Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Targeting the protein kinase C family: are we there yet?

A Corrigendum to this article was published on 01 March 2008

Abstract

Protein kinase C (PKC) comprises a family of serine/threonine kinases that are involved in the transduction of signals for cell proliferation, differentiation, apoptosis and angiogenesis. Unsurprisingly, disruption of PKC regulation is implicated in tumorigenesis and drug resistance. PKC function is complex in this context owing to the differing roles of individual isozymes within the cell and across tumour types. Therapeutically targeting PKC isozymes is not new; however, with many of the early PKC inhibitor cytotoxic drug combinations being discarded at the phase II level, and recent phase III studies in non-small-cell lung cancer proving negative, what's going wrong?

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic representation of protein kinase C isozyme structure and classification.
Figure 2: Proposed effects of protein kinase C activation.

Similar content being viewed by others

References

  1. Fields, A. P. & Gustafson, W. C. in Methods in Molecular Biology (ed. Newton, A. C.) 519–537 (Humana Press Inc., Totowa, New Jersey, 2003).

    Google Scholar 

  2. Blobe, G. C., Obeid, L. M. & Hannun, Y. A. Regulation of protein kinase C and role in cancer biology. Cancer Met. Rev. 13, 724–730 (1994).

    Article  Google Scholar 

  3. Castagna, M. et al. Direct activation of calcium-activated, phopholipid-dependent protein kinase by tumour-promoting phorbol esters. J. Biol. Chem. 257, 7847–7851 (1982).

    CAS  PubMed  Google Scholar 

  4. Mackay, H. & Twelves, C. J. Protein kinase C: a target for anticancer drugs? Endocrine Relat. Cancer 10, 386–396 (2003).

    Google Scholar 

  5. Takai, Y. et al. Calcium-dependent activation of a multi-functional protein kinase by membrane phospholipids. J. Biol. Chem. 3692–3695 (1979).

  6. Newton, A. C. Protein kinase C; structure, function, and regulation. J. Biol. Chem. 270, 28495–28498 (1995).

    Article  CAS  PubMed  Google Scholar 

  7. Nishizuka, Y. Intracellular signalling by hydrolysis of phospholipids and activation of protein kinase C. Science 258, 607–614 (1992).

    Article  CAS  PubMed  Google Scholar 

  8. Schenk, P. W. & Snaar-Jagalska, B. E. Signal perception and transduction: the role of protein kinases. Biochem. Biophys. Acta 1449, 1–24 (1999).

    Article  CAS  PubMed  Google Scholar 

  9. Disatnik, M. H., Buraggi, G. & Mochly-Rosen, D. Localisation of protein kinase C isozymes in cardiac myocytes. Exp. Cell Res. 210, 287–297 (1994).

    Article  CAS  PubMed  Google Scholar 

  10. Csuki, M. and Mochley-Rosen, D. Pharmacologic modulation of protein kinase C isozymes: the role of RACKs and subcellular localisation. Pharmacol. Res. 39, 253–259 (1999).

    Article  Google Scholar 

  11. Way, K. J., Chou, E. & King, G. L. Identification of PKC-isoform-specific biological actions using pharmacological approaches. Trends Parmacol. Sci. 21, 181–187 (2000).

    Article  CAS  Google Scholar 

  12. Ohno, S. in Protein kinase C (eds Parker, P. J. & Deckker, L. V.) 75–95 (RG Landes, USA, 1997).

    Google Scholar 

  13. Cai, H. et al. Role of diacylglycerol-regulated protein kinase C isotypes in growth factor activation of the Raf-1 protein kinase. Mol. Cell. Biol. 17, 732–741 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Marshall, C. J. Cell signalling; Raf gets it together. Nature 383, 127–128 (1996).

    Article  CAS  PubMed  Google Scholar 

  15. Ueda, Y. et al. Protein kinase C δ activates the MERK-ERK pathway in a manner independent of Ras and dependent on Raf. J. Biol. Chem. 271, 23512–23519 (1996).

    Article  CAS  PubMed  Google Scholar 

  16. Balendran, A. et al. Further evidence that 3-phosphoinositidedependent protein kinase-1 (PDK1) is required for thestability and phosphorylation of protein kinase C (PKC) isoforms. FEBS Lett. 484, 217–223 (2000).

    Article  CAS  PubMed  Google Scholar 

  17. O'Brian, C. A., Liskamp, R. M., Solomon, D. H. & Weinstein, I. B. Inhibition of protein kinase C by tamoxifen. Cancer Res. 45, 2462–2465 (1985).

    CAS  PubMed  Google Scholar 

  18. Takenaga, K. & Takahashi, K. Effects of 12-O-tetradecanoylphorbol-13-acetate on adhesiveness and lung-colonising ability of Lewis lung carcinoma cells. Cancer Res. 46, 375–380 (1996).

    Google Scholar 

  19. Schwartz, G. K., Juang, K., Kelsen, D. & Albino, A. P. Protein kinase C: a novel target for inhibiting gastric cancer cell invasion. J. Natl Cancer Inst. 85, 402–407 (1993).

    Article  CAS  PubMed  Google Scholar 

  20. Murray, N. R. et al. Protein kinase C isotypes in human erythroleukaemia (K562) cell proliferation and differentiation. Evidence that βII protein kinase C is required for proliferation. J. Biol Chem. 268, 15847–15853 (1993).

    CAS  PubMed  Google Scholar 

  21. Murray, N. R. et al. Overexpression of protein kinase C βII induces colonic hyperproliferation and increased sensitivity to colon carcinogenesis. J. Cell Biol. 145, 699–711 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Black, J. D. Protein kinase C isozymes in colon carcinogenesis: guilt by omission. Gastroenterology 120, 1868–1872 (2001).

    Article  CAS  PubMed  Google Scholar 

  23. Gokmen-Polar, Y. et al. Elevated protein kinase C βII is an early promotive event in colon carcinogenesis. Cancer Res. 61, 1375–1381 (2001).

    CAS  PubMed  Google Scholar 

  24. Suga, K. et al. Down-regulation of protein kinase C α detected in human colorectal cancer. Biochem. Mol. Biol. Int. 44, 523–528 (1998).

    CAS  PubMed  Google Scholar 

  25. O' Brian, C. A., Vogel, V. G., Singletary, S. E. & Ward, N. E. Elevated protein kinase C expression in human breast tumour biopsies relative to normal breast tissue. Cancer Res. 49, 3215–3217 (1989).

    CAS  Google Scholar 

  26. Borner, C. et al. Immunological quantitation of phospholipid/Ca+- dependent protein kinase of human mammary carcinoma cells: inverse relationship to estrogen receptors. Int. J. Cancer 40, 344–348 (1987).

    Article  CAS  PubMed  Google Scholar 

  27. Manni, A. et al. Induction of a less aggressive breast cancer phenotype by protein kinase C-α and β-overexpression. Cell Growth Differ. 7, 1187–1198 (1996).

    CAS  PubMed  Google Scholar 

  28. Xia, P. et al. Characterisation of vascular endothelial growth factor's effect on the activation of protein kinase C, its isoforms, and endothelial cell growth. J. Clin. Invest. 98, 2018–2026 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Cohen, E. E. et al. Protein kinase C ζ mediates EGF-induced growth of head and neck tumor cells regulating MAP kinase. Proc. Amer. Assoc. Cancer Res. 47, abs. 70 (2006).

    Google Scholar 

  30. Herbert, J. M. Protein kinase C: a key factor in the regulation of tumor cell adhesion to the endothelium. Biochem. Pharmacol. 45, 527–537 (1993).

    Article  CAS  PubMed  Google Scholar 

  31. Morse-Gaudio, M., Connolly, J. M. & Rose, D. P. Protein kinase C and its isoforms in human breast cancer cells: relationship to the invasive phenotype. Int. J. Oncol. 12, 1349–1354 (1998).

    CAS  PubMed  Google Scholar 

  32. Ways, D. K. et al. MCF7 breast cancer cells transfected with protein kinase C-α exhibit altered expression of other protein kinase C isoforms and display a more aggressive neoplastic phenotype. J. Clin. Invest. 95, 1906–1915 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Lee, J. Y., Hannun, Y. A. & Obeid, L. M. Ceramide inactivates cellular protein kinase C alpha. J. Biol. Chem. 271, 13169–13174 (1996).

    Article  CAS  PubMed  Google Scholar 

  34. Goss, V. L., Hocevar, B. A. & Thompson, L. J. Identification of nuclear β II protein kinase C as a mitotic lamin kinase. J. Biol. Chem. 269, 19074–19080 (1994).

    CAS  PubMed  Google Scholar 

  35. Ruvolo, P. P., Deng, X. & Carr, B. K. A functional role for mitochondrial protein kinase C α in Bcl2 phosphorylation and suppression of apoptosis. J. Biol. Chem. 273, 25436–25422 (1998).

    Article  CAS  PubMed  Google Scholar 

  36. Wert, M. M. & Palfrey, H. C. Divergence in the apoptotic signaling pathways used by nerve growth factor and basic fibroblast growth factor (bFGF) in PC12 cells: Rescue by bFGF involves protein kinase C δ. Biochem. J. 352, 175–182 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Cross, T, Griffiths, G. & Deacon, E. PKC is an apoptotic lamin kinase. Oncogene 19, 2331–2337 (2000).

    Article  CAS  PubMed  Google Scholar 

  38. Mandil, A. S., Ashkenazi, E. & Blass, M. Protein kinase C α and protein kinase C δ play opposite roles in the proliferation and apoptosis of glioma cells. Cancer Res. 61, 4612–4619 (2001).

    CAS  PubMed  Google Scholar 

  39. Clark, A. S, West, K. A. & Blumberg, P. M. Altered protein kinase C (PKC) isoforms in non-small cell lung cancer cells: PKCδ promotes cellular survival and chemotherapeutic resistance. Cancer Res. 63, 780–786 (2003).

    CAS  PubMed  Google Scholar 

  40. Partovian, C. & Simons, M. Regulation of protein kinase B/Akt activity and Ser473 phosphorylation by protein kinase Ca in endothelial cells. Cell. Signal. 16, 951–957 (2004).

    Article  CAS  PubMed  Google Scholar 

  41. Kawakami, Y. et al. Protein kinase C hII regulates Akt phosphorylation on Ser-473 in a cell type- and stimulus-specific fashion. J. Biol. Chem. 279, 47720–47725 (2004).

    Article  CAS  PubMed  Google Scholar 

  42. Aeder, S. E. et al. PKC- mediates glioblastoma cell proliferation through the Akt and mTOR signaling pathways. Oncogene 23, 9062–9069 (2004).

    Article  CAS  PubMed  Google Scholar 

  43. Fang, X. et al. Convergence of multiple signaling cascades at glycogen synthase kinase 3: Edg receptor-mediated phosphorylation and inactivation by lysophosphatidic acid througha protein kinase C-dependent intracellular pathway. Mol. Cell. Biol. 22, 2099–2110 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Goode, N. et al. Differential regulation of glycogen synthase kinase-3 η by protein kinase C isotypes. J. Biol. Chem. 267, 16878–16882 (1992).

    CAS  PubMed  Google Scholar 

  45. Cross, D. A. et al. Inhibition of glycogen synthase kinase-3 by insulin mediated by protein kinase B. Nature 378, 785–789 (1995).

    Article  CAS  PubMed  Google Scholar 

  46. Teicher, B. A. et al. Antiangiogenic effects of a protein kinase C β-selective small molecule. Cancer Chemother. Pharmacol. 49, 69–77 (2002).

    Article  CAS  PubMed  Google Scholar 

  47. Fine, R. L., Patel, J. & Chabner, B. A. Phorbol esters induce multidrug resistance in human breast cancer cells. Proc. Natl Acad. Sci. 85, 582–586 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. O'Brian, C. A., Ward, N. E., Stewart, J. R. & Chu, F. Prospects for targeting protein kinase C isozymes in the therapy of drug-resistant cancer-an evolving story. Cancer Met. Rev. 20, 95–100 (2001).

    Article  CAS  Google Scholar 

  49. Germann, U. A. et al. Characterisation of phosphorylation – defective mutants of human P-glycoprotein expressed in mammalian cells. J. Biol. Chem. 271, 1708–1716 (1996).

    Article  CAS  PubMed  Google Scholar 

  50. Goodfellow, H. R. et al. Protein kinase C mediated phosphorylation does not regulate drug transport by the human multidrug resistance P-glycoprotein. J. Biol. Chem. 271, 13668–13674 (1996).

    Article  CAS  PubMed  Google Scholar 

  51. Beck, J. F., Brugger, D. & Brischwein, K. Anticancer drug-mediated induction of multidrug resistance-associated genes and protein kinase C isozymes in the T-lymphoblastoid cell line CCRF-CEM and in blasts from patients with acute lymphoblastic leukemias. Jpn J. Cancer Res. 92, 896–903 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Ainsworth, P. D. et al. Protein kinase C α expression in normal breast, ductal carcinoma in situ and invasive carcinoma. Euro. J. Cancer 40, 2269–2273 (2004).

    Article  CAS  Google Scholar 

  53. Varga, A. et al. Tumor grade-dependent alterations in the protein kinase C isoform pattern in urinary bladder carcinomas. Eur. Urol. 24, 462–465 (2004).

    Article  CAS  Google Scholar 

  54. Weichart, W. et al. Protein kinase C isoform expression in ovarian cancer correlates with indicators of poor prognosis. Int. J. Oncol. 23, 633–639 (2003).

    Google Scholar 

  55. Fournier, D. B. et al. Protein kinase C expression is inversely related to ER status in endometrial cancer: possible role in AP-1 mediated proliferation of ER negative endometrial cancer. Gynecol. Oncol. 81, 366–372 (2001).

    Article  CAS  PubMed  Google Scholar 

  56. Cornford, P. et al. Protein kinase C isoenzyme patterns characteristically modulated in early prostate cancer. Am. J. Pathol. 54, 137–144 (1999).

    Article  Google Scholar 

  57. Ahang, L. et al. Integrative genomic analysis of protein kinase C (PKC) family identifies PKC ι as a biomarker and potential oncogene in ovarian cancer. Cancer Res. 66, 4627–4635 (2006).

    Article  Google Scholar 

  58. Lahn, M. et al. Immunohistochemical detection of protein kinase C-β (PKC-β) in tumour specimens of patients with non-small cell lung cancer Histopathology 49, 426–431 (2006).

    Article  Google Scholar 

  59. Lahn, M. et al. Expression level of protein kinase C α in non small cell lung cancer. Clin. Lung Cancer 6, 184–189 (2004).

    Article  CAS  PubMed  Google Scholar 

  60. Andrejauskas, B. E. & Regenass, U. Differential inhibition of the epidermal growth factor-, platelet-derived growth factor, and protein kinase C-mediated signal transduction pathways by staurosporine derivative CGP41251. Cancer Res. 52, 5353–5358 (1992).

    Google Scholar 

  61. Utz, I. et al. The protein kinase inhibitor CGP41251, a staurosporine derivative with antitumour activity, reverses multidrug resistance. Int. J. Cancer 57, 104–110 (1994).

    Article  CAS  PubMed  Google Scholar 

  62. Budworth, J. et al. Comparison of staurosporine and four analogues: their effects on growth, rhodamine 123 retention and binding to p-glycoprotein in multidrug-resistant MCF7/Adr cells. Brit. J. Cancer 73, 1063–1068 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Propper, D. J. et al. Phase I and pharmacokinetic study of PKC412 an inhibitor of protein kinase C. J. Clin. Oncol. 19, 1485–1492 (2001).

    Article  CAS  PubMed  Google Scholar 

  64. Shapira, L. et al. Involvement of protein kinase C and protein tyrosine kinase in lipopolysaccharide-induced TNFα and IL1β production by human monocytes. J. Immunol. 153, 1818–1824 (1994).

    CAS  PubMed  Google Scholar 

  65. Norris, J. G. et al. Signal transduction pathways mediating astrocyte IL-6 induction by IL-1β and tumor necrosis factor-α. J. Immunol. 152, 841–850 (1994).

    CAS  PubMed  Google Scholar 

  66. Galron, D. et al. Inhibition of PMA-induced human Tcell proliferation by bryostatin is associated with enhanced degradation of cpnventional protein kinase C (cPKC): Ca++ signals restore mitogenic activity without abrogating enhanced cPKC degradation. Cell. Immunol. 158, 195–207 (1994).

    Article  CAS  PubMed  Google Scholar 

  67. Laxminarayana, D. & Kammer, G. M. Activation of type I protein kinase A during receptor mediated human T lymphocyte activation. J. Immunol. 156, 497–506 (1996).

    CAS  PubMed  Google Scholar 

  68. Vang, T. et al. Activation of the COOH-terminal src kinase (Csk) by cAMP-dependent protein kinase inhibits signalling through the T cell receptor. J. Exp. Med. 193, 497–507 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Thavasu P . et al. The protein kinase C inhibitor CGP41251 suppresses cytokine release and extracellular signal-related kinase 2 expression in cancer patients. Cancer Res. 59, 3980–3984 (1999).

    CAS  PubMed  Google Scholar 

  70. Selzer, E. et al. Protein kinase C isoforms in normal and transformed cells of the melanocytic lineage. Melanoma Res. 12, 201–209 (2002).

    Article  CAS  PubMed  Google Scholar 

  71. Yoshikawa, N. et al. Effect of PKC412, a selective inhibitor of protein kinase C, on lung metastasis in mice injected with B16 melanoma cells. Life Sci. 72, 1377–1387 (2003).

    Article  CAS  PubMed  Google Scholar 

  72. Millward, M. J. et al. The multikinase inhibitor midostaurin (PKC412A) lacks activity in metastatic melanoma: a phase IIA clinical and biologic study. Br. J. Cancer 95, 829–834 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Reichardt, P. et al. A phase I/II trial of the oral PKC-inhibitor PKC412 (PKC) in combination with imatinib mesylate (IM) in patients (pts) with gastrointestinal stromal tumor (GIST) refractory to IM. Proc. Amer. Soc. Clin. Oncol. 23, 3016 (2005).

    Article  Google Scholar 

  74. Ming-Sing, S., Reitz, B. A. & Borie, D. C. Effects of the kinase inhibitor CGP41251(PKC412) on lymphocyte activation and TNF-α production. Int. Immunopharmacol. 5, 1141–1149 (2005).

    Article  CAS  Google Scholar 

  75. Keyes, K. A. et al. LY317615 decreases plasma VEGF levels in human tumor xenograft-bearing mice. Cancer Chemother. Pharmacol. 53, 133–140 (2004).

    Article  CAS  PubMed  Google Scholar 

  76. Meinhold-Heerlein, I. et al. Effects of PKC β inhibitor enzastaurin on parental and chemoresistant ovarian cancer cell lines. Proc. Amer. Soc. Clin. Oncol. 24, 20037 (2006).

    Google Scholar 

  77. Graff, J. R., McNulty, A. M. & Hanna, K. R. The protein kinase C β-selective inhibitor, Enzastaurin (LY317615. HCl) suppresses signaling through the AKT pathway, induces apoptosis, and suppresses growth of human colon cancer and glioblastoma xenografts. Cancer Res. 65, 7462–7469 (2005).

    Article  CAS  PubMed  Google Scholar 

  78. Carducci, M. A. et al. Phase I dose escalation and pharmacokinetic study of Enzastaurin, an oral protein kinase C β inhibitor, in patients with advanced cancer. J. Clin. Oncol. 24, 4092–4099 (2006).

    Article  CAS  PubMed  Google Scholar 

  79. Adjei, A. What is the right dose? The elusive optimal biologic dose in phase I clinical trials. J. Clin. Oncol. 24, 4054–4055 (2006).

    Article  CAS  PubMed  Google Scholar 

  80. Green, L. J. et al. Development and validation of a drug activity biomarker that shows target inhibition in cancer patients receiving enzastaurin, a novel protein kinase C-β inhibitor. Clin. Cancer. Res. 12, 3408–3415 (2006).

    Article  CAS  PubMed  Google Scholar 

  81. Fine, H. A. et al. Results from phase II trial of enzastaurin (LY317615) in patients with recurrent high grade gliomas. Proc. Amer. Soc. Clin. Oncol. 23, 1504 (2005).

    Article  Google Scholar 

  82. Rademaker-Lakhai, J. M. et al. Phase I and pharmacologic study of enzastaurin HCL, gemcitabine and cisplatin. Proc. Amer. Soc. Clin. Oncol. 22, 3129 (2004).

    Article  Google Scholar 

  83. Leong, S. et al. A phase I dose escalation and pharmacokinetic study of enzastaurin combined with capecitabine in patients with advanced cancer. Proc. Amer. Soc. Clin. Oncol. 24, 2048 (2006).

    Google Scholar 

  84. Schaufelberger, D. E. et al. The large scale isolation of bryostatin 1 from Bugula nerutina following current good manufacturing practices. J. Nat. Prod. 54, 1265–1270 (1991).

    Article  CAS  PubMed  Google Scholar 

  85. Smith, J. B., Smith, L. & Pettit, G. R. Bryostatins: potent, new mitogens that mimic phorbol ester tumour promoters. Biochem. Biophys. Res. Commun. 132, 939–945 (1985).

    Article  CAS  PubMed  Google Scholar 

  86. Szallasi, Z., Smith, C. B., Pettit, G. R. & Blumberg, P. M. Differential regulation of protein kinase C isozymes by bryostatin 1 and phorbol 12-myrstate 13-acetate in NIH 3t3 fibroblasts. J. Biol. Chem. 269, 2118–2124 (1994).

    CAS  PubMed  Google Scholar 

  87. Hocevar, B. A. & Fields, A. P. Selective translocation of βII protein kinase C to the nucleus of human promyelocytic (HL-60) leukemia cells. J. Cell. Biol. 266, 28–33 (1991).

    CAS  Google Scholar 

  88. Stanwell, C. et al. The role of protein kinase C isoenzymes inhibition caused by bryostatin-1 in human A549 lung and MCF-7 breast carcinoma cells. Int. J. Cancer 56, 584–592 (1994).

    Google Scholar 

  89. Hennings, H. et al. Bryostatin 1 activator of protein kinase C inhibits, tumor promotion by phorbol esters in sencar mouse skin. Carcinogenesis 9, 1343–1346 (1987).

    Article  Google Scholar 

  90. Lee, H-W . et al. Ubiquitination of protein kinase C α and degradation by the proteosome. J. Biol. Chem. 271, 20973–20976 (1996).

    Article  CAS  PubMed  Google Scholar 

  91. Mohr, H., Pettit, G. R. & Plessing-Menze, A. Co-induction of lymphokine synthesis by the antineoplastic bryostatins. Immunobiology 175, 420–430 (1987).

    Article  CAS  PubMed  Google Scholar 

  92. Trenn, G. et al. Immunomodulating properties of a novel series of protein kinase C activators. The biostatins. J. Immunol. 140, 433–439 (1988).

    CAS  PubMed  Google Scholar 

  93. Jarvis, W. D. et al. Effects of bryostatin 1 and other pharmacological activators of protein kinase C on 1-β-D-arabinofuranosylcytosine-induced apoptosis in HL-60 human promyelocytic leukemia cells. Biochem. Pharmacol. 47, 839–852 (1994).

    Article  CAS  PubMed  Google Scholar 

  94. Mohammed, R. M. et al. Bryostatin-1 induces apoptosis and augments inhibitory effects of vincristine in human diffuse large cell lymphoma. Leuk. Res. 19, 667–673 (1995).

    Article  Google Scholar 

  95. Basu, A. & Lazo, J. S. Sensitization of human cervical carcinoma cells to cis-diamminedichloroplatinum (II) by bryostatin-1. Cancer Res. 52, 3119–3124 (1992).

    CAS  PubMed  Google Scholar 

  96. El-Rayes, B. F. et al. Phase I study of bryostatin I and gemcitabine. Clin. Cancer Res. 12, 7059–7062 (2006).

    Article  CAS  PubMed  Google Scholar 

  97. Koutcher J. A. et al. The in vivo effect of bryostatin-1 on paclitaxel-induced tumor growth, mitotic entry, and blood flow. Clin. Cancer Res. 6, 1498–1507 (2000).

    CAS  PubMed  Google Scholar 

  98. Philip, P. A. et al. Phase I study of bryostatin 1: assessment of interleukin 6 and tumour necrosis factor alpha induction in vivo. J. Natl Cancer Inst. 85, 1812–1818 (1993).

    Article  CAS  PubMed  Google Scholar 

  99. Prendiville, J. et al. A phase I study of intravenous bryostatin 1 in patients with advanced cancer. Br. J. Cancer 68, 418–424 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Jayson, G. C. et al. A phase I trial of bryostatin 1 in patients with advanced malignancy using a 24 hour infusion. Br. J. Cancer. 72, 461–468 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Propper, D. J. et al. A phase II study of bryostatin 1 in metastatic malignant melanoma. Br. J. Cancer 78, 1337–1341 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Zonder, J. A. et al. A phase II trial of bryostatin 1 in the treatment of metastatic colorectal cancer. Clin. Cancer Res. 7, 38–42 (2001).

    CAS  PubMed  Google Scholar 

  103. Kaubisch, A. et al. Phase II study of sequential paclitaxel (P) and bryostatin-1 (bryo) for patients with advanced pancreatic cancer. Proc. Amer. Soc. Clin. Oncol. 22, 4223 (2004).

    Article  Google Scholar 

  104. Hudes, G. R. et al. Phase II study of weekly paclitaxel (PAC) and brostatin-1 (bryo) in hormone refractory prostate cancer (HRPC). Proc. Amer. Soc. Clin. Oncol. 23, 4714 (2005).

    Article  Google Scholar 

  105. Peterson, A. C. et al. A randomized phase II trial of interleukin-2 in combination with four different doses of bryostatin in patients with renal cell carcinoma. Proc. Amer. Soc. Clin. Oncol. 22, 4608 (2004).

    Article  Google Scholar 

  106. Haas, N. B. et al. Phase I study of intravenous CCI-779 in combination with bryostatin-1 in solid tumors. Proc. Amer. Soc. Clin. Oncol. 24, 3067 (2006).

    Google Scholar 

  107. Dean, N. M., McKay, R., Condon, T. P. & Bennett, C. F. Inhibition of protein kinase C-α expression in human A549 cells by antisense oligonucleotides inhibits induction of intracellular adhesion molecule 1 (ICAM-1) mRNA by phorbol esters. J. Biol. Chem. 269, 16416–16424 (1994).

    CAS  PubMed  Google Scholar 

  108. Dean, N. M. et al. Inhibition of growth of human tumour cell lines in nude mice by an antisense oligonucleotide inhibitor of protein kinase C α expression. Cancer Res. 56, 3499–3507 (1996).

    CAS  PubMed  Google Scholar 

  109. Yazaki T et al. Treatment of gioblastoma U-87 by systemic administration by an antisense protein kinase Cα phosphothioate oligodeoxynucleotide. Mol. Pharmacol. 50, 236–242 (1996).

    CAS  PubMed  Google Scholar 

  110. Neumunaitis, J. et al. Phase I evaluation of ISIS 3521, an antisense oligodeoxynucleotide to protein kinase C-α, in patients with advanced cancer. J. Clin. Oncol. 17, 3586–3595 (1999).

    Article  Google Scholar 

  111. Gradishar, W. J. et al. A phase II trial with antisense oligonucleotide ISIS 3521/Cgp 64128a in patients (Pts) with metastatic breast cancer (MBC): ECOG Trial 3197. Proc. Amer. Soc. Clin. Oncol. 20, abs. 171 (2001).

    Google Scholar 

  112. Grossman S. D. et al. Efficacy and toxicity of the antisense oligonucleotide aprinocarsen directed against protein kinase C-α delivered as a 21 day continuous intraveneous infusion in patients with recurrent high-grade astrocytomas. Neuro-oncol. 7, 32–40 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Yuen, A. R. et al. Phase I/II trial of ISIS 3521, an antisense inhibitor of PKC-α, with carboplatin and paclitaxel in non-small cell lung cancer. Proc. Amer. Soc. Clin. Oncol. 20, abs 1234 (2001).

    Google Scholar 

  114. Ritch, P. et al. Phase II study of PKCα antisense oligonucleotide aprinocarsen in combination with gemcitabine and cisplatin in patients with advanced non small cell lung cancer. Lung Cancer 52, 173–180 (2006).

    Article  PubMed  Google Scholar 

  115. Paz-Ares, L et al. Phase III study of gemcitabine and cisplatin with or without aprinocarsen, a protein kinase C-α antisense oligonucleotide, in patients with advanced stage non-small-cell lung cancer. J. Clin. Oncol. 24, 1428–1434 (2006).

    Article  CAS  PubMed  Google Scholar 

  116. Lynch T. J. et al. Randomized phase III trial of chemotherapy and anti sense, oligonucleotide LY9000003 (ISIS 3521) in patients with advanced NSCLC: initial report. Proc. Am. Soc. Clin. Oncol. 22, 623 abs. 2504 (2003).

    Google Scholar 

  117. Jane, E. P., Premkumar, D. R. & Pollack, I. F. Coadministration of sorafenib with rotterlin potently inhibits cell proliferation and migration in human malignant glioma cells. J. Pharmacol. Exp. Ther. 319, 1070–1080 (2006).

    Article  CAS  PubMed  Google Scholar 

  118. Schaar, D. et al. A phase I clinical trial of 12-O-tetradecanoylphorbol-13-acetate for patients with relapsed/refractory malignancies. Cancer Chemother. Pharmacol. 57, 789–795 (2006).

    Article  CAS  PubMed  Google Scholar 

  119. Mizuno, K., Saido, T. C., Ohno, S., Tamaoki, T. & Suzuki, K. Staurosporine-related compounds, K252a and UCN01, inhibit both cPKC and n PKC. FEBS lett. 330, 114–116 (1993).

    Article  CAS  PubMed  Google Scholar 

  120. Jones, C. B. et al. Enhancement of camptothecin-induced cytotoxicity with UCN01 in breast cancer cells: abrogation of S/G2 arrest. Cancer Chemother. Pharmacol. 45, 252–258 (2000).

    Article  CAS  PubMed  Google Scholar 

  121. Bunch, R. T. & Eastman, A. Enhancement of cisplatin –induced cytotoxicity by 7-hydroxystaurosporine (UCN01) a new G2-checkpoint inhibitor 1996. Clin. Cancer Res. 2 791–797.

  122. Sugiyama, K. et al. UCN01 selectively enhances mitomycin C cytotoxicity in p53 defective cells which is mediated through S and/or G2 checkpoint abrogation. Int. J. Cancer 85, 703–709 (2000).

    Article  CAS  PubMed  Google Scholar 

  123. Fuse, E. et al. Altered pharmacokinetics of a novel anticancer drug, UCN01, caused by specific high affinity binding to α1-acid glycoprotein in humans. Cancer Res. 58, 1054–1060 (1999).

    Google Scholar 

  124. Sausville, E. A. et al. Phase I trial of 72-hour continuous infusion UCN-01 in patients with refractory neoplasms. J. Clin. Oncol. 19, 2319–2333 (2001).

    Article  CAS  PubMed  Google Scholar 

  125. Dees, E. C. et al. A phase I and pharmacokinetic study of short infusions of UCN-01 in patients with refractory solid tumors. Clin. Cancer Res. 11, 664–667 (2005).

    CAS  PubMed  Google Scholar 

  126. Martiny-Baron, G. et al. Selective inhibition of protein kinase C isozymes by the indolocarbazole G06976. J. Biol. Chem. 268, 9194–9197 (1993).

    CAS  PubMed  Google Scholar 

  127. O'Brian, C. A., Liskamp, R. M., Solomon, D. H. & Weinstein, I. B. Inhibition of protein kinase C by tamoxifen. Cancer Res. 45, 2462–2465 (1985).

    CAS  PubMed  Google Scholar 

  128. Wilkinson, S. E., Parker, P. J. & Nixon, J. S. Isoenzyme specificity of bisindolylmaleimides selective inhibitors of protein kinase C. Biochem. J. 294, 335–337 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Hanauske A et al. Pharmacokinetic interaction and safety of enzastaurin and premetrexed in patients with advanced or metastatic cancer. Proc. Amer. Soc. Clin. Onc. 24, 2047 (2006).

    Google Scholar 

  130. Carvajal, R. D. et al. A phase I clinical trial of safingol followed by cisplatin: promising activity in refractory adrenocortical cancer with novel pharmacology. Proc. Amer. Soc. Clin. Oncol. 24, 13044 (2006).

    Google Scholar 

  131. Hirte, H. A phase II study of UCN 01 in combination with topotecan in patients with advanced recurrent ovarian cancer: a Princess Margaret Phase II Consortium trial. Proc. Amer. Soc. Clin. Oncol. 23, 3127 (2005).

    Article  Google Scholar 

  132. Kortmansky, J. et al. Phase I trial of the cyclin-dependent kinase inhibitor and protein kinase C inhibitor 7-hydroxystauroporine in combination with fluorouracil in patients with advanced solid tumors. J. Clin. Oncol. 25, 1875–1884 (2005).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher J. Twelves.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mackay, H., Twelves, C. Targeting the protein kinase C family: are we there yet?. Nat Rev Cancer 7, 554–562 (2007). https://doi.org/10.1038/nrc2168

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc2168

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing