Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Hyperactivation of Stat3 in gp130 mutant mice promotes gastric hyperproliferation and desensitizes TGF-β signaling

Abstract

The latent transcription factor Stat3 is activated by gp130, the common receptor for the interleukin (IL)-6 cytokine family and other growth factor and cytokine receptors. Ligand-induced dimerization of gp130 leads to activation of the Stat1, Stat3 and Shp2-Ras-Erk signaling pathways. Here we assess genetically the contribution of exaggerated Stat3 activation to the phenotype of gp130Y757F/Y757F mice, in which a knock-in mutation disrupts the negative feedback mechanism on gp130-dependent Stat signaling. Compared to gp130Y757F/Y757F mice, reduced Stat3 activation in gp130Y757F/Y757FStat3+/− mice increased their lifespan, prevented splenomegaly, normalized exaggerated hepatic acute-phase response and lymphocyte trafficking, and suppressed the growth of spontaneously arising gastric adenomas in young mice. These lesions share histological features of gastric polyps in aging mice with monoallelic null mutations in Smad4, which encodes the common transducer for transforming growth factor (TGF)-β signaling. Indeed, hyperactivation of Stat3 desensitizes gp130Y757F/Y757F cells to the cytostatic effect of TGF-β through transcriptional induction of inhibitory Smad7, thereby providing a novel link for cross-talk between Stat and Smad signaling in gastric homeostasis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Extragastric pathologies in gp130Y757F/Y757F mice result from Stat3 hyperactivation.
Figure 2: gp130-dependent Stat3 hyperactivation promotes gastric adenomatous hyperplasia in gp130Y757F/Y757F mice.
Figure 3: Stat3-mediated desensitization of TGF-β signaling.
Figure 4: Stat3-dependent transcriptional induction of Smad7.
Figure 5: Smad7 siRNA treatment reverts Stat3-dependent desensitization of TGF-β signaling.
Figure 6: Epistatic interactions between Stat3 and Smad signaling in gastric cancer.

Similar content being viewed by others

References

  1. Maritano, D. et al. The STAT3 isoforms alpha and beta have unique and specific functions. Nat. Immunol. 5, 401–409 (2004).

    Article  CAS  Google Scholar 

  2. Levy, D.E. & Lee, C.K. What does Stat3 do? J. Clin. Invest. 109, 1143–1148 (2002).

    Article  CAS  Google Scholar 

  3. Tebbutt, N.C. et al. Reciprocal regulation of gastrointestinal homeostasis by SHP2 and STAT-mediated trefoil gene activation in gp130 mutant mice. Nat. Med. 8, 1089–1097 (2002).

    Article  CAS  Google Scholar 

  4. Heinrich, P.C. et al. Principles of interleukin (IL)-6-type cytokine signalling and its regulation. Biochem. J. 374, 1–20 (2003).

    Article  CAS  Google Scholar 

  5. Croker, B.A. et al. SOCS3 negatively regulates IL-6 signaling in vivo . Nat. Immunol. 4, 540–545 (2003).

    Article  CAS  Google Scholar 

  6. Lefebvre, O. et al. Gastric mucosa abnormalities and tumorigenesis in mice lacking the pS2 trefoil protein. Science 274, 259–262 (1996).

    Article  CAS  Google Scholar 

  7. Shi, Y. & Massague, J. Mechanisms of TGF-beta signaling from cell membrane to the nucleus. Cell 113, 685–700 (2003).

    Article  CAS  Google Scholar 

  8. Nakao, A. et al. Identification of Smad7, a TGFbeta-inducible antagonist of TGF-beta signalling. Nature 389, 631–635 (1997).

    Article  CAS  Google Scholar 

  9. Massague, J., Blain, S.W. & Lo, R.S. TGFbeta signaling in growth control, cancer, and heritable disorders. Cell 103, 295–309 (2000).

    Article  CAS  Google Scholar 

  10. Boivin, G.P. et al. Gastric lesions in transforming growth factor beta-1 heterozygous mice. Lab. Invest. 74, 513–518 (1996).

    CAS  PubMed  Google Scholar 

  11. Takaku, K. et al. Gastric and duodenal polyps in Smad4 (Dpc4) knockout mice. Cancer Res. 59, 6113–6117 (1999).

    CAS  PubMed  Google Scholar 

  12. Xu, X. et al. Haploid loss of the tumor suppressor Smad4/Dpc4 initiates gastric polyposis and cancer in mice. Oncogene 19, 1868–1874 (2000).

    Article  CAS  Google Scholar 

  13. Hohenstein, P. et al. Serrated adenomas and mixed polyposis caused by a splice acceptor deletion in the mouse Smad4 gene. Genes Chromosom. Cancer 36, 273–282 (2003).

    Article  CAS  Google Scholar 

  14. Jenkins, B.J., Roberts, A.W., Najdovska, M., Grail, D. & Ernst, M. The threshold of gp130-dependent STAT3 signaling is critical for normal regulation of hematopoiesis. Blood 105, 3512–3520 (2005).

    Article  CAS  Google Scholar 

  15. Takeda, K. et al. Targeted disruption of the mouse Stat3 gene leads to early embryonic lethality. Proc. Natl. Acad. Sci. USA 94, 3801–3804 (1997).

    Article  CAS  Google Scholar 

  16. Judd, L.M. et al. Gastric cancer development in mice lacking the SHP2 binding site on the IL-6 family co-receptor gp130. Gastroenterology 126, 196–207 (2004).

    Article  CAS  Google Scholar 

  17. Hurst, S.M. et al. Il-6 and its soluble receptor orchestrate a temporal switch in the pattern of leukocyte recruitment seen during acute inflammation. Immunity 14, 705–714 (2001).

    Article  CAS  Google Scholar 

  18. Peters, M. et al. Extramedullary expansion of hematopoietic progenitor cells in interleukin (IL)-6-sIL-6R double transgenic mice. J. Exp. Med. 185, 755–766 (1997).

    Article  CAS  Google Scholar 

  19. Ernst, M. & Jenkins, B.J. Acquiring signalling specificity from the cytokine receptor gp130. Trends Genet. 20, 23–32 (2004).

    Article  CAS  Google Scholar 

  20. Bromberg, J.F. et al. Stat3 as an oncogene. Cell 98, 295–303 (1999).

    Article  CAS  Google Scholar 

  21. Fischer, M. et al. I. A bioactive designer cytokine for human hematopoietic progenitor cell expansion. Nat. Biotechnol. 15, 142–145 (1997).

    Article  CAS  Google Scholar 

  22. Ulloa, L., Doody, J. & Massague, J. Inhibition of transforming growth factor-beta/SMAD signalling by the interferon-gamma/STAT pathway. Nature 397, 710–713 (1999).

    Article  CAS  Google Scholar 

  23. Zhu, H.-J., Iaria, J. & Sizeland, A.M. Smad7 differentially regulates transforming growth factor-β mediated signaling pathways. J. Biol. Chem. 274, 32258–32264 (1999).

    Article  CAS  Google Scholar 

  24. Kanai, M. et al. Differentiation-inducing factor-1 (DIF-1) inhibits STAT3 activity involved in gastric cancer cell proliferation via MEK-ERK-dependent pathway. Oncogene 22, 548–554 (2003).

    Article  CAS  Google Scholar 

  25. Leong, P.L. et al. Targeted inhibition of Stat3 with a decoy oligonucleotide abrogates head and neck cancer cell growth. Proc. Natl. Acad. Sci. USA 100, 4138–4143 (2003).

    Article  CAS  Google Scholar 

  26. Kanda, N. et al. STAT3 is constitutively activated and supports cell survival in association with survivin expression in gastric cancer cells. Oncogene 23, 4921–4929 (2004).

    Article  CAS  Google Scholar 

  27. Lauren, P. The two histological main types of gastric carcinoma: diffuse and so-called intestinal-type carcinoma. An attempt at a histological classification. Acta Pathol. Microbiol. Scand. 64, 31–49 (1965).

    Article  CAS  Google Scholar 

  28. Boussioutas, A. et al. Distinctive patterns of gene expression in premalignant gastric mucosa and gastric cancer. Cancer Res. 63, 2569–2577 (2003).

    CAS  PubMed  Google Scholar 

  29. Gong, W. et al. Expression of activated signal transducer and activator of transcription 3 predicts expression of vascular endothelial growth factor in and angiogenic phenotype of human gastric cancer. Clin. Cancer Res. 11, 1386–1393 (2005).

    Article  CAS  Google Scholar 

  30. Papadimitrakopoulou, V.A. et al. Presence of multiple incontiguous deleted regions at the long arm of chromosome 18 in head and neck cancer. Clin. Cancer Res. 4, 539–544 (1998).

    CAS  PubMed  Google Scholar 

  31. Xie, W. et al. Alterations of Smad signaling in human breast carcinoma are associated with poor outcome: a tissue microarray study. Cancer Res. 62, 497–505 (2002).

    CAS  PubMed  Google Scholar 

  32. Horvath, L.G. et al. Loss of BMP2, Smad8, and Smad4 expression in prostate cancer progression. Prostate 59, 234–242 (2004).

    Article  CAS  Google Scholar 

  33. Li, Q.L. et al. Causal relationship between the loss of RUNX3 expression and gastric cancer. Cell 109, 113–124 (2002).

    Article  CAS  Google Scholar 

  34. Brenner, O. et al. Loss of Runx3 function in leukocytes is associated with spontaneously developed colitis and gastric mucosal hyperplasia. Proc. Natl. Acad. Sci. USA 101, 16016–16021 (2004).

    Article  CAS  Google Scholar 

  35. Becker, C. et al. TGF-beta suppresses tumor progression in colon cancer by inhibition of IL-6 trans-signaling. Immunity 21, 491–501 (2004).

    Article  CAS  Google Scholar 

  36. Monteleone, G. et al. Blocking Smad7 restores TGF-beta1 signaling in chronic inflammatory bowel disease. J. Clin. Invest. 108, 601–609 (2001).

    Article  CAS  Google Scholar 

  37. Atreya, R. et al. Blockade of interleukin 6 trans signaling suppresses T-cell resistance against apoptosis in chronic intestinal inflammation: evidence in crohn disease and experimental colitis in vivo . Nat. Med. 6, 583–588 (2000).

    Article  CAS  Google Scholar 

  38. Howlett, M. et al. Differential regulation of gastric tumor growth by cytokines that signal exclusively through the co-receptor gp130. Gastroenterology (in the press).

  39. Bossenmeyer-Pourie, C. et al. The trefoil factor 1 participates in gastrointestinal cell differentiation by delaying G1-S phase transition and reducing apoptosis. J. Cell Biol. 157, 761–770 (2002).

    Article  CAS  Google Scholar 

  40. Lerner, L., Henriksen, M.A., Zhang, X. & Darnell, J.E. Jr., STAT3-dependent enhanceosome assembly and disassembly: synergy with GR for full transcriptional increase of the alpha 2-macroglobulin gene. Genes Dev. 17, 2564–2577 (2003).

    Article  CAS  Google Scholar 

  41. Darnell, J.E., Jr. Transcription factors as targets for cancer therapy. Nat. Rev. Cancer 2, 740–749 (2002).

    Article  CAS  Google Scholar 

  42. Zhu, Y., Richardson, J.A., Parada, L.F. & Graff, J.M. Smad3 mutant mice develop metastatic colorectal cancer. Cell 94, 703–714 (1998).

    Article  CAS  Google Scholar 

  43. Wang, Y. et al. Receptor subunit-specific action of oncostatin M in hepatic cells and its modulation by leukemia inhibitory factor. J. Biol. Chem. 275, 25273–25285 (2000).

    Article  CAS  Google Scholar 

  44. Stenvers, K.L. et al. Heart and liver defects and reduced transforming growth factor beta2 sensitivity in transforming growth factor beta type III receptor-deficient embryos. Mol. Cell. Biol. 23, 4371–4385 (2003).

    Article  CAS  Google Scholar 

  45. Brodin, G., Ahgren, A., ten Dijke, P., Heldin, C.H. & Heuchel, R. Efficient TGF-beta induction of the Smad7 gene requires cooperation between AP-1, Sp1, and Smad proteins on the mouse Smad7 promoter. J. Biol. Chem. 275, 29023–29030 (2000).

    Article  CAS  Google Scholar 

  46. Jenkins, B.J. et al. Imbalanced gp130-dependent signaling in macrophages alters macrophage colony-stimulating factor responsiveness via regulation of c-fms expression. Mol. Cell. Biol. 24, 1453–1463 (2004).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are indebted to S. Rose-John and G. Begley for the gift of HYPER-IL-6 and recombinant human IL-6, respectively. We thank A. Moustakas and R. Heuchel for making available the luciferase reporter constructs p(CAGA)12-luc and pSmad7-luc, and J. Wade for assistance in preparing plasma samples. We thank V. Feakes for histology, J. Stickland for photography and A. Burgess and J. Heath for critical reading of the manuscript. This work was supported by grants from the National Health and Medical Research Council of Australia to B.J.J., M.E., A.S.G. and H.J.Z., and by the Wellcome Trust to R.M.M.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hong-Jian Zhu or Matthias Ernst.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Stat1 and Stat3 tyrosine phosphorylation in mouse embryonic fibroblasts (MEFs) stimulated with HYPER-IL-6. (PDF 109 kb)

Supplementary Fig. 2

Impaired TGF-β-dependent transcriptional activation of the artificial Smad3 reporter p(CAGA)12-luc in gastric epithelial IMGE-5 cells following activation of the gp130(Y757F) receptor. (PDF 85 kb)

Supplementary Table 1

Primers used in Real-time and Semi-quantitative RT-PCR assays. (PDF 74 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jenkins, B., Grail, D., Nheu, T. et al. Hyperactivation of Stat3 in gp130 mutant mice promotes gastric hyperproliferation and desensitizes TGF-β signaling. Nat Med 11, 845–852 (2005). https://doi.org/10.1038/nm1282

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm1282

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing