciorowsky and H. Kitamura for suggestions and critical reading of the manuscript; and Z. Maciorowsky, C. Guérin and A. Viguier for cell sorting. Yssel's medium was a gift from H. Yssel (Institut National de la Santé et de la Recherche Médicale). Supported by the European Community Sixth Framework Programme (Marie Curie Excellence Grant 014162).

Author information

Authors and Affiliations

Authors

Contributions

E.V. did experiments and drafted the manuscript; N.S. did computational and statistical analysis; R.Z. did quantitative RT-PCR analysis and helped with the computational data analysis; S.I.B. did some experiments; P.H. did computational and statistical analysis; E.B. supervised the computational and statistical analysis; and V.S. designed and supervised the study and wrote the manuscript.

Corresponding author

Correspondence to Vassili Soumelis.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–8 and Supplementary Methods (PDF 182 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Volpe, E., Servant, N., Zollinger, R. et al. A critical function for transforming growth factor-β, interleukin 23 and proinflammatory cytokines in driving and modulating human TH-17 responses. Nat Immunol 9, 650–657 (2008). https://doi.org/10.1038/ni.1613

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni.1613

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing